首页 > 范文大全 > 正文

应用VaR方法的电力市场金融风险分析

开篇:润墨网以专业的文秘视角,为您筛选了一篇应用VaR方法的电力市场金融风险分析范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要 电力市场中,市场在给参与者带来预期利益的同时,也使其面临巨大的金融风险,因此,对金融风险进行评估具有重要的现实意义。 本文考虑影响电力公司毛利润的各种因素及它们之间的相关性,提出了利用历史模拟模型计算电力市场VaR风险值的方法,很好的解决了电价和负荷的相关性问题,并结合实例进行分析计算。

关键词 电力市场;金融风险;VaR;历史模拟方法

中图分类号 F123.9; 文献标识码:A

一、引入

电价的异常波动带来了巨大的金融风险,近年由于用电高峰的出现,拉闸限电情况日益加剧,对电力市场金融风险进行评估具有重要的现实意义。本文拟采用VaR分析中的历史模拟法方法,对电力市场风险进行分析,以更好的规避和防范市场风险,促进电力市场的稳定发展。

VaR的含义为(市场正常波动条件下),在一定的概率水平(置信度)下,某一金融资产或证券组合在未来特定的一段时间内的最大可能损失。可表示为:Prob(P>PVaR)=1-c。公式中,P为金融资产或证券组合在持有期t内的损失;PVaR为置信水平c下处于风险中的价值。

VaR计算主要涉及两个因素:目标时段和置信水平。目标时段是指我们计算的是未来多长时间内组合的VaR,它的确定主要依赖于投资组合中资产的流动性而定,一般取为1天,1周,10天或1月;置信水平的确定主要取决于风险管理者的风险态度,一般取90%一99.9%。

二、VaR方法下研究电力市场金融风险

1.历史模拟法的含义

历史模拟法是假定采样周期中收益率的分布不变, 借助于计算过去一段时间内的资产组合风险收益的频率分布, 通过找到历史上一段时间内的平均收益, 以及既定置信水平下的最低收益水平, 推算VaR的值, 其隐含的假定是历史变化在未来可以重现。

考虑一个证券组合VP,其市场因子为F(i)(i=1,2,…,n),计算95%置信度下的日VaR值。首先预测市场因子的日波动性,选取市场因子过去101个交易日的历史价格序列,得到市场因子的100个日变化:

F(i)的历史价格水平向量 观测到的变化向量

假定这100个变化在未来的一天都可能出现。对于每一个市场因子,将其当前值F(i)和观测的变化向量相加。得到市场因子的未来可能价格水平,以向量AF(i)n表示:(见图2)根据相关定价公式,可以计算出市场因子当前价值和未来的可能价值。于是,可求出组合的未来损益:

将损益从大到小排列,得到组合的未来收益分布,根据95%的置信度下的分为数,可以求出PVaR的值。

历史模拟法直观、计算简单、容易接受。他是一种非参数方法,不需要假定市场因子变化的统计分布,无须估计波动性、相关性等各种参数,避免了模型风险。可以选取101个交易日的日平均清算电价,由此求得100个波动值,那么下一日产生的波动值也应该处于这100个价格波动值的范围内,且该波动值服从一定的概率分布。分别选取电价向上、向下波动率不超过5%的波动值作为电价波动的上、下极值。从而算出次日的日平均清算电价的上、下极值。结合电力公司的毛利润,算出电力公司的电费支出上、下限。在将计算结果进行验证。达到电力风险的规避作用。

2.数据分析与实证过程

历史模拟方法在电力市场金融风险评估中首先假定考察日期为2006年9月20日,当日某省整个电力市场平均清算电价(按电量加权平均计算得到)为275.23元/(MW.h),希望分析得到次日(即2006年9月21日)电价在某一置信度(95%)下可能出现的上限 和下限值,并估算相应的电费支出和毛利润的上限和下限值。其中电价上限是指次日电价超过该上限的概率为5%的电价值,电价下限是指次日电价超过该下限的概率为95%的电价值。

确定电价的样本区间为2006年6月12日-2006年9月20日的101个交易日,得到这101个交易日的日平均清算电价。计算可能产生的电价波动值:利用所选取得101个交易日的日平均电价序列,可得2006年月12日-2006年9月20日的平均清算电价的100个波动值。那么,在通长情况下可以认为,2006年月20日-2006年月21日电力市场的日平均清算电价所产生的波动值应该处于这100个价格波动值的范围内,该价格波动值服从一定的概率分布。将市场日平均清算电价波动值按大小排序。得到从日下跌289.67元/(MW.h)的电价负波动到日上升249.72元/(MW.h)的电价正波动的排序。

3.用历史模拟方法计算VaR值

A.波动上极限Pup:

选取电价向上波动概率不超过5%(95%置信度下),的波动值作为电价波动上限值,即认为次日日平均清算电价波动一般不会超过该值。可知,电价波动上限值为自小到大第95个波动值,即157.93元/(MW.h)。

B.波动下极限Pdown::

选取电价向下波动概率不超过5%(95%置信度下),的波动值作为电价波动下限值,即认为次日日平均清算电价波动一般不会低于该值。从表可知,电价波动下限值为自大到小第95个波动值,即-162.46元/(MW.h)。

C.次日的日平均清算电价上限值

PU=P07.9.20+Pup

=275.23元/(MW.h)+159.93元/(MW.h)

=435.16元/(MW.h)

D.次日的日平均清算电价下限值

PL=P07.9.20+ Pdown

=275.23元/(MW.h)+[-162.46元/(MW.h)]

=112.77元/(MW.h)

可知,2007年9月21日的电价处于上、下限[435.16元/(MW.h),112.77元/(MW.h)]

之间的概率为90%

4.利润模型

某市电力市场中,市电力公司起到了单一购买者的作用,假设它的购电来源主要包括三部分:电力市场内的竞价机组,某地区(这里假定为华中地区)售电,市场外的非竞价机组[36,37]。竞价机组的购电电价P1由市场清除电价决定。华中售电和非竞价机组的购电价格则是由市电力公司与对方商定后,以合同形式按某一确定的价格P2 购买,电力公司从电力市场购买电能,然后把所有电量以国家规定的价格约595元/(MW.h)统一向所有用户售电。在忽略网络损耗的情况下,由此,电力公司的毛利润为: M = P0・Q - [(1-k) P1・Q1+k Pc・Q1 +P2・Q2](1)其中: P0为电力公司的售电价格,目前,该市对工业、商业和居民用户采用不同的电价,将各种电价平均后得到的总体平均电价,本文计算中统一取售电价格P0为595元/(MW.h);Q为电力公司通过电力市场购入的总电量,也等于售电量;P1为竞价机组部分电量的市场清除电价(按电量加权平均计算得到);Q1为电力公司通过电力市场购入的竞价部分的电量;P2为非竞价机组和华中售电部分电量的平均电价,一般是每年商定一次,因此可以认为是固定值,这里统一近似取平均电价400元/(MW.h);Pc为竞价机组平均合约电价(近似取350元/(MW.h));Q2为通过非竞价机组和华中售电部分购入的总电量。上式(1)中的项目有关系: Q = Q1 +Q2 (2)

考虑到目前短期负荷预测的精度较高,式(1)中的总用电量Q可以通过负荷预测得到。由于该预测值与次日的实际用电量不会相差太大(一般不大于5%,通常在1%~3%),故公式中的总用电量可以用预测值Q0来表示,设为一固定值。故式(2)表达为: M = P0・Q - [(1-0.8) P1・Q1+0.8・350Q1 +400・Q2](3)式中,Q2是由省电力调度中心统一安排,为某一固定值,于是购入的竞价机组部分电量Q1也是一固定值。通过华中售电和非竞价机组购入的两部分电量,其价格和电量都是固定的,所以它们对于毛利润的影响是相同的。在这里可以将它们合并,均看成通过市场外部购入的电量,其购电总量为Q2,购电平均价格取400元/(MW・h)。 故式(1)又可竞价机组电费支出描述为: M1 = (1-k) P1・Q1+k Pc・Q1(4)竞价机组、非竞价机组和华中售电总电量的电费支出为: M2 = (1-k) P1・Q1+k Pc・Q1 + P2・Q2(5)上式(4)可以计算电力公司的毛利润,将上式中的P1替换为Pup, Pdown 可以计算出相应的毛利润的上、下限预测值(在95%置信度下)。同理,由(4),(5)计算出电力公司的电费支出及其上、下限。表1给出2006年9月21日相应的计算结果。

表1预测数据

5.返回检验

为了验证历史模拟方法模型的有效性,需要对结果进行返回检验。以2006年1月1日的数据为例,当日毛利润的上限、下限分别为4381.07万元和3788.11万元,由当日的电价实际值算得的毛利润的实际值为4047.41万元,这个值落在预测值的上、下限之间。上述预测是在95%的置信度下,所以理想的情况应该是,实际值超过预测值上限和低于预测值下限的比例各为5%(即为风险出现的概率)。只要风险分析的方法正确,且数据样本足够多,最后的计算统计结果应该与理想情况比较接近。我们取2006年的市场运行数据作为初始历史样本数据,对2006年1月1日-2006年9月20日(共262天)的市场数据进行风险统计校验。由于历史数据还不够多,为了充分利用已有的历史数据资源,在校验完一组数据后,就把它也纳入历史数据,计算得到2006年1月1日至2006年9月20日共262天的VaR预测值,它们和实际值的校验结果如表2所示。

表2的结果显示,采用上述计算方法得到的2002年1月1日2002年9月21日的预测值,与该电力市场实际运行数据比较一致。在262天中,实际值大于预测值上限的天数为11天,实际值小于预测值下限的天数为13天,所以最后得到的实际值大于上限的天数所占比例为4.20%,实际值小于下限的天数所占比例均为4.96%,很接近理想值5%。由此可见,VaR历史模拟法预测电力市场金融风险是可行的。由此可见,VaR历史模拟法可以实现对电力市场金融风险的定量分析,且具有较好的预测结果。

表2结果校验

三、总结

金融市场中的VaR方法可以很好地分析股票市场中的股票价格波动风险,由于电力市场中的金融风险主要源于电价的波动,因此也可以将VaR方法引入电力市场的电价波动分析中,从而实现对电力市场金融风险的分析计算。

历史模拟法概念直观、计算简单、实施方便,容易被风险管理者和监管当局接受。另外,它是一种非参数方法,不需要假定市场因子变化的统计分布,无须估计波动性、相关性等各种参数。因此,它没有参数估计的风险,从而避免了模型风险。

参考文献

[1].王春峰.金融市场风险管理[M].天津大学出版社,2001,2

[2].范英.VaR方法及其在股市风险分析中的应用初探[J],中国管理科学,2000,9

[3].路杨,黄娜.期板定价理论在企业财务风险管理中的应用[J],商业研究,2004,6

[4].杨青,殷林森.基于期权定价理论的多阶段风险投资决策模型[J],科技进步与理论与管理,2004,5

[5]周浩,张权,张富强.考虑期货交易的电力市场金融风险分析[J].电网技术,2004, 28(17):53-57.

[6]曹毅刚,王晓清,沈如刚,张金亮.考虑电力衍生产品的风险管理和资产组合优化模型[J].电力系统自动化,2007,31(13):36-41.

[7]张海鱼.var:风险价值--金融风险管理新标准[M].中信出版社,2000

[8]周浩,康建伟,陈建华,包松.蒙特卡罗方法电力市场短期金融风险评估中的应用[J].中国电机工程学报,2004,24(12):74-77.

[9]Robert Denton,Chen-Ching Liu,Jacques Lawarree. Risk assessment in energy trading[J].IEEE Ttans.Power System,2003,18(2):503-511 .

[10]Philippe Jorion. Risk: Measuring the Risk in Value at Risk. Financial Analysts Journal.Nov/Dec, 1996

注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。