开篇:润墨网以专业的文秘视角,为您筛选了一篇小样本DW统计量的分布特征探究范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘要:本文用模特卡罗模拟方法研究了样本容量在54以下的dw统计量的分布特征,并给出小样本DW检验临界值表。同时用DW检验提出了一个判别最小二乘估计中是否存在虚假回归的有效方法。关键词:模特卡罗模拟,DW分布,非平稳性,协整
1.概述
八十年代以来,Engle-Granger (1987), Engle-Yoo (1987) 和Sargan-Bhargava (1983)都曾提及用DW统计量检验非平稳变量间的协整性问题。在Sargan-Bhargava (1983)中还专门给出一个DW协整检验用表。但在这些论文中均未对小样本DW统计量的分布特征给与研究。
本文采用蒙特卡罗模拟方法对小样本DW统计量的分布特征进行了充分、详细的研究。样本容量分别取为10,20,30,40和50。变量的设定分为三种情形:一. 所涉及的两个变量都取自I(1)过程;二. 所涉及的两个变量中一个取自I(1)过程,一个取自I(0)过程;三. 所涉及的两个变量都取自I(0)过程。
在有些国家以年为单位的时间序列的最大可观测值个数并不是很大,所以对小样本DW统计量分布特征的研究有着非常重要的理论与现实意义。
本文结构如下。第二节推导两个I(1)变量进行最小二乘回归后,由残差计算的DW统计量的极限分布表达式,第三节介绍蒙特卡罗模拟结果及其分析,第四节给出实例,第五节给出结论。
2.DW统计量的极限分布
给定如下随机数据生成系统,
yt = yt-1 + ut , y1 = 0, (1)
xt = xt-1 + vt , x1 = 0, (2)
其中ut, vt ~ I(0), E(ut) = E(vt) = 0; E(ui uj) = 0, i 1 j," i, j。则yt和xt为相互独立的两个I(1)过程。
建立如下回归模型:
yt = b0 + b1xt + wt . (3)
当对上式进行最小二乘估计时,会产生虚假回归问题。用随机误差wt的最小二乘估计值 构造DW统计量,
(4)
因为当T ? μ 时, 必然接近于零,上式中分子为Op(1),而分母T -1sw2也是Op(1),所以DW统计量是Op(T -1)的。当T ? μ 时,有
DW T 0.
即当用两个I(1)变量进行如模型(3)形式的回归时,DW统计量的极限分布为零。
3.小样本DW分布的蒙特卡罗模拟及其结果分析
当样本为有限样本,特别是小样本时,DW统计量的分布与其极限分布有着很大不同。由于上述条件下的DW统计量的分布无法用解析的方法求解,本文用蒙特卡罗模拟方法对DW统计量的小样本分布特征进行了研究。
以模型(3)为基础,除了以yt,xt ~ I(1)为条件对DW分布(记为DW(1,1))进行模拟外,还分别以yt ~ I(1),xt ~ I(0) 和yt,xt ~ I(0)为条件进行了模拟(分别记为DW(1,0) 和DW(0,0))。
由于DW(0,0)就是通常意义的DW统计量,所以只模拟样本容量T = 10, 40两种情形。对于DW(1,1)和DW(1,0),分别取T = 10, 20, 30, 40和50进行了模拟。在每个样本容量条件下各模拟1000次。所得结果见表一。
首先见表一的第三部分,先分析DW(0,0) 的分布特征。由于DW(0,0) 就是通常意义的DW统计量,所以模拟结果表明,一. DW(0,0)分布的均值为2,不受样本容量大小的影响;二.分布是对称的,相应JB值(表中最后一列)说明小样本DW(0,0)统计量的分布与正态分布相当近似。三. 随着样本容量的增大,分布的标准差逐步减小。
见表一的第一、二部分。小样本DW(1,1)和DW(1,0)统计量有着相似的分布特征。一. 分布均为右偏态,分布左侧有端点,端点为零;二. 随着样本容量的增大,DW(1,1)和DW(1,0)分布的右偏倚程度越来越大,分布均值逐步相左移动,90、95、99百分位数也逐步向左移动,同时分布的标准差逐步减小,分布的峰值越来越大,DW取值向零集中;三. 在样本容量相同的条件下,DW(1,0)分布总是位于DW(1,1)分布的左侧,即DW(1,0)分布的均值、百分位数以及方差都比DW(1,1)分布的相应量小。T = 50模拟1000次的DW(1,1)和DW(1,0)分布的结果分别见图一和图二。
表一 DW分布的蒙特卡罗模拟结果
类 型 样本容量 百 分 位 数 均 值 标准差 偏 度 JB统计量
1 90 95 99
10 0.22 2.18 2.45 2.81 1.28 0.62 0.50 48.74
DW(1,1) 20 0.11 1.28 1.49 1.80 0.75 0.39 0.68 77.61
30 0.09 0.90 1.04 1.39 0.51 0.29 1.07 293.73
40 0.06 0.77 0.88 1.16 0.41 0.25 1.06 250.10
50 0.05 0.59 0.71 0.98 0.33 0.20 1.16 341.31
10 0.18 1.73 2.02 2.38 0.98 0.53 0.73 89.59
20 0.09 1.02 1.21 1.59 0.56 0.34 1.22 369.61
DW(1,0) 30 0.06 0.70 0.83 1.18 0.38 0.24 1.27 430.43
40 0.04 0.54 0.66 0.91 0.30 0.19 1.25 383.68
50 0.04 0.45 0.54 0.71 0.24 0.15 1.12 261.84
DW(0,0) 10 1.31 2.75 2.97 3.24 2.02 0.57 0.00 7.17
40 0.72 2.41 2.53 2.70 2.00 0.31 0.03 4.06
注:1. DW(1,1)表示由两个I(1)变量进行回归,计算得到的DW值
2. DW(1,0)表示由一个I(1)变量和一个I(0)变量进行回归,计算得到的DW值。
3. DW(0,0)表示由两个I(0)变量进行回归,计算得到的DW值。
4. 在每个样本容量条件下各模拟1000次。
图一 T = 50模拟1000次的DW(1,1)分布直方图 图二 T = 50模拟1000次的DW(1,0)分布直方图
在相同样本容量条件下,DW(1,0)分布之所以位于DW(1,1)分布左侧,可作如下解释。随着T ? μ,DW(1,0)和DW(1,1)的分布都趋近于零。由于DW(1,0)来自于一个I(1) 变量和一个I(0)变量之间的回归,所以残差序列wt ~ I(1)。由于DW(1,1)来自于两个I( 1)变量之间的回归,一般来说残差序列wt&n