首页 > 范文大全 > 正文

学生学习元素化合物知识的教学策略

开篇:润墨网以专业的文秘视角,为您筛选了一篇学生学习元素化合物知识的教学策略范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:结合笔者的教学实践,探讨了学生学习元素化合物知识教学策略问题,提出了“多种感官协同记忆策略、联系―预测策略、知识结构化策略”等几种元素化合物知识的有效教学策略。

关键词:新课程;元素化合物知识;教学策略

文章编号:1005-6629(2007)03-0016-03 中图分类号:G633.8 文献标识码:B

高中化学新课程对化学学习提出了新要求。新课程的实施,将学生置身于一种动态、开放、个性、多元的学习环境中,打破了原有学科的封闭性和课程选择的单一性,让学生自主探索、主动求知,学会收集、分析和利用各种信息及信息资源。因此,学生不仅要学习知识和技能,更要学会学习,学会管理自己的学习。这就要求教师应教会学生学习化学的策略,帮助学生成长为策略型的学习者。

元素化合物知识是中学化学的基本知识构成,是化学学科学习的基础,也是认识化学物质、解决化学问题的必要调节机制之一。中学化学课程中的元素化合物知识主要包括主族元素、副族元素及其化合物,这类知识都是物质及其变化的宏观表现,具有生动具体、形象直观的特点,学生理解起来一般不存在困难,但由于涉及的元素及其化合物种类较多,内容相对零散庞杂,学生普遍感到元素化合物知识“繁、乱、杂、难”,导致学生记忆的困难,这也是学生感到化学好学难记的重要原因。因此,如何使学生在理解的基础上记忆有关物质的性质、制法、用途等元素化合物知识,并形成较系统的知识结构,就成为元素化合物知识教学的关键。

针对元素化合物知识的特点,在遵循一般学习规律的基础上,本文是笔者在教会学生元素化合物知识的学习策略方面进行的一些探索。

1多种感官协同记忆策略

许多物质的性质、存在、制法和用途等元素化合物知识,学生自己阅读教材或者听教师讲授时,往往很容易看懂或听明白,但却难以在头脑中留下深刻的印象。实际情况经常是学生“一听就会、转眼就忘”,导致元素化合物知识学习的困难。

心理学实验证明,人们接受外界信息所参与的感觉器官不同,其记忆的保持率有差异。运用多种感官进行学习,能加深大脑的印象,可以更多地在大脑中留下回忆的线索,从而提高记忆的效率。因此,在学习化学元素化合物知识时,应充分调动各种感觉器官(眼、耳、口、手、脑等)对物质及其变化进行全面的观察和体验,做到从各个方面明确感知化学事实,从而加深对元素化合物知识的印象,增进对知识的理解与记忆。

运用多种感官协同记忆策略要求学习者在学习元素化合物知识时,不能仅仅停留在听明白的层次上,一是要善于观察,将所学内容与身边的事物或现象联系起来,以加深记忆;二是要勤于动手,尽量创造条件自己动手做实验,既可以利用实验课进行实验,也可以设计简易装置进行家庭小实验、课外实验等,通过做实验来学化学。更重要的是,在实验中不能仅仅动手操作,在动手的同时还需要用眼、用耳去观察,在观察的同时积极动脑思考,将实验、观察与思维三者有机地结合起来,这样,既可以通过对实验的操作和观察获得丰富的感性认识,又可以通过对实验的思考认识事物的本质和内在联系,使枯燥的元素化合物知识的学习变得生动深刻,增进学生的记忆。

案例1过氧化钠与水反应的学习策略

过氧化钠(Na2O2)与水能够发生化学反应,生成氢氧化钠(NaOH)和氧气(O2),化学方程式为:2Na2O2+2H2O=4NaOH+O2,这是过氧化钠重要的化学性质。对于这一知识点的学习,可以采取下列不同的学习策略:

策略1:学生阅读教材内容或听教师讲授,记住教材中有关该化学反应的实验描述、实验结论和化学方程式。

策略2:学生观察教师的演示实验,分析过氧化钠与水反应的实验现象,在教师的引导下得出实验结论,写出反应的化学方程式。

策略3:学生亲自完成过氧化钠与水反应的化学实验,通过自己的操作、观察和思考获得有关的实验结论,掌握反应的化学方程式。

策略4:学生首先观察过氧化钠与水反应的实验现象,根据实验现象对反应的可能产物做出猜测,即提出假说;然后学生运用已有的知识设计实验方案,收集证据,验证假说,从而获得正确的实验结论。

上述4种策略中,第1种策略,学生只是听或看,获得信息的途径单一,对反应的事实和结论难以留下深刻的印象;第2种策略,学生通过观察具体实验,获得生动、鲜明的印象,使抽象的结论与具体的形象相结合,能加深学生对化学反应方程式的记忆;第3种策略,学生亲自完成实验,手脑并用,多种感官参与,获得的知识既鲜活又深刻,提高了记忆的效率;第4种策略,学生思维的参与更深刻、更生动,学生的主体性得以更充分的发挥,通过亲身经历和体验科学探究过程,使结论的获得与具体的情景、过程有机结合,增进了学生对知识的记忆和理解。

2联系――预测策略

尽管元素化合物知识内容相对庞杂,但是它们并非是一些孤立知识点的简单堆砌,相反它们之间存在着一定的内在联系。这种联系主要体现在3个方面:一是元素化合物知识与理论性知识联系密切,是理论性知识的具体体现,例如,物质的性质是由其结构决定的,并和它们在周期表中的位置密切联系;二是元素化合物知识与学生的已有知识经验相联系,这里的已有知识经验既包括学生从书本上获得的已有知识,又包括学生的日常生活经验;三是元素化合物知识之间存在着相互联系,它体现在物质的性质、存在、制法、用途之间是相互制约的,物质的性质在很大程度上决定其存在、制法、用途等,还体现在同一类型的物质往往具有某些相似的性质,例如,酸、碱、盐都具有某些通性等。

联系一预测策略是指学生在学习化学元素化合物知识时,有意识地抓住其与理论性知识、学生已有知识经验的联系以及物质性质之间的内在联系,并以这些联系为依据对要学习物质的一系列性质先做出自己的预测。例如,可运用已学的氧化还原反应、元素周期律等化学理论进行演绎推理,预测某元素及其化合物可能具有的性质,可根据物质的结构特征预测其性质、存在和用途等。然后将预测结果与教材或教师的讲授、演示等进行比较,找出正确和不足之处,并分析原因,在此基础上进行深入学习,就能把握住重点和关键,抓住知识之间的内在联系,减轻记忆负担。

案例2氨的性质结构的策略示例

氨(NH3)是氮族元素重要的气态氢化物。在学习氨的性质时,学生就可以运用已有的物质结构、元素周期律等知识,对氨的物理性质和化学性质做出预测,深入理解氨的结构、性质与用途之间的联系。

预测1:已知氨为极性分子,根据相似相溶原理,氨应溶于极性溶剂(如水)中;

预测2:已知氨中氮元素的化合价为-3价,处于最低状态,氨应具有还原性,在一定条件下能被某些氧化剂(如氧气)氧化;

预测3:已知氨分子中含有孤对电子,能够与氢离子形成配位键,因此氨能够与酸发生反应;

预测4:根据同周期原子结构及元素性质的递变规律,氨的还原性比水强,稳定性比水差。

将预测结果与教材内容进行比较,分析存在的问题,并通过实验、观察、思维等活动验证有关结论,从而深刻理解氨的有关性质。

联系也可以是具有比较性的物质,它与将要学习的物质在组成上是相似的,且学生又是比较熟悉的。如在进行SO2的学习中,就可以将CO2作为SO2学习的“梯子”,具体过程如下:学生首先对SO2的组成进行分析,得出SO2是一种非金属氧化物,然后自己从头脑中搜索出符合这一特征的物质,即SO2的“原型”,学生很自然会想到CO2,此时,再顺水推舟罗列出有关CO2的主要信息,接着,学生大胆推断或猜想SO2可能的化学性质,同时也引导学生辩证地思考问题,毕竟两者之间还是有差异的,这种差异必然会导致它们化学性质的某些不同,最后,指导学生自主从实验活动中找到答案。可以用下列模式来表达这一过程:

基于原有的化学知识,设置促进新知识形成的“梯子”,这一策略能使学生在新知识学习过程中产生一种似曾相识的亲切感,一种认知的矛盾,使学生体验到化学学习并不困难,并不神秘。

利用联系一预测策略进行学习时,需要注意以下问题:①要做到尽可能多方面、多角度联系,大胆预测;②要保证预测有理有据,而不是无根据地胡乱猜测;③预测不是目的,只有将预测结果与正确结果进行比较,找出差异,并针对差异做进一步深入学习,才能达到目的。

3知识结构化策略

美国心理学家布鲁纳认为,人类记忆的首要问题不是储存而是检索,而检索的关键则在于结构组织。如果知识在头脑中无条理地堆积的话,不但检索提取它存在困难,而且迟早会被遗忘。如果能够把零散的知识组织成有结构的整体,则将大大增强记忆的牢固性,并提高检索提取的效率。

化学元素化合物知识内容多、分布广、材料琐碎,再加上不容易记忆,学生常常感到知识杂乱无章,如果在学习过程中不注意及时整理、归纳,而是简单、机械地记忆,就会导致学习的困难。经常遇到的情况是:学生感觉都记住了,但在解决问题时却束手无策,难以提取所需要的知识。孤立、零散的知识在头脑中堆积越多,越不利于提取,无法提取的知识就变成了僵化的、无价值的知识,无法用它去解决任何问题。

知识结构化策略是指将化学元素化合物知识按照一定的线索进行归类、整理,使零散、孤立的知识变为彼此间相互联系的整体,形成一个系统化、结构化的知识网络结构。经过结构化组织的材料往往给人一种形象直观、简明扼要的感觉,有利于一目了然地把握知识之间的复杂关系或内在联系。它储存在头脑中,犹如图书馆经过编码的书,可“信手拿来”,减轻学生的记忆负担,提高解决问题的效率和能力。

运用知识结构化策略的关键是要确定知识间的内在联系,并以此联系为脉络,形成知识框架结构。化学元素化合物知识之间的联系通常主要有以下几种:

顺序关系

以同一元素形成的单质和化合物中该元素化合价的高低为线索,将不同类别的物质联系起来形成知识主线。例如,氮及其化合物的知识主线为:

因果关系

按照知识间的因果联系,如物质的结构决定其性质,物质的性质决定其存在、制法、用途等内在逻辑关系,形成相应的知识结构。因果关系的知识结构通常是以某一具体物质的化学性质为核心构建的。

种属关系

就是找出关键的知识点,以此作为知识结构的联结点,然后分析与其他知识间的内在逻辑联系,并利用这种联系,将知识串成“线”,连成“网”,形成知识网络结构。一般多是在单元复习时,按照种属关系组织有关内容。例如,在学完硫及其化合物的性质后,可以按照其内在联系形成如下知识网络。

功能关系

即打破教材内容的章节结构,以物质的功能或活动任务为线索重新构造知识,使形成的知识结构与问题解决活动紧密联系,提高知识检索的效率和解决问题的能力。例如,以氧气的制取为线索,可以将中学阶段所学的能够制取氧气的所有反应归纳整理,形成新的知识结构。

以上分析了构建知识结构的4种思路,在实际学习中,运用哪种思路要根据具体内容和任务而定。但是,不管构建哪种知识结构,结构图中各接点间必须具有内在的联系,而且层次分明,保证信息的顺利提取。

另外,由于每个人的知识经验不同,不同的人构建的知识结构图也会各不相同。为此,可以引导学生与同伴就各自的结构图展开讨论和相互评价,澄清学生头脑中的某些模糊观念,同时,让他们通过评价自己和他人的网络结构图,可以反省自己构建网络图的过程,发现自己的不足,从而加以补充修正,使之更加完善。

参考文献:

[1]张大均.教与学的策略[M].北京:人民教育出版社,2003.

[2]张庆林.当代认知心理学在教学中的应用[M].重庆:西南师范大学出版社,1995.

[3]刘电芝.学习策略研究[M].北京:人民教育出版社,1999.

[4].钟启泉.崔允,张华.《基础教育课程改革纲要(试行)》解读[M]. 上海:华东师范大学出版社,2001.