开篇:润墨网以专业的文秘视角,为您筛选了一篇平移的特征教案范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
教堂目标
1.理解图形经过平移后,“对应点所连的线段平行(或在同一条直线上),并且相等”,“对应线段平行(或在同一条直线上),并且相等”。
2.灵活运用轴对称、平移或它们的组合进行图案设计,认识和欣赏这些图形的变换在现实生活中的应用。
3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生的数学说理的习惯与能力。
教学重难点
重点:平移的特点与基本性质。
难点:培养学生利用平移的基本性质进行图案设计。
教学过程
一、诊断测试。
1.什么叫平移?平移的定义里说明了哪两点?
2.让学生用画平行线的方法画出两个平移后的三角形,总结出平移后的图形与原来的图形的对应线段、对应角的关系,观察图形的形状与大小有没有发生变化。
二、引导观察。
如图,在画平行线的时候,有时为了需要,将直尺与三角板放在倾斜的位置上。
但不管怎样,我们总可以推得:
A′B′∥AB,A′B′=AB,∠B′=∠B。
同时也有:A′C′∥_____,A′C′=____,∠C′=____。
使学生能够通过观察,得出平移后的图形与原来的图形的对应线段平行并且相等、对应角相等,图形的形状与大小都没有发生变化。
由上面的操作得出了结论,教师可再补充一点:在平移过程中,对应线段也可能在一条直线上。
三、探索,概括。
1.观察下图,ABC沿着PQ的方向平移到A′B′C′的位置,除了对应线段平行并且相等以外,你还发现了什么现象?
得出:平移后对应点所连的线段平行并且相等。
(学生自己总结出:AA′∥BB′∥CC′,AA′=BB′=CC′。要求学生会用语言叙述。)
2.试一试。
将上图中的A′B′C′沿着RS的方向平移到A″B″C″的位置,其平移的距离为线段RS的长度。
注意:在平移过程中,对应点所连的线段也可能在一条直线上。
3.例如图,ABC经过平移到A′B′C′的位置。指出平移的方向,并量出平移的距离。
4.课本第6页“试一试”。
让学生在课本方格纸上作出。
四、开放性练习。
如图,直线m∥n,它们的距离是1.5厘米,画出ABC关于直线m对称的A′B′C′,再做A''''B''''C''''关于直线n对称的A″B″C″。A′B′C′可以看作是由ABC如何得来的?并说出相关的方向、距离。
五、课堂小结。
这节课你学了那些知识?解决了什么问题?
六、布置作业。
课本第7页习题11.1的第1、2题必做,第3题选做。