首页 > 范文大全 > 正文

浅谈电厂继电保护技术的基本原理及其应用分析

开篇:润墨网以专业的文秘视角,为您筛选了一篇浅谈电厂继电保护技术的基本原理及其应用分析范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:文章对电力系统继电保护技术的概念、工作原理、重要性等进行了详细的介绍,对电力继电保护技术的特点进行了阐述,通过分析,并结合自身实践经验和相关理论知识,对电力继电保护技术的应用进行了探讨。

关键词:电力继电保护技术;基本原理;应用分析

中图分类号: F406文献标识码:A

一、前言

随着经济的发展,电力系统在社会发展中的作用越来越重要,而继电保护技术在电厂中具有非常重要的作用,对电力继电保护技术的基本原理及其应用进行分析和研究,对于促进电力继电保护技术的发展具有重要作用。

二、电力系统继电保护技术概述 1.继电保护基本概念 在电力系统运行中,由于外界因素和内部因素都可能引起各种故障及不正常运行的状态出现,常见的故障有:单相接地;三相接地;两相接地;相间短路;短路等。电力系统非正常运行状态有:过负荷,过电压,非全相运行,振荡,次同步谐振,同步发电机短时异步运行等。电力系统继电保护和安全自动装置是在电力系统发生故障和不正常运行情况时,用于快速切除故障,消除不正常状况的重要自动化技术和设备。 2.电力继电保护的工作原理 继电保护的工作原理,是根据电力系统发生故障前后电气物理量变化的特征为基础来构成,电力系统发生故障后,工频电气量变化的主要特征是:

电流增大。短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。

电压降低。当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。

电流与电压之间的相位角改变。正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°。

测量阻抗发生变化。测量阻抗即测量点(保护安装处)电压与电流之比值,正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。利用短路故障时电气量的变化,便可构成各种原理的继电保护。

3.继电保护在电力系统安全运行中的作用 一个可靠稳定的继电保护系统是整个机电系统安全运行的保障。通常来说继电保护的稳定性能主要是由搭配合理的技术终端和安全可靠的继电保护设施来决定的,它们是整个电力系统安全运行的基本保障。

继电保护在电力系统安全运行中的作用如下:

(一)保障电力系统的安全性 当电力系统元件在受保护的状态中发生故障的时候,保护该元件的继电保护装置应及时准确的通过距离该原件最近的断电保护,使得故障元件能够快速的的与电力系统脱离,最大程度的减少对整个电力系统元件的破坏,把对整体供电系统的影响降低到最小。

(二)对电力系统的不正常工作进行提示

对于没有正常运行的电气设备,要根据不同的故障情况和设施运作过程中的不同情况,来发出相应的提示信息,以便值班的工作人员对故障进行相应的处理,比如:有系统进行自动的调整;手动使故障的电气设备脱离系统;手动脱离故障连带的设备。同时在设备发生不正常工作的时候,允许继电保护装置有一定的延迟,以免过度敏感的保护装置发生误报。

4.电力继电保护技术的重要性 用电设备在运行中都会发生故障致其不能正常运行,最常见的就是短路现象,短路可能产生严重的后果,它能损害发生故障的元件,也能减少元件的使用寿命甚至能影响广大人民群众的生命财产安全,继电保护技术的出现可以将其伤害降到最低,它分为测量、执行、逻辑三部分,当用电设备发生短路故障的时候,它能够快速、正确地将发生故障的元件从电力系统中撤除,避免其受到更多的损害,这样也能保障其他正常元件不会受其影响继续正常运行。并且这种保护技术还能够根据自身所处的环境,元件受损伤的程度,选择合适的方式,做出保护动作。

三、电力继电保护的基本要求1.可靠性是指保护该动体时应可靠动作。不该动作时应可靠不动作。可靠性是对继电保护装置性能的最根本的要求。继电保护的可靠性主要由配置合理,质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证。任何电力设备都不允许在无继电保护的状态下运行。220KV及以上电网的所有运行设备都必须由两套交,直流输入,输出回路相互独立,并分别控制不同断路器的继电保护装置进行保护。当任一套继电保护装置或任一组断路器拒绝动作时,能由另一套继电保护装置操作另一级断路器切除故障。在所有情况下,要求这套继电保护装置和断路器所取的直流电源都经由不同的熔断器供电。2.选择性是指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护,线路保护或断路器失灵保护切除故障,为保证对相邻设备和线路有配合要求的保护和同一保护内有配合要求的两元件的选择性,其灵敏系数及动作时间,在一般情况下应相互配合。3.灵敏性是指在设备或线路的被保护范围内发生金属性短路时,保护装置应具备必要的灵敏系数,各类保护的最小灵敏系数在规程中具有具体规定。选择性和灵敏性的要求,通过继电保护的速定实现。4.速动性是指保护装置应尽快地切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。一般从装设速动保护,充分发挥零序接地瞬时段保护及相间速断保护的作用,减少继电器固有动作时间和断路器跳闸的时间等方面入手来提高速动性。

四、电力继电保护技术的主要特点

继电保护技术的主要特点是:

自主化运行率提高,计算机的数据处理技术能够使得继电设备具有很强的记忆功能,加之自动控制等技术的综合运用,使得继电保护能更好地实现故障分量保护,提高运行的正确率。

兼容性辅助功能强,继电保护技术在保护装置的制造上采用了比较通用兼容的做法,便于统一标准,并且装置体积小,减少了盘位数量,在此基础上,还可以扩充其它辅助功能。

操作性监控管理好,该技术主要表现在一些核心部件不受外在化境的影响,能够产生一定的使用功效。与此同时,该保护技术能够通过计算机信息系统,具有一定的可监控性能,大大降低了成本。

五、电力继电保护技术的应用工厂和企业的高压供电系统和变电站都会运用到继电保护装置。在高压供电系统分母线继电保护的应用中,分段母线不并列运行时装设的是电流速断保护和过电流保护,但是在断路器合闸的瞬间才会投入,合闸后就会自动解除。配电所的负荷等级如果较低,就可以不装设保护装置。变电站常见的继电保护装置有线路保护、母联保护、电容器保护、主变保护等。 1.线路保护 ,通常采用二段式或者三段式的电流保护。其中一段是电流速断保护,二段是限时电流速断保护,三段是过电流保护。

母联保护 ,限时电流保护装置联同过电流保护装置一起装设。

电容器保护,包括过流保护、过压保护、零序电压保护和失压保护。 4.主变保护,包括主保护(重瓦斯保护、差动保护),后备保护(复合电压过负荷保护、过流保护)继电保护技术在目前已经得到飞速的发展,各种各样的微机保护装置正逐渐被投入使用,微机保护装置是有各种不同,但是其基本原理和目的都是一样的。

六、结束语

随着时代的进入,科研的深入,加强继电保护技术的应用对于提高社会生产力和生产效率具有重要作用,是社会发展的必然趋势。

参考文献:

[1]齐俊玲.继电保护在电力系统中的应用[J].民营科技,2013(1):43.

[2]王金明.浅谈电力继电保护[J].大科技,2012(12):86-87.

[3]霍利民.电力系统继电保护[M].北京:中国电力出版社,2011.

[4]许正亚.发电厂继电保护整定计算及其运行技术[M].北京:中国水利水电出版社,2010.