首页 > 范文大全 > 正文

谈高数情怀之极限

开篇:润墨网以专业的文秘视角,为您筛选了一篇谈高数情怀之极限范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

【摘 要】很多学生甚至老师还在为极限一些没有意义的地方在纠结和耗时.借此我来谈谈我的数学情怀,希望可以给还在纠结的人一些启发和新的学习高数的感悟!

【关键词】高数情怀极限;无限接近

谈到高数情怀,这是一种什么情怀,也许是高数里那些智慧结晶的一种赞叹,也许是对数学家用生命研究数学的一种感恩,也许是高数渗透的那些经典的哲理的一种吸引,也许是高数让我们看到生活真谛的一种沉静.不知道你们也有我这样的情怀吗?在过去教学一度时间中,我总是在问自己,老师到底在高数课堂上要教学生什么,我一直在寻找答案,每次上完课都总感觉不尽兴,总感觉学生不应该这么学习高数。就在一次备课“极限”内容,突然让我找到了答案,我为什么不把我这种高数情怀也让学生知道呢?我为什么不把这种高数情怀贯穿到我的课堂上呢?从现在开始我就要在我高数课堂上的谈高数情怀,从极限开始。

一、极限的争议

例1:阿基米德追乌龟。

这是由古希腊哲人芝诺提出的一个经典悖论。假设乌龟在阿基米德前面100米的地方,乌龟的速度1米/s,阿基米德的速度是10米/s,阿基米德跑完100米的时候,乌龟又跑了10米,阿基米德再跑那10米,乌龟又跑了1米,阿基米德跑完1米,该死的乌龟又跑了0.1米……按这个推理,好像阿基米德永远也追不上乌龟,乌龟始终都领先阿基米德一点点。这个问题大家普遍是这么回答的,因为乌龟跑10米要10s,跑1米要1s,0.1米是0.1s,0.01米是0.01s……这样把时间加起来10+1+0.1+0.01+0.001+……这样一直加下去是一个无限的数列,但是这个数列的值是可以求出来,等比数列求和即 s,时间在 s的时候阿基米德就追上了乌龟。但是人们又开始疑惑另一个问题,极限的概念告诉我们:极限是无限的接近但是不到达,就算加起来是确定的时间值,但是按极限概念确是达不到啊,还是没追上不是?于是就又出来类似问题,例如例2的问题。

例2:。

0.9到底和1相等吗?按照极限的概念,0.9应该是无限接近,但是没有达到,所以不等于1.但是还是有一些人不死心,一直在追究0.9到底等不等于1,如果不相等,那例1中的阿基米德不就永远追不上乌龟了吗?

二、极限的“坚持”

针对以上的两个例子,让我反思的不是例子的答案是什么?而是为什么极限的学有一些人在思考类似的这些问题。思考过后,这些问题就算有了答案,你得到了什么呢?你是一个学生?还是老师?你是数学业余爱好者,还是专业数学家?即使你是专业数学家,这样的问题更没有意义,何况前三种人。为什么没有意义,简单的说,极限定义就是“无限接近”注意是“无限”接近,至于达到没达到,我可以说这不归极限管。极限就是用来解决无限接近的。你们有那么多精力放在不归极限管的领域里面,怎么不用心来感受下极限真正的价值所在。“极限”的定义能把“无限接近”这么浅显易懂,但是你用汉语又解释不清的一个概念用纯粹的数学符号翻译成如此严密思维和逻辑。“ε-N”定义,“ε-X”定义,“ε-δ”定义,如此惊叹的数学语言的翻译,难道这不应该赞叹一下吗?赞叹“极限”这种非凡的能力――“无限接近”,它不仅可以看到你用肉眼看不到的地方――“领域”,它还可以一直坚持做一件永远做不完的事情,这是何等的超能力,这是多么的值得学习的地方。接下来我们来看例3。

例3:这个数列的极限是两个重要的极限之一,利用准则Ⅱ单调有界数列必收敛已经证明了这个极限值一定存在,那这个值是多少?很多学生认为当 n∞的时候, , 所以1∞=1,所以,显然这个答案是错的,应该是e。你可以把n=1.n=2,n=3,……n=16,……带入此式计算出Xn,观察下Xn无限接近e,所以这个极限的正确答案应该是,这个极限告诉我们什么:首先你看这个,答案就是1,这两个极限的区别是什么?我这个时候再来解释下,如果你起点开始拥有的资本是1,如果你每天做一点点点点(+ ),次方100意思就是做了100天,结果你的资本还是1,但是如果你做了n∞天,那你的资本就变成了e≈2.7… 翻了2倍多,这是多么惊叹!原因其实就是n∞,这时候n其实不在叫n,而应该叫“坚持”,而又是谁让你看到这坚持以后带来的巨大改变,它就是“极限”,这就是极限的意义,这就是我从高数里感受的情怀,坚持是多么的厉害! 于是趁热打铁赶紧问等于多少,也就是你每天少做一点点点点,结果,你原来1资本变成了 这个损失何其大啊!这不正是人生真谛吗?――贵在坚持!

所以无论是你前面四种的哪一种人,甚至就是一个普通老百姓或妈妈奶奶级别的人,这才是我们要学习和值得去花时间思考和感叹的问题,这也正是我们学生急需从高数课堂里面获得的知识。

三、极限的精神

可能有人要反问我,极限如此厉害,如此有意义,为什么例1和例2解释不了,那么极限的定义都是错的,就别谈它的价值所在了,其实前两问的一个根本原因是n∞,在实际操作和生活当中∞有吗,或者我反问你,你可以把一个线段给我切成无穷多个点吗?你确定你切完了吗?你真的可以把一把1米的尺子不停的取二分之一吗?你真的可以在阿基米德追乌龟的路上找到∞多个点吗?事实上没有办到!这个时候极限该笑了,你连n∞都不能给我,你还要我帮你去无限接近,这不是可笑之极!所以我要说的是例1悖论的理由根本就不需要极限登场,哪来的无穷项相加?而同样例二也需要无穷多的9,你有本事给我无穷个9先!再者,你要0.99循环等于1干什么?0.99999999999999999999999的精确度就足够让火箭飞天了。这个时候又会有人反问我那极限的产生就更没意义了?没有意义吗?你难道还没有感受到例3极限的那份坚持?你难道还没没感受到0.9那种永不停息,一直努力地在往自己小数点后面加9的那份执着?你难道不应该感叹极限一直在不停的“无限接近”的这种精神吗?这其实就是“经典数学”。“经典数学”是不用迎合“应用数学”,它不仅可以解释物理现象,它更胜于超越生活的领域。这就是我们学习极限的价值和感受高数情怀的地方!

高数情怀不仅可以在极限体会,它的所有概念,你都应该试着去找找那份情怀的存在,所以我的高数课堂的情怀之路漫漫而道远!希望我能带着越来越多的学生一起走上这条路!

参考文献:

[1]高等数学.同济大学数学系编.6版.北京.高等教育出版社.2007.6