首页 > 范文大全 > 正文

计算机专业“数字信号处理”课程研究性教学改革

开篇:润墨网以专业的文秘视角,为您筛选了一篇计算机专业“数字信号处理”课程研究性教学改革范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:本文从教学内容改革、实践环节改革、多媒体教学改革、课程网站建设等方面探讨了“数字信号处理”课程研究性教学的改革探索与教学实践。

关键词:数字信号处理;研究性教学;教学改革

中图分类号:G642

文献标识码:B

1引言

“数字信号处理”是电子信息类专业必修的专业基础课程,理论性和实践性都很强,概念抽象,对数学基础要求高,教和学均有一定难度。以往的教学多以“教材+板书+课堂讲授”这一传统形式,不直观、不生动,不利于激发学生的兴趣,也不利于学生对学习内容的消化理解,有必要对该课程实施改革,采用研究性教学方法。

研究性教学方法是由美国教育学家杜威提出倡导的,特别是他的“反省思维”理论。杜威认为“反省思维”源起于对“不确定”的困惑。典型的反省思维包含五个序列不固定的阶段,即问题、观察、假设、推理、检验。学生在自主解决这些问题的过程中进行探究、实验、整合和积累专门化的科学知识,从而培养反省思维。我们按此思路对“数字信号处理”课程进行了研究性教学方法的改革,涉及到教学内容改革、实践环节改革、多媒体教学改革、课程网站建设等方面。

2改革教学内容,突出计算机专业特色

数字信号处理课程主要讲解数字信号处理的基本概念、基本分析方法和处理技术,主要讨论离散时间信号和系统的基础理论、离散傅立叶变换DFT理论及其快速算法FFT、IIR和FIR数字滤波器的设计以及有限字长效应。学生学习这门课,可掌握利用DFT理论对信号进行谱分析,以及数字滤波器的设计原理和实现方法,为进一步学习有关图像处理、语音信号处理等方面的课程打下良好的理论基础。这门课程的先修课程有高等数学、信号与系统、概率论与数理统计等,后续课程有数字图像处理、语音信号处理等。数字信号处理课程对数学基础要求比较高,如级数、傅里叶变换、拉普拉斯变换等。

数字信号处理课程在我院计算机科学与技术专业作为任意选修课开设,教学内容基本是其它电子信息类专业的子集,有着浓重的电子工程与通信工程的专业色彩,而缺乏计算机专业的特色,学生在学习这门课程时,普遍感到数字信号处理的概念抽象,对其中的分析方法与基本理论不能很好地理解与掌握,甚至有“隔行”的感觉。学生专业基础知识的缺失,不利于研究性教学的实施。

为了有助于学生理解与掌握课程中的基本概念、基本原理、基本分析方法以及综合应用所学知识解决实际问题的能力,我们根据计算机专业的基础对教学内容进行了重新设计,着重突出“离散时间信号和系统的基础理论”和“DFT理论及FFT算法”,兼顾“IIR和FIR”。考虑到计算机专业学生没有学过信号与系统这门前修课,“离散时间信号和系统的基础理论”这部分内容侧重讲概念,考虑到计算机专业学生不熟悉电子工程和通信工程领域,“DFT理论及FFT算法”这部分内容注意与学生较熟悉的计算机领域的应用(如图像处理、语音信号处理等)相结合,而对于“IIR和FIR”这部分内容,由于与计算机专业“距离”相对较远,并不作为重点,只是讲授基本思想,为学生自学与计算机应用关系紧密的现代滤波器(如卡尔曼滤波)奠定基础。

3加强实践环节,引入MATLAB软件,实施研究性教学

MATLAB的Signal Processing Toolbox提供了大量的模型,用于表示多种信号和线性时变系统,包括传递函数、状态空间和零极点增益以及信号表示形式的转换函数,提供了一套完整的有限脉冲响应(FIR)和无限脉冲响应(IIR) 数字滤波器的设计方法。这些方法支持快速低通、高通、带通、带阻和多频带滤波器的设计与分析。滤波器类型包括:Butterworth滤波器、Chebyshev 滤波器、elliptic滤波器、Yele-Walker 滤波器、基于窗的滤波器、最小二乘法和Parks-McClellan 滤波器(实数和复数)。滤波器结构包括直接Ⅰ型、直接Ⅱ型,Lattice、lattice-ladder和二阶节型。Signal Processing Toolbox还提供了计算多种变换的工具,包括离散傅立叶变换,离散余弦变换,Hilbert 变换和Goertzel变换。利用图形用户界面GUI工具,学生可以交互地查看和检测信号,设计滤波器,进行谱分析,并同时观察参数及方法的影响,这些工具非常有利于时间序列,零极点位置的可视化。GUI工具包括:FDATool,FVTool,SPTool,WINTool等。

将MATLAB应用于数字信号处理课程的教学,主要体现在两个方面:

(1) 在课堂上将理论教学与MATLAB图形演示结合起来,使学生在接受枯燥理论知识的同时,可以看到相应知识点的验证演示,理解各种变换的计算过程,从而使课堂教学更加直观、生动和紧凑。图1给出一个用于课堂教学的实例,该实例来自MATLAB 6.5自带的Demo,可以非常生动地演示离散傅里叶变换。该例中,通过用鼠标拖动波形曲线(上部子窗口),可以实时地观察到离散傅里叶变换结果的变化。图1(a)是频率较低的正弦信号的变换,图1(b)是频率较高的正弦信号的变换,非常直观的显示了离散傅里叶变换的物理意义。此外,还可以通过Signal下拉列表框选择正弦波、方波、锯齿波等不同波形、通过Window下拉列表框选择矩形窗、三角形窗、Chebyshev窗、Kaiser窗等不同窗函数来演示各种的变换结果。教学过程中,还可以根据需要修改程序,实现更丰富的功能。

图1 离散傅里叶变换演示

(2) 针对课堂教学中涉及的重点、难点适当布置课外实践题目,让学生利用MATLAB软件对某一专题进行自主研究,完成平时以书面形式难以完成的题目,加深对所学知识的理解,提高学习兴趣和实践创新能力。

4改革教学手段,推进多媒体教学

数字信号处理课堂教学过程中,涉及到大量的信号变换与分析图谱,仅靠板书画图,费时费力,不精确,不生动。教学实践表明,传统的课堂教学模式单一,连续不断的讲解常常令教师疲惫不堪,学生也因单调乏味而产生厌烦心理,致使教学目的难以达到,教学质量难以保证。而多媒体作为一种新型的教学手段,以其鲜明的图像、生动的画面、灵活多变的动画及声音效果,克服了传统教学模式的诸多不足,受到师生的认可与好评。多媒体教学是指在教学过程中,根据教学目标和教学对象的特点,通过教学设计,合理选择和运用现代教学媒体,并与传统教学手段有机组合,共同参与教学全过程,以多种媒体信息作用于学生,形成合理的教学过程结构,达到最优化的教学效果。

我们综合了现有各种教材的配套课件,根据我们的教学内容开发了相应的多媒体课件(如图2),尤其注重信号变换的图解演示。多媒体教学的应用,不仅增加了课堂的生动性,同时增加了课堂的信息量,适当引入了数字信号处理的典型产品图片、有代表性的学者照片及相关的科学故事,提高了学生的兴趣和学习积极性,也培养了学生进行科学探究、严谨求实的精神,在教书的同时,融入了育人理念。

图2 数字信号处理多媒体课件

5建设课程网站,提供课外研究交流平台

课堂教学的时间毕竟是有限的,随着课时的不断压缩,课堂讲授的内容也必须不断精简,而且还有留出更多的时间进行课堂研讨,一些内容没有充足的时间在课堂上展开。为了有效地拓展课外学习、研究和交流的空间,我们基于学校的Blackboard Academic Suite系统建设了数字信号处理课程网站(图3),开辟了课程信息、教师信息、教学资源、课程论坛、学科动态、趣味知识、动手实验、测测自己、作业收发等板块,尤其教学资源板块,分门别类地提供了教学课件、电子教材、实用软件、外部资源等大量丰富资源,这些资源,有的是自行开发的,有的是来自Internet的,极大地弥补了课堂教学的不足,为学生课外研究交流提供了平台。

图3 数字信号处理课程网站

参考文献

[1] 王红玲. “研究性”教学模式的探索与应用[J]. 科技咨询导报,2007,(14):248.

[2] 程佩青. 数字信号处理教程[M]. 北京:清华大学出版社,2002.

[3] 何海鹰. 如何在高校教学中采用研究性教学方式[J]. 继续教育研究,2007,(5):140-141.

[4] 苏金明. Matlab 7.0实用指南[M]. 北京:电子工业出版社,2004.

[5] 张红霞. 多媒体教学的实践与探讨[J]. 吉林省教育学院学报,2006,22(6):70-71.