首页 > 范文大全 > 正文

多学科交叉智能信息处理研究生课程教学模式新思考

开篇:润墨网以专业的文秘视角,为您筛选了一篇多学科交叉智能信息处理研究生课程教学模式新思考范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:在分析智能信息处理课程以往教学内容和教学模式的基础上,结合科研经历及教学实践经验,对课程教学内容及教学模式进行探讨并提出创新点,以培养和提高学生独立思考能力、创新能力和实践能力为目标,强调通过引入前沿新颖的教学案例以及多学科交叉和多形式化的教学方式,最大程度地提升课程教学效果。

关键词:智能信息处理;多学科交叉;教学模式

0引言

智能信息处理是模拟人或者自然界其他生物处理信息的行为,建立处理复杂系统信息的理论、算法和系统的方法和技术,主要面对的是将不完全、不可靠、不精确、不一致和不确定的知识和信息逐步转变为完全、可靠、精确、一致和确定的知识和信息的问题。智能信息处理是当前科学技术发展中的前沿学科,同时也是新思想、新观念、新理论和新技术不断出现并迅速发展的新兴学科,涉及信息科学的多个领域,是现代信号处理、人工神经网络、机器学习、人工智能等理论和方法的综合应用,在复杂系统建模、机器学习、医学影像处理、系统优化和设计等领域具有广阔的应用前景。

目前,智能信息处理研究生课程相关的教材和课件大多以高隽老师的《智能信息处理方法导论》为基础开展相关介绍。该书体系严谨,理论推导细致,但在多学科交叉应用尤其是面向认知神经科学、智能信息科学等领域的应用方面介绍不足,缺乏必要的多学科交叉案例及相对完整的设计过程,导致来自不同学科的研究生在对理论知识的理解、不同工程应用实践经验的积累等方面存在一定脱节的情况。针对智能信息处理课程教学的实际情况,我们从计算神经科学、信息学科与智能信息交叉的多学科角度出发,系统介绍智能信息处理的基础理论及各种新兴处理技术,主要介绍智能信息技术的基本概念、原理和分析方法以及智能系统的知识处理和模型的建立,提供人工智能技术、神经网络技术在神经科学交叉等领域的应用算例,涉及目前国内外智能信息处理的最新研究成果以及学术研究前沿进展情况;同时,在教学实践中,对课程的教学模式进行探索和思考,强调多学科交叉及学生主体的重要性,注重教学方式的多样化及课内外教学相辅相成。该课程的教学实践能够使研究生对智能信息处理技术的发展及交叉学科应用有全面的了解,为神经科学、信息学科与智能信息交叉学科课程实施研究型教学开辟新的途径,对提高课程教学效果,培养学生的主动探究能力具有非常重要的指导意义。

1主要解决的教学及管理问题

1.1多学科交叉的智能信息处理

智能信息处理是一门以应用为导向的综合性学科,涉及脑与认知科学、智能科学、信息科学、现代科学方法等多学科的交叉与综合。由于智能信息处理涵盖内容广泛,面向研究对象众多,因此在较短学时的课程教学中,教师需要权衡把握好宏观内容的介绍和相关内容的纵深讲解,让学生既能从整体上了解智能信息处理学科的基本概念、学术思想、知识体系和学术特色,又能在具体应用方面了解其基本问题、基本模型和科学研究方法。在教学实践中,把握好多学科交叉的智能信息处理课程的整体与局部、广度与深度问题,是教师应首要考虑的问题之一。

1.2积极引导学生参加多学科研讨活动及课外实践活动

实践出真知,理论知识只有在实践中才能更好地被理解和掌握,体现和发挥其价值,然而,传统的课程教学模式侧重于课堂上教师“口授笔书”的知识传授,在引导学生研讨和践行方面存在很大不足,造成学生不能很好地理解和应用课上所学,不能有效培养和促进学生在实践中发现问题和解决问题的能力。笔者结合多年留学经验及国际教学实践,对如何引导学生积极参加多学科研讨活动及课外实践活动,进行反思、探索和尝试。

2教学实践主要内容

2.1结合工程及应用背景的教学模式

智能信息处理作为一门以应用为导向的综合叉学科,很多问题和模型既来源于又服务于实际应用,与实际问题紧密相关,然而,现有的课程教材鲜有既能系统全面介绍智能信息处理的基础理论、基本概念和分析方法,又能结合实际应用及工程背景给出例证详解的。分析教材纵深发展过程不难发现,理论与实际的结合不够是主要原因,因此在实际教学实践中,教师不能单纯依据教材内容照本宣科,需要结合实际应用背景就地取材并灵活讲解。

在智能信息处理教学实践中,针对该学科多学科交叉的特点,可以采取点面结合的教学方式。在宏观层面上,综合介绍智能信息科学技术领域的相关内容,包括基本概念、学术思想、知识体系和学术特色,让不同专业背景的学生能在较短时间内对智能信息处理学科从比较陌生的状态过渡到对其基本模型和基本问题有初步、宏观、科学和准确的认识;在微观点处,以具体的经典工程应用范例及模式辅助宏观介绍,达到宏观而又不失具体、既有广度又兼具深度的效果。这种精而不范的具体案例有利于短学时课程的安排,如介绍智能信息处理与信号处理的交叉时,笔者以参与的发动机故障诊断为例进行讲解;介绍智能信息处理与系统辨识的关系时,笔者以曾研究的磁气圈和太阳风预测为具象进行详细说明。

2.2多学科交叉综合的教学模式

一方面,智能信息处理涉及多学科交叉综合,而传统的教学模式往往侧重于单独介绍各学科的科学体系及应用,对于学科交叉综合方面的探讨则有限,如在机器学习方面,以往的教学倾向于各种算法的数学推导和理论证明,但在实际应用中,机器学习往往需要与其他学科如信号处理、模式识别等交叉互融,才能解决实际问题;另一方面,智能信息处理作为一门充满活力的新学科,不断有新技术和新方法随着前沿问题的发现而被提出和应用。教师可以采取多学科交叉综合的方式,尝试将国际前沿的科研成果引入智能信息处理的教学实践中,这样既能以此引导学生了解多学科交叉融合的方法和思路,又能展现国内外智能信息处理的研究新成果和发展新动态,激发学生的学习兴趣。

2.3增加互动环节的教学模式

传统的教学模式往往侧重于知识的灌输,忽视方法的传授。在教学实践中,教师在“授之以鱼”的同时,更要注重“授之以渔”,引入国外智能信息处理的前沿科研方法,培养学生良好的科学思维和科研素养。此外,智能信息处理的课堂教学不同于以往最基础的授课,而是以教师讲授为主,更多的是在课上由教师提出问题,引导学生讨论互动,让学生产生代人感转而主动学习和理解。作为课内的外延和补充,我们还在课外不定时、不定期组织学生参加科研沙龙,进一步激发和培养学生的兴趣,加强巩固所学知识和方法。实践证明,互动授课方式及多活动的课外扩展,对于提高学生的学习热情、培养学习兴趣、促进知识理解具有重要作用。

2.4多样化的课程考核模式

一方面,传统的单纯以期末考试成绩作为唯一考量标准的考核方式过于片面;另一方面,这种考核方式也容易束缚学生的思维,使学生产生学习只是为了最后一纸成绩的误解。综合考虑智能信息处理的课程特点及研究生培养目标,我们建议可以采取更为灵活的考评方式如采用PPT报告总结的方式,一方面考评学生平时表现,包括课堂出勤、课堂表现等,另一方面以学生学期末PPT报告总结成绩为主。每名学生依据自己的兴趣爱好,选择一个与智能信息处理相关的研究方向进行调研―参阅书籍―查找资料―深入探讨,最后以PPT的形式向教师及全体学生总结汇报并互相交流。这种考评方式以书本为平台,不仅能培养学生的系统掌握新知识及新技能的学习能力、实践操作能力和表达能力,还可调动学生查阅资料和自主思考问题的积极性,扩展知识面。

3教学方法及路线

3.1多媒体利用最大化的教学方式

在教学手段和方式上,现在多媒体技术进入课堂已经非常普遍,但对丰富电子资源的利用程度并没有实现最大化。当前的教学方式大多以讲解PPT为主,缺乏多样化的展现方式,容易使学生产生疲劳感。结合教学实践,我们发现通过将PPT、视频、动画、录像等多种形式的多媒体结合,以更加生动形象的方式展现教学内容,在吸引学生兴趣和提高学习效率方面效果显著;此外,还可以借助多媒体,通过软件演示的方式让学生亲身感受实际工程应用的操作过程,建立智能信息处理科学技术的直观形象和感性认识。

3.2开展科研教学沙龙活动,引导互动交流

智能科学技术处在创新发展时期,特别需要培养具有创新精神的人才。创新精神的产生伴随着各种不同思想的汇聚、交流和碰撞,为了鼓励和培养学生的创新思维,教师可以组织各种科研教学沙龙活动,基于学生兴趣,将不同专业背景的学生组织在一起,从不同专业视角自由探讨某一研究方向,碰撞出思想的火花;同时,可以引入国际前沿热点问题的创新结果的介绍,剖析前沿创新点和创新过程,开阔学生视野,培养和提高学生的创新能力。

3.3利用互联网,构建课外科研实践互动平台

正所谓“众人拾柴火焰高”,课堂中,学生可以随时向老师提出疑问,老师带动学生一起讨论;对于课外学习研究中出现的问题,教师可以通过QQ群、微信群、公邮等在线互动平台与学生交流沟通。一方面,众智众力促进问题的解决;另一方面,平台互动的方式能充分调动集体的学习研究热情。

4教学模式的应用效果

4.1国际学术

正如“实践是检验真理的唯一标准”,课内学习到的知识只有被运用在科学实践中才能证明和体现其价值。在教学实践中,我们着重培养学生将所学知识与其专业背景相结合、将所学转化为科研成果的能力,取得了较满意的教学效果,如部分学生将所学信号处理中的时频分析方法应用到故障的检测中并将此公开发表在国际学术期刊上,获得了令人满意的研究成果。

4.2选课情况逐年递增

图1(a)汇总了2013―2015年我们开设的智能信息处理课程各院系学生选课情况。从图1(b)中可以看出,研究生选课人数逐年递增,开始该门课程的研究生选课人数由最初的13人增加至54人,增加3.15倍;图1(c)表明,课程的覆盖院系由最初的3个院系(0系表示研究生院)增加到2015年的11个院系,覆盖面增加2.66倍。此外,选课学生中既有硕士,又有不少博士,甚至有来自其他高校的老师和工程研究所的硕士、博士。从智能信息处理课程近3年的选课总体情况来看,课程已经引起不同专业学生和教师的广泛关注和参与兴趣。

4.3学生的综合评价正面积极

在智能信息处理课程教学实践中,我们发现不仅选课人数逐年增加,而且学生对课程的综合评价也一直非常好。学生一致认为当前的授课方式丰富而有趣,结合工程实际背景的教学具体而形象,互动形式的课堂方式能很好地促进交流表达,课外的沙龙活动为他们解决科研和学习中遇到的问题提供很大的帮助。

5结语

总结智能信息处理课程的教学实践,结合对课程教学内容、教学方式等的探索和思考,我们认为以下几点可以为鉴:在教学内容上,围绕多学科交叉,可以适当引入前沿科学研究成果,拓宽学生国际视野的同时激发和提升其学习兴趣;在教学方式上,可以结合工程实际背景、具体范例分析、软件及多媒体展示,化抽象为具体,增强学生对知识的理解和运用能力;在教学中,注重学生科学思维的培养和科研能力的提升,帮助学生将所学知识与科研项目相结合,将所学转化为科研成果,提升学习热情。此外,要注重课内与课外的相辅相成,以多种形式方法如科研沙龙、在线互动等巩固和提高课程教学效果。

智能信息处理作为一门多学科交叉综合的学科,涵盖内容广泛并且技术和方法不断更新,因此课程教学模式也应与时俱进,只有不断探讨、摸索和总结,才能找到更合适、更有效的教学模式,培养出更具有独立思考能力、创新能力和实践能力的高级复合型人才。