首页 > 范文大全 > 正文

矿区水文地质论文

开篇:润墨网以专业的文秘视角,为您筛选了一篇矿区水文地质论文范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

1水文地质条件

1.1区域水文地质概况

矿区位于天山南麓中低山区的库车河及其支流克格拉克厄肯河交汇处西(南)岸的基岩阶地之上。区域上为典型的流水冲蚀山地地貌,矿区绝大部分地段位于库车河二级阶地上,区内地形较破碎,沟、梁相间并多沿岩层走向进行延伸,地势总体上呈南北高中间低、西高东低的箕状斜坡,相对高差在200m之内。矿区位于北暖温带大陆性干旱气候带,气候干燥,降雨量很小。夏季高温炎热,冬季干燥寒冷,年温差与日温差都比较大。矿区附近有2条河流,库车河及其支流克格拉克厄肯河。矿区东部为库车河河床,流向由北向南,该段河床为本矿区最低侵蚀基准面。库车河为常年性河流,以冰雪融化水、大气降水及泉水为补给源,7、8月份常有山洪爆发。库车河为矿区生产生活及饮用水水源。克格拉克厄肯河为库车河支流,位于矿区北部,该河以冰雪融化水、大气降水及泉水为补给源,常年有水。

1.2矿区水文地质特征

1.2.1含(隔)水层划分

赋存地下水的硬脆多孔的砂岩和砾岩及上覆第四系砂砾石为含水层,而柔性的泥岩、泥质粉砂岩和炭质泥岩则是相对的隔水层。按上述含(隔)水层划分依据,结合矿区的水文地质情况,将本区地层划分为4个含水层和一个隔水层

1.2.1.1第四系全新统冲洪积潜水含水层(H1)

该组岩层主要分布在井田北部向斜轴附近的冲沟及库车河河床之中,由细砂、中砂、粗砂等组成,厚0~2.0m,结构松散,透水性强,接受大气降水和季节性地表水的补给,库车河河水通过侧向补给矿区地下水,划分该层为孔潜水含水层。

1.2.1.2侏罗系下统阿合组裂隙孔隙弱含水层(H2)

该地层主要大面积出露于矿区西北部,岩性以中砂岩、粗砂岩、砂砾岩为主,厚度>50m,风化裂隙较发育,接受大气降水补给及第四系潜水补给,其补给方式为垂直渗入为主。该地层部分已被火烧,烘烤变型,裂隙发育。根据含(隔)水层划分依据,将该层划为弱含水层。

1.2.1.3烧变岩裂隙孔隙含水层(H3)

烧变岩呈东西向条带状展布,广泛分布于区内煤层露头和浅部及A6煤层上部,都为死火区。煤层顶底板岩石因受到高温烘烤变得硬而脆易破碎,裂隙发育,孔隙较大,透水性变强。该层厚度为98.25~150.30m,火烧深度一般在71.0~152.23m,主要接受大气降水和融化雪水的补给以及季节性的地表水补给,赋存一定量地下潜水。对H3含水层进行抽水试验得出,单位涌水量q=0.0152L/s•m(q<0.1L/s•m),渗透系数K=0.0957m/d,水量较小。

1.2.1.4侏罗系下统塔里奇克组裂隙孔隙弱含水层(H4

)侏罗系下统塔里奇克组在矿区内广泛分布,出露于矿区中东部边界库车河西岸的陡崖处。岩性主要以浅灰、深灰色、灰白砂砾岩、粉砂岩、细砂岩、中砂岩、粗砂岩为主,含A6、A5、A3、A2、A1等煤层。地层厚度为96.09~164.86m,含水层厚度为29.23~51.20m,地下水在地层中渗流缓慢,补给条件较差。根据抽水试验,H4含水层单位涌水量为0.00026~0.0907L/s•m(q<0.1L/s•m),渗透系数为0.0005~0.165L/s•m,含水层富水性弱,地下水在地层中渗流缓慢。抽水后地下水恢复至真实水位较慢,补给条件较差。

1.2.1.5侏罗系下统塔里奇克组

A1煤层底界至三叠系上统郝家沟组底界隔水层(G1)该层主要出露于井田的东南部及南部矿界之外,位于A1煤层底界以下,包括三叠系上统黄山街组,岩性主要以灰色、灰黄色、灰绿色、灰黑色粉砂岩、细砂岩、泥岩为主,上部见有炭质泥岩、煤线、薄煤层,平均厚度109.96m。由于组成该岩层的颗粒极细,岩石致密,裂隙不发育,泥质成份高,因而其富水性和透水性差,根据含(隔)水层(带)的划分依据,将该组地层划分为相对隔水层。

1.2.2断层导水性矿区构造较简单

位于捷斯德里克向斜构造的南翼,为一单斜构造,岩层倾向北,倾角8°~40°,目前矿区内尚未发现较大断层存在,在正常情况下断层对矿井未来开拓不会产生大的影响,但在开采过程中开采至断层附近时,应引起重视,加强支护。

1.2.3地下水与地表水间的水力联系

矿区每年降水多集中在5-9月,暴雨期容易形成山洪,季节性的地表水流与暂时性的地表水体通过岩石的风化裂隙与烧变岩裂隙入渗补给地下水,使得地下水与地表水存在一定的水力联系。另外,井田东界外的库车河自北向南横切整个煤系地层,河水可通过下伏第四系全新统砂砾石层补给基岩含水层。

1.2.4含水层之间的水力联系

1.2.4.1第四系含水层与基岩含水层之间的水力联系

区内第四系潜水含水层主要接受大气降水与融化雪水的补给以及季节性地表水的补给,局部低洼地段会赋存一定量的地下水,属弱-中等富水含水层,第四系含水层中的潜水可以通过基岩风化裂隙补给基岩含水层,使两者间发生水力联系。

1.2.4.2基岩含水层之间的水力联系

区内基岩含水层均为弱含水层,各含水层之间夹杂着透水性极差的泥岩和泥质粉砂岩,因地下水补给条件较差,岩石裂隙与孔隙不太发育,地下水循环条件差,另受隔水层的阻挡,除了受构造破坏的局部地段各含水层之间存在一定的水力联系外,其余地段水力联系非常微弱。

1.2.4.3火烧区潜水与基岩含水层及第四系含水层之间的水力联系

该区火烧区直接覆盖在基岩含水层之上,接受融雪水、大气降水补给赋存一定量的地下潜水,通过基岩裂隙,火烧区潜水可垂直入渗补给其下伏的基岩含水层,使两者间发生水力联系。

1.2.5地下水补给、迳流与排泄条件

区内地下水主要补给源为大气降水、融化雪水和季节性地表水以及库车河河水,其中大气降水和融化雪水通过基岩风化裂隙和烧变岩裂隙垂直入渗补给下伏基岩含水层,地表水则在深切的沟谷处通过上伏第四系砂砾石层入渗补给下伏基岩含水层。西部钻孔水位标高一般在1791.75~1806.53m,而东部泉水标高一般在1779.00~1791.12m,向斜两翼钻孔水位标高一般在1862.62~1805.61m,说明该区地下水总体上是自西向东运移,向斜两翼向轴部运移,在深切的沟谷处以泉的形式排泄。地下水径流的不断延续,也是其排泄的过程。另外,生产矿井疏干排水也是井田地下水排泄的主要方式之一。

1.2.6地下水化学特征因受库车河切割影响

火烧区在该河谷的西岸呈开放型,地下水汇集于向斜轴部,在河谷地带以泉的形式排泄,选取向斜轴部附近火烧区底部有一出露泉水,流量在0.69L/s左右,pH值8.13,溶解性总固体为1082.8mg/L,为微咸水,水化学类型为:Cl•SO4-(K+Na)•Ca•Mg型水。孔隙潜水由于地层孔隙发育,透水性强,水循环快,有利于离子交换,溶解性总固体308mg/L,水质好;而赋存于岩层中的地下水,由于岩石裂隙发育较差,泥质充填且夹层较多,地层渗透性不如前者,溶解性总固体略高,为447.2~3446mg/L。从地下水的化学类型也可以进一步说明侏罗系地层泥质含量较高,裂隙不发育,故岩层透水性和富水性均较弱,地下水径流不畅,交替滞缓。

2充水因素分析

2.1煤层与煤层顶底板基岩裂隙水(H4)

煤层顶底板都存在含水层,各含水层之间因受隔水层影响水力联系微弱,从邻近生产矿井开拓情况分析,煤层及煤层顶底板基岩裂隙水为主要充水水源之一。

2.2大气降水与地表水

当井下煤层开采后,会打破岩层固有的稳定性,上覆岩层失去支撑后发生弯曲与位移,在地表形成低洼地形,出现塌陷坑与裂缝,大气降水和融化雪水易形成季节性的地表水流,通过地面塌陷坑及裂缝进入矿井,造成矿坑涌水量增大,甚至造成淹井事故。

2.3老窑积水

虽然矿区内无老窑存在,但紧邻矿区北界有库孜翁牧场煤矿西井存在,煤矿在开采过程中若越界开采或留设保安煤柱不当均会造成老窑水突入矿井。

2.4现有矿井充水情况

矿区东界以东500m为库车河河床,最低侵蚀基准面标高在+1764.9m左右。河床潜水通过侏罗系地层的孔隙裂隙侧向渗透补给矿井。随着开发强度的增大,排水量也逐渐增大。矿区紧邻库车河,矿区内部分岩层已经火烧,裂隙较发育,当开采至地下水位以下时,采煤过程中将形成大面积采空区,未来陷落、冒落范围内将有可能出现暂时性地表洪流直接灌入。

2.5火烧区积水

(H3)区内烧变岩因受地形与水文地质条件影响及火烧深度的差异,在底部多形成锅底状或锯齿状,在接受大气降水与融化雪水补给后会赋存一定量的裂隙潜水。其下部煤层开采时,火烧区容易受到冒落带与导水裂隙带的波及,导致赋存的积水通过冒落带与导水裂隙带进入矿坑。在浅部开采时(特别是开采A6煤层时)烧变岩裂隙潜水将成为矿床充水的主要因素。

3结论

通过对矿区水文地质条件的调查分析,结合水文地质孔与钻孔的简易水文观测资料、抽水试验结果等进行综合研究得出以下结论:①根据区内岩性组合、含水层水力性质及埋藏条件等,将区内划分为4个含水层和1个隔水层;②矿区含水层富水性较弱,隔水层稳定性较好,补给条件差,水文地质条件较简单,属于以裂隙充水含水层为主的水文地质条件较简单的矿床;③重点对矿井充水因素、充水通道与强度进行了分析总结,为其后期预防和治理水害提供了科学依据。

作者:刘茜清刘军袁振丽单位:江苏长江地质勘查院