首页 > 文章中心 > 现实虚拟技术

现实虚拟技术范文精选

现实虚拟技术范文第1篇

关键词:虚拟现实;VRML;3DS MAX;三维建模

虚拟现实技术 简称VR,又称灵境技术,是20世纪90年代以来兴起的一种新型信息技术。虚拟现实技术是一种基于可计算信息的沉浸式交互环境,具体地说,就是采用以计算机技术为核心的现代高科技生成逼真的视、听、触觉一体化的特定范围的虚拟环境,让用户可以从自己的视点出发,利用自然的技能和某些设备对这一生成的虚拟世界中的对象进行交互作用、相互影响,从而产生亲临等同真实环境的感受和体验。虚拟现实是一项融合了计算机图形学、人机接口技术、传感技术、心理学、人类工程学及人工智能的综合技术。由于其独有的多感知性、沉浸感、交互性及自主性,虚拟现实技术已经广泛应用于航天、军事、医疗,教育甚至游戏领域。VR技术已经被公认为是21世纪重要的发展学科以及影响人们生活的重要技术之一。

对于人类文化发展历史的考察表明,虚拟现实技术具有悠久的前史。人类不同时期尝试超越文字表现力的局限、超越时间与空间的约束,用形象、色彩和周边条件来创造虚拟化的信息环境的努力。18世纪出现的全景画,可谓构造沉浸式的虚拟体验景象的早期技术。20世纪中叶以来,人们进一步发展出全景电影,创建体验剧场以突破银幕的壁障,然而直到多媒体计算机系统的出现,才真正具有了综合处理音频、视频、图像、数据和文字等多类信息的全面功能。通过利用并集成这种高性能的计算机软硬件并使之与各类先进的传感器相联接,人们才有可能创建一个使参与者具有身临其境的沉浸感和完善的交互作用能力,并能帮助和启发其构思的适人化的多维信息空间,即创建一个比较完备的虚拟现实系统。正如Burdea G.在“Virtual Reality Systems and Application”一文中所概括的,这种虚拟现实系统的基本特征可以简捷地表征为三个“I”,即沉浸性、交互性和构想性(Immersion-Interaction-Imagination)。由于有可贵的3I特性--沉浸性、交互性和构想性,使得沿用固定漫游路径等手段的其他漫游技术和系统无法与之相比。

沉浸性(Immersion),沉浸被通俗地解释为“身临其境”,这意味着参与者将不是以敏锐的双眼和聪慧的大脑介入虚拟环境,而是要以完整的生物个体融入虚拟系统。从这种意义上讲,沉浸意味着体验,意味着逻辑与形象的结合、认知与感知的统一。正是这种特点,使得虚拟现实技术成为“身体在知识探求过程中的能动作用得以保证的第一个智能技术”。

交互性(Interaction),虚拟现实与通常CAD系统所产生的模型以及传统的三维动画是不一样的,它不是一个静态的世界,而是一个开放、互动的环境,虚拟现实环境可以通过控制与监视装置影响或被使用者影响,即计算机使用者可以通过三维交互设备直接操纵计算机所给出的虚拟世界中的对象,虚拟世界中的对象也能够实时地作出相应的反应,是用户对虚拟环境中的物体的可操作程度,对虚拟环境中得到的反馈的自然程度和对虚拟环境进行重新布置的方式。虚拟现实系统中参与者与虚拟环境之间的交互作用,使得虚拟现实技术中的人机关系具有了新的涵义。

构想性(Imagination),构想特性说明了虚拟现实系统可以构造出那些现实中不存在或不易观察到而只出现在人们想象中的情景。虚拟现实技术中人与虚拟环境的交互作用,在本质上意味着它不是预成性的而是生成性的,不是因循的而是创造的,“构想性”所要表达的正是该技术的这一禀性。如果说沉浸性是使人具有真实感并获得体验的根本,交互性是实现人机和谐的关键,那么,构想性则是辅助人类进行创造性思维的基础。

1965年,美国人艾凡・萨瑟兰,在篇名为《终极的显示》的论文中首次提出了包括具有交互图形显示、力反馈设备以及声音提示的虚拟现实系统的基本思想,后来被公认为在虚拟环境领域中起着里程碑的作用。

80年代,美国的杰伦正式提出了“Virtual Reality"一词。美国宇航局(NASA)及美国国防部组织了一系列有关虚拟现实技术的研究,并取得了令人瞩目的研究成果,从而引起了人们对虚拟现实技术的广泛关注。

进入90年代,迅速发展的计算机硬件技术与不断改进的计算机软件系统相匹配,使得基于大型数据集合的声音和图像的实时动画制作成为可能;人机交互系统的设计不断创新,新颖、实用的输入输出设备不断地进入市场。人机交互系统的设计也在不断创新,而这些都为虚拟现实系统的发展打下了良好的基础。其中,利用虚拟现实技术设计波音777获得成功,是近几年来又一件引起科技界瞩目的伟大成果。人们对迅速发展中的虚拟现实系统的广阔应用前景充满了憧憬与兴趣。

VRML是描述虚拟环境中场景的一种标准,利用他可以在INTERNET建立交互式的三维多媒体的境界。VRML的基本特征包括分布式,交互式,平台无关,三维,多 媒体集成,逼真自然等,被成为"第二代WEB",其应用范围相当广泛,包括科学 研究,教学,工程,建筑,商业,娱乐,广告,电子商务等,已经被越来越多的 人们所重视,国际标准化组织1998年1月正式将其批准为国际标准。

VRML是一种建模语言,其基本目标是建立Internet上的交互式三维多媒体,也就是说,它是用来描述三维物体及其行为的,可以构建虚拟境界(Virtual)World其基本特征包括分布式、三维、交互性、多媒体集成、境界逼真性等。VRML的出现使虚拟现实像多媒体和Internet一样逐渐走进我们的生活。简单地说,以VRML为基础的第二代WWW=多媒体+虚拟现实+Internet。

熟悉WWW的人们都知道,受HTML语言的局限性,VRML之前的网页只能是简单的平面结构,就算Java语言能够为WWW增色不少,但也仅仅停留在平面设计阶段,而且实现环境与参与者的动态交互是非常烦琐的。于是,VRML就应运而生了。第一代Web是以HTML为核心的二维浏览技术,第二代Web是以VRML为核心的三维浏览技术。第二代Web把VRML与HTML、Java、媒体信息流等技术有机地结合起来,形成一种新的三维超媒体Web。

第一代WWW是一种访问文档的媒体,能够提供阅读的感受,使那些对Windows风格熟悉的人们容易使用Internet,而以VRML为核心的第二代WWW将使用户如身处真实世界,在一个三维环境里随意探寻Internet上无比丰富的巨大信息资源。每个人都可以从不同的路线进入虚拟世界,与虚拟物体交互,这样,控制感受的就不再是计算机,而是用户自己,人们可以以习惯的自然方式访问各种场所,在虚拟社区中"直接"交谈和交往。Parsons大学数字设计系Anthony Dee的一段话代表了广大VRML爱好者的心情:"把三维沉浸式虚拟环境放进WWW上是如此诱人,没有人不想试一试"。更重要的是,虽然创建复杂境界需要对VRML深入掌握,而且往往还需要创作软件的帮助和其他软件的协助,但"学习VRML只需要有限的空间感和具有操作文本编辑器的能力,创建VRML境界最重要的技巧是想象力",这是VRML得以迅速发展的根本原因。

VRML的出现使得虚拟现实像多媒体和因特网一样逐渐走进我们的生活,简单地说,以VRML为基础的第二代万维网=多媒体+虚拟现实+因特网。第一代万维网是一种访问文档的媒体,能够提供阅读的感受,使那些对Windows风格的PC环境熟悉的人们容易使用因特网,而以VRML为核心的第二代万维网将使用户如身处真实世界,在一个三维环境里随意探究因特网上无比丰富的巨大信息资源。每个人都可以从不同的路线进入虚拟世界,和虚拟物体交互,这样控制感受的就不再是计算机,而是用户自己,人们可以以习惯的自然方式访问各种场所,在虚拟社区中"直接"交谈和交往。

VRML的设计是从在WEB上欣赏实时3D图像开始的。VRML浏览器既是插件,又是帮助应用程序,还是独立运行的应用程序,它是传统的虚拟现实中同样也使用的实时3D着色引擎。这使得VRML应用从三维建模和动画应用中分离出来,在三维建模和动画应用中可以预先对前方场景进行着色,但是没有选择方向的自由。VRML提供了6+1度的自由,用户可以沿着三个方向移动,也可以沿着三个方向旋转,同时还可以建立与其它3D空间的超链接。因此VRML是超空间的。

虚拟现实技术在国内外迅速崛起并快速发展,现在,国内不少高校也已经开始虚拟现实技术的研究工作,虚拟现实漫游系统的研究和运用是其中的一个方面。探讨如何通过三维建模与VRML技术相结合的方法实现快速简捷地建立简单模型的方法。虚拟建筑模型场景漫游系统是虚拟建筑场景建立技术和虚拟漫游技术的结合。前者是基础,后者是系统运行方法。因为虚拟现实技术的特点,所以它可以渗透到我们工作和生活的每个角落。

参考文献

[1] 阳化冰编著.虚拟现实构造语言VRML[M]. 第一版.北京:北京航空航天大学出版社,2000:5-8.

[2] 张金钊,张金镝,张金锐编著.虚拟现实三维立体网络程序设计语言VRML――第二代网络程序设计语言[M].第一版.北京:清华大学出版社,2004:89-93

[3] 邹湘军,孙健. 虚拟现实技术的演变发展与展望[J]. 系统仿真学报,2004,16(9):1905-1909.

现实虚拟技术范文第2篇

一、虚拟现实技术

虚拟现实技术(ⅥrnJalReaJ时,简称vR技术)出现于20世纪60年代,随着处理器技术的大幅度提高以及图形绘制技术、数字信号处理技术、传感技术的发展,近几十年来在国内外形成了对虚拟现实的研究热潮。

虚拟现实系统提供了一种先进的人机界面,它通过为用户提供视觉、听觉、触觉等直观而自然的实时感知交互的方法和手段,最大程度地方便用户的操作,从而减轻了用户的负担,提高了系统的工作效率。虚拟现实技术具有3个突出特征:沉浸性、交互性、想象性。

虚拟现实系统由两部分组成:一部分为创建的虚拟环境,另一部分为介入者。虚拟现实的核心是强调两者之间的交互操作,即反映出人在虚拟环境中的体验。我们可以给出如图1的虚拟现实的概念模型。

二、虚拟实验系统

1.虚拟实验系统的特点

(1)共享程度高。虚拟实验系统不同于传统实验在地域和时间上的限制,它不仅可以接受本地用户的访问,有访问权限的异地用户也可以使用系统。并且也无需考虑使用时间的问题,实验者可以随时进行实验。虚拟实验系统为用户提供了一个可以在任何时间、任何地点访问的实验环境,极大地提高了信息与实验资源的共享程度。

(2)强大的交互能力。为了向用户提供一个逼真的实验环境,虚拟实验系统往往都具有强大的交互能力,实验者和虚拟实验对象之间可以通过鼠标的点击或者拖曳操作进行交互,实验者可以实时地观看实验现象和实验结果。

(3)支持协作。虚拟实验系统提供了多种方式来完成用户间的信息交流。

2.虚拟实验系统的建模

如何构建教学型虚拟实验系统,使其能够拥有丰富的实验内容表现方式、提供形象生动的实验内容,让让学生实现从感知到理解的过程,一直是研究教学型虚拟实验系统的热点问题之一。

虚拟实验系统的构建是将多种技术综合运用,首先构建实验过程所需要的各种仪器设备,对于场景进行建模。三维虚拟场景模块的建立是以某一实景为基础的,因此在虚拟场景建模之前需要对实验室环境进行实地考察并对建筑物进行筛选,从而构建具有真实感的实验环境。对于仪器设备完全用ⅥML语言建立复杂的三维模型是相当烦琐的,而且建模方法缺乏直观性,而3DSMAX强大的三维建模功能以及对具有转换为V文件格式输出的功能,使其在三维虚拟场景中广泛应用。我们在实际的建模过程中根据要建立模型的特点选择建模方法。简单模型,直接采用VRML中简单几何体拼贴纹理的方法,对于复杂场景则采用3DsMAx建模后以VRMI,文件格式输出。当然在虚拟实验的建模过程中的庞大建模工作量对软件的建模效率以提出了很高的要求,于是,在该建模过程中我还采用了高效的照片建模软件Canoma,Canoma是MetaCreations公司(即现在的Vie、vpoint公司)的软件产品,利用它可以让我们无需建模,即可直接从一张或几张照片制作三维模型,因为使用真实照片直接生成三维模型,所以效果非常真实;而且CaIloma可生成网络使用的VRM,文件格式。为了能够反映真实仪器设备的特性,有时还采用FLASH技术来达到仪器设备外观的逼真性,并提供一些基本的交互。

3.虚拟实验系统中的交互

交互性是虚拟实验系统中的一个重要问题。一类是用户在浏览场景的时候,主要的输入设备就是鼠标,这时候检测器实际上是检测用户对于鼠标的各种操作动作,如鼠标的单击、指向、拖动等等,从而场景做出相应的反应。检测这类动作的监测器是接触型监测器。描述这类监测器的节点有接触监测器节点TouchSensor以及PlaneSensor节点、SphereSensor节点、CylinderSenS0r节点;另一类是用户和场景中某对象接近的程度,对象做出相应的反应,使得用户和虚拟对象之间形成交互。

将所有仪器设备成功地加入到场景当中之后,用户应该可以随意地拿起自己需要的实验器材进行实验,所以要提供用户选取实验器材的接口。当用户在选择某件仪器,为了提供给用户选择的接口,我们在实验仪器原型中设计了供用户选择的按钮。如果选中时就可以点击按钮“tal(e,无需使用就只要点击“放回”按钮。由于用户需要与系统进行交互,同时系统需要根据用户的选择与后台数据库进行通信,因此我们使用JavaApplet。Applet具有良好的网络传输透明性,图2显示了浏览器通过Appl访问数据库的整个过程。

三、虚拟实验集成的系统结构

1.软件程序集成

软件程序是虚拟实验系统的重要内容,是系统的灵魂所在。在虚拟实验系统中,我们将软件程序部分按照层次化和模块化的设计模式进行集成。集成化的软件程序依据集成度的大小分为不同层次的模块,分属不同层次的模块充分体现了整体和部分的关系,各模块都可以看成是下一层次多个模块集成的整体,每一个模块又都可以看成是上一层次模块中的一部分,各层次之间互为整体和部分的关系为系统结构构架提供了灵活的方式。

2.系统功能集成

系统功能集成是建立在软件程序集成的基础之上的,系统功能集成是系统结构集成的重要体现,系统结构的有效集成度是系统功能集成的重要基础。在虚拟实验系统中,软件程序的集成保证了系统功能在不同层面上的集成度和在各层面之间的灵活性。以不同集成度来形成的系统功能整体在系统构建、修改、维护等方面起到了重要的结构化支持作用。

3.仪器软面板集成

仪器软面板是虚拟实验系统的重要特色之一。在传统实验系统中,仪器设备一般会自带一个显示屏,以及相关的操作组件和按钮来形成一个操作面板,这个面板的形式以及各组件和按钮的功能是固定的,不能修改和设置。在虚拟实验系统中,各种仪器设备的操作面板集中显示在计算机的显示屏幕上,这种面板由软件程序来形成和设置,由键盘、鼠标以及其他的外部输入设备来控制,面板的形式以及各组件和按钮的功能可以根据需要自定义,可以将多个仪器的面板组合在一起,也可以将某一个仪器的面板简化。仪器软面板形式和功能上的这种灵活性正是系统集成度的体现。

4。网络集成

网络的出现使得分布式结构成为可能。在虚拟实验系统中,我们通过网络可以突破时间和空间的限制,将更多的协议方和操作方以一定的集成度集成在一起,共同完成实验项目。我们在谈集成性的问题的时候,一定是和相应的分散度联系在一起的,就如同整体和部分之间的关系,每一个整体都可以看作更大的整体的一部分,而每一个部分又都可以看成更多小部分的整体。网络的分布式保证了系统结构的集成性。

四、虚拟实验教学应用的优势

从虚拟实验的技术优势和实验教学的现状需求出发,其优势主要体现在以下几个方面:

1.资源开放

从虚拟实验的技术实现角度来看,实验教学中的有效资源全部开放,这使得实验项目从开发到操作,再到后期数据处理与实验课程的复习全部开放给学生,学生可以利用系统软件程序模块和实验项目设计模板等帮助实验设计方案的形成与开发;利用数据分析与处理工具包进行实验数据的分析与处理,获得规律性认识:教师的指导性意见、学生的交流信息和实验故障和误差分析等信息资料,可以帮助学生在实验课程总结和复习中取长补短、巩固知识。

2.组织形式开放

虚拟实验将实验资源、实验项目开发和实验操作等网络化、平台化,因此实验内容、时间以及地点等组织形式是开放的具备可选择性。针对目前实验教学需要跨学科、跨地域、多项实验同时开展等现状要求,虚拟实验所具备的组织形式开放性为实验教学模式的扩展提供了技术准备。

3.对象开放

虚拟实验的网络功能能够根据不同的对象设置不同权限的系统身份,实验参与人员各取所需,实现学习和交流的目的。在实验教学中,对象的身份基本分为三种层次和三种身份。三种层次指的是系统管理员、教师和技术人员、学生。三种身份是针对学习者而言的:实验课程参与者、远程实验课程学习者、实验爱好和探索者。

现实虚拟技术范文第3篇

Abstract: The virtual reality technology is one has the potential extremely the front research direction, faces one of the 21st century's important technical. The virtual reality technology application's domain is also getting more and more broad, the typical application domain has the education to apply, the project to apply, the entertainment application and the commercial use, but in the commercial use domain appears gradually the 3D network hypothesized commercial city is a virtual reality technology model application, the virtual reality technology has brought the infinite vitality in the hypothesized commercial city's application for the entire electronic commerce.

关键词:虚拟现实 3D虚拟商城 分布式虚拟现实

key word: Virtual reality 3D hypothesized commercial city distributional virtual reality

一、引言

随着Internet的发展,人们的商务行为已经从传统商务转变为电子商务。在各种各样的电子商务中,最为重要的一种就是网上商店。人们可以足不出户,在家里的电脑上就可以买到几乎所有的商品。目前除了2D网页式的实现方式以外,分布式虚拟环境是网上商店的一种更新、更好、更合适的实现方式。

二、虚拟现实技术

虚拟现实(VR, Virtual Reality)也被称为虚拟环境 (Virtual Environment. VE)、人工现实((Artificial Reality),电脑空间((Cyberspace).是一种可以创建和体验虚拟世界的计算机系统。它是作为一种综合计算机图形技术、多媒体技术、传感器技术、人机交互技术、网络技术、立体显示技术以及仿真技术等多种科学技术而发展起来的计算机领域的新技术,目前所涉及的研究应用领域已经包括军事、 医学、心理学、教育、科研、商业、影视等,VR技术已经被公认为是 21世纪重要的发展学科以及影响人们生活的重要技术之一。

虚拟现实的研究开发工作可追溯到80年代初。如1983年美国国防部(DOD)制定了SIMENT的研究计划;1985年SGI公司开发成功了网络VR游戏DogFlight。到90年代初,美国率先将虚拟现实技术用于军事领域,主要用于以下四个方面:虚拟战场环境;进行单兵模拟训练;实施诸军兵种联合演习;进行指挥员训练。一些著名大学和研究所的研究人员也开展了对分布式虚拟现实系统的研究工作,并陆续推出了多个实验性DVR系统或开发环境,典型的例子有美国NPS开发的NPSNET(1990)、瑞典计算机科学研究所的DIVE(1993)及英国Nottingham大学的AVIARY(1994)。

目前虚拟现实系统主要划分为四个层次:一是桌面虚拟现实系统,也称窗口中的VR。它可以通过桌上型机实现,所以成本较低,功能也最简单,主要用于CAD(计算机辅助设计)、CAM(计算机辅助制造)建筑设计、桌面游戏等领域。二是增强现实性虚拟现实系统,又称为混合虚拟现实系统,它是把真实环境和虚拟环境结合起来的一种系统。三是沉浸虚拟现实系统,如各种用途的体验器,使人有身临其境的感觉,各种培训、演示以及高级游戏等用途均可用这种系统。四是网络分布式虚拟现实系统(Distributed Virtu al Reality,DVR),它在因特网环境下,充分利用分布于各地的资源,协同开发各种虚拟现实的利用。网络分布式虚拟现实将分散的虚拟现实系统或仿真器通过网络连接起来,采用协调一致的结构、标准、协议和数据库,形成一个在实践和空间上互相耦合的虚拟/合成环境,参与者可自由地进行交互作用。目前,分布式虚拟交互仿真已经成为国际上的研究热点,相继推出了 DIS、MA等相关标准。网络分布式虚拟现实在航天中极具应用价值,例如,国际空间站的参与国分布在世界不同区域,分布式虚拟现实训练环境不需要在各国重建仿真系统,这样不仅减少了研制费设备费用,而且也减少了人员出差的费用和异地生活的不适。它通常是浸沉虚拟现实系统的发展,也就是把分布于不同地方的沉浸虚拟现实系统通过因特网连接起来,共同实现某种用途。

分布式虚拟现实系统在远程教育、科学计算可视化、工程技术、建筑、电子商务、交互式娱乐、艺术等领域都有着极其广泛的应用前景。利用它可以创建多媒体通信、设计协作系统、实境式电子商务、网络游戏、虚拟社区全新的应用系统。典型的应用领域有:(1)教育应用:把分布式虚拟现实系统用于建造人体模型、电脑太空旅游、化合物分子结构显示等领域,由于数据更加逼真,大大提高了人们的想象力、激发了受教育者的学习兴趣,效果十分显著。同时,随着计算机技术、心理学、教育学等多种学科的相互结合、促进和发展,系统因此能够提供更加协调的人机对话方式。(2)工程应用:当前的工程很大程度上要依赖于图形工具,以便直观地显示各种产品,目前,CAD/CAM已经成为机械、建筑等领域必不可少的软件工具。分布式虚拟现实系统的应用将使人员能通过全球网或局域网按协作方式进行三维模型的设计、交流和,从而进一步提高生产效率并削减成本.(3)商业应用:对于那些期望与顾客建立直接联系的公司,尤其是那些在他们的主页上向客户发送电子广告的公司,Internet具有特别的吸引力。分布式虚拟系统的应用有可能大幅度改善顾客购买商品的经历。(4)娱乐应用:娱乐领域是分布式虚拟现实系统的一个重要应用领域。它能够提供更为逼真的虚拟环境,从而使人们能够享受其中的乐趣,带来更好的娱乐感觉。

三、3D虚拟商城

目前,电子商务潮流充斥着整个社会,给整个经济社会带来了无限商机,随之出现在网络世界中的在线虚拟商城也拥有很多好处,比如可以每周七天每天24小时不间断营业,用户可以很方便地通过搜索来找到他所需要的项目和产品,还有很重要的是不用实体店面可以节省很多的成本。但是,在线虚拟商城中,用户总会觉得产品太少,而且觉得只你一个人在购物,很孤单。在这种环境下,用户不愿意像在实体店中那样逗留很久。最终,在网上虚拟商城中的消费也大打折扣。为了满足人们的更高需求,突破2D网页界面的网页的3D虚拟商城等正在逐步走入并将逐渐占领整个商业市场。

3D虚拟商城是一种基于Internet的虚拟购物环境,它采用C2C的电子商务模式,让用户在3D虚拟环境中漫游,能进行交互式的操作,全面虚拟了购物的浏览、挑选、支付的过程,使用户有身临其境的感受;同时还会提供数字化的管理,商品分类清楚,搜索方便,具有完备的财务系统和可靠的安全系统,确保购物的有效性,完整性和机密性。3D虚拟的商城中3D语音和图像功能为顾客提供身临其境的、互动以及网络一体化的虚拟世界。顾客可以通过创建个人化的“虚拟替身”(avatar),在3D虚拟商店中浏览商品和购物,同时与来自世界各地的其他顾客和销售人员互动交流;其次,顾客也可以参加由虚拟商店职员提供的商品演示或使用指导;第三,顾客可以通过组建社会化或虚拟的购物群组,与他们的朋友、家人和同事共同举办网上购物聚会,共同分享购物的乐趣与经验,开创全新的辅助式电子商务或社交性购物的概念;第四,网上客户服务将变得尽善尽美,客户将不再需要通过电子邮件、点击通话或浏览数百页的网上论坛来寻找所需的答案。一旦有任何疑问,便可立即登录,向客户服务代表寻求帮助、或者询问另一位信用评级较高的顾客;第五,企业更可以利用网上商店,在虚拟环境中测试新的店面设计和构思。因此建立并发展3D虚拟商店具有实际意义。

四、DVR(Distributed Virtual Reality,DVR)在虚拟商城中的应用

虚拟现实(VR)是利用电脑模拟产生一个三维空间的虚拟世界,提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者如同身历其境一般,可以及时、没有限制地观察三度空间内的事物。而虚拟现实技术的兴起,为人机交互界面的发展开创了新的研究领域;为智能工程的应用提供了新的界面工具;为各类工程的大规模的数据可视化提供了新的描述方法。它充分利用计算机硬件与软件资源的集成技术,提供了一种实时、三维的虚拟环境(VirtualEnvironment),使用者完全可以进入虚拟环境中,观看计算机产生的虚拟世界,听到逼真的声音,在虚拟环境中交互操作,有真实感,可以讲话,并且能够嗅到气味。DVR技术的发展始终围绕它的三个特征而前进,即沉浸感、交互性和构想。这三个重要特征与其相邻近的技术(如多媒体技术,计算机可视化技术等)相区别,沉浸感是指计算机生成的虚拟世界能给人一种身临其境的感觉,如同进入了一个真实的客观世界; 交互性是指人能够很自然地跟虚拟世界中的对象进行交互,操作或者交流;构想是指虚拟环境可使人沉浸其中并且获取新的知识,提高感性和理性认识,从而深化概念并萌发新意。因而可以说虚拟现实可以启发人的创造性思维。这些特点均为三维虚拟商城的建立和发展提供了良好的技术支持,基于DVR平台的三维虚拟商城将是电子商务网络商城发展的必然趋势。

其中三维虚拟商店的系统结构和模型的研究、三维虚拟商店的碰撞检测方法、三维虚拟商店的动态交互等都是基于DVR的技术支持。三维虚拟商店的系统结构和模型的研究是为了提高系统的安全性和综合性能,方便以后对系统功能进行完善和扩张进行的,系统采用MVC三层结构。对系统的关键信息进行了封装,而且大部分业务逻辑处理都集中在服务器上,提高系统安全性和性能。三维场景的碰撞检测对于提高虚拟系统的真实性、增强虚拟环境的沉浸感有至关重要的作用;三维虚拟商店的动态交互主要研究三维虚拟场景中物体的动态添加、三维场景中物体的材质的更新、三维场景与数据库的关联等问题。

虚拟商城的展示在国外发达国家得到了广泛的应用,成为实物展示的重要互补。我国在虚拟商店展示领域的研究比较落后,对虚拟展示系统的开发技术没有形成完整的理论和方法,特别在商店的设计与制作方面,缺乏有效的开发平台。而网络虚拟技术的发展为商家与客户进行信息交流开辟了一条新途径,特别是虚拟现实技术的发展,为网上最终实现网上虚拟展示的“真实化”提供了可能。

参考文献:

[1] 杨孟洲.分布式虚拟环境中一些关键技术的研究[D].中国知网:浙江大学. 2000.5

[2] 苏建明,张续红,胡庆夕.展望虚拟现实技术[J].计算机仿真, 2004年1月,第21卷第1期,18-21.

[3] 张峰美,戴军.分布式多用户三维虚拟校园系统[J].广东技术师范学院学报,2007年第12期,86-89.

现实虚拟技术范文第4篇

虚拟现实(VR一Virtualreality),又称为灵境,是一种可以创造和体验虚拟世界的计算机系统,虚拟世界是由计算机生成的,通过视、听、触觉等作用于用户,使之产生身临其境的沉浸感、交互感。虚拟现实技术实际上是包括计算机图形学、图象处理与模式识别、智能接口技术、人工智能技术、多传感器技术、语言处理与响应技术、网络技术、并行处理技术和高性能计算机系统的集合。由于“需求推动”和“技术推动”的原因,虚拟现实技术在农业脱粒机械的开发与研究中有广泛的应用,其前景十分诱人。虚拟现实技术发展较快,而且是十分活跃的技术领域之一美国、日本、英国等国的政府机构和许多大公司特别重视这方面的研究工作。

2虚拟现实技术

2.1虚拟现实技术的概念

什么是虚拟现实技术?至今为止,还没有一个确切的定义。从本质上来讲,虚拟现实技术是一种先进的以用户为核心的计算机接口。通过给用户提供诸如视、听、触觉等各种直观而又自然的实时感知交互手段,实现用户与环境直接地进行自然交互,从而达到身临其境的感知。这里所谓环境就是由计算机生成的虚拟世界。虚拟现实技术有助于减少人与计算机的隔阂,有助于人在认识问题的认识空间与计算机的处理空间趋向一致.

2.2虚拟现实技术的特征虚拟现实技术有三个最突出的特征:交互性(Interaetivity)、沉浸感(Immersion)和想象(Imagi-nation)。即所谓的三I特征。

2.2.1交互性

指用户与虚拟场景中的各种对象相互作用的能力,它是人机和谐的关键性因素。交互性包括对象的一可操作程序及用户从环境中反馈的自然程度。虚拟场景中对象依据物理定律运动。VR是自主参考系,以用户的视点变化进行虚拟交换,这个过程最重要的因素是实时性。

2.2.2沉浸感

这是VR系统的核心,使用户投人到计算机生成的虚拟场景中去,用户成为系统的一部分,有“身临其境”之感。

2.2.3想像

VR不仅仅是一个用户终端接口,而且可使用户沉浸其中获得新知识,提高感性和理性认识,从而产生新的构想。这种想像结果输入到系统中去,系统会将处理后的状态实时的显示或由传感器装置反馈给用户,如此反复,这是一个学习—创造—再学习—再创造的过程,因而可以说,VR是启发人的创造性思维的活动。

2.3虚拟现实的硬件与软件

VR系统实际就是一个计算机系统,它必需有硬件与软件的支持才能正常工作。计算机硬件包括PC、工作站和超级计算机以及各种实现视、听、触、嗅、力觉效果的输人输出设备。而软件集成了开发虚拟现实所需的模拟管理、实时描绘,目标管理,动画插人、传感器输人、纹理映射、图形显示等各种功能,提高了虚拟现实系统的开发效率。以下介绍一些常用的输人输出设备和虚拟现实开发软件。

2.3.1常用的输人设备

二维鼠标器。二维鼠标器是一个二自由度的输人设备。浮动鼠标器.浮动鼠标器在桌面上类似于上述的二维鼠标器,但当它离开桌面后,就成为一个六自由度的鼠标器。手持式操纵器。手持式操纵器包含一个位置跟踪探测器和几个按钮,专门放在手中使用。力矩球。力矩球安装在一个小型的固定平台上,可以提供六自由度的功能。数据手套.数据手套可以探测手指间的相对运动。当手运动时,手套检测这些活动,并向计算机送出电信号,这些电信号可转化为虚拟手的动作,你可以看到虚拟手随着你的真手在虚拟环境中活动。数据手套允许手去抓或推动虚拟物体。数据衣。数据衣是一种穿在参与者身上,把他的整个身体中各部位的数据输人到计算机的装置。它可以使虚拟环境的虚拟人,随参与者一起活动。语音识别。语音识别是一种很有发展前途的虚拟现实输人技术.它允许参与者对着连接计算机的拾音器说话,而不需要键盘和其他手工操作的设备输人数据。

2.3.2常用的输出设备

立体声耳机。声音可以大大增强虚拟环境中的真实程度,立体声耳机使得参与者在虚拟现实环境中有一种身临其境的感觉。立体眼镜。人的视觉在虚拟环境中起着重要的作用。为了增强虚拟环境的现实感,参与者在虚拟环境中所看到的物体和景物必须具有立体感。立体眼镜可以为参与者提供立体图像。头盔式显示器。这是一种当前比较高级的虚拟现实设备。它由一个立体图像显示器,一副立体声耳机和一个位置跟踪设备组成。位置跟踪设备用于将参与者的头部位置及运动方向告诉计算机,计算机据此调整该参与者的图像,从而使得呈现的图像更富于真实感。

2.3.3虚拟现实常用的开发软件

虚拟现实常用的图形建模软件有OPENGL、CAD、3DS一MAX等等。典型的虚拟现实软件包有MR、WTK、PROvision系统等。MR(minimalreality)是由美国Alberta大学的MarkGreen教授和他领导的开发队伍开发的用于虚拟现实环境的工具包,对于那些希望进行虚拟现实研究的机构而言,MR可以被免费使用。WTK(WorldToolKit)是由SensensCorpora-tion开发,用于虚拟环境的应用开发环境。WTK与硬件无关,可以在PC到SGI工作站上运行。而PROVision系统是由SGI公司开发的。

3虚拟现实技术在农业脱粒机械开发研究中的应用

虚拟现实技术在农业脱粒机械开发研究中主要应用于以下几个领域:

3.1虚拟制造与设计

虚拟制造系统其本质是以计算机支撑的仿真技术为前提的一个交流信息化的计算机系统,是现实制造系统在虚拟环境下的映射。把虚拟的模板显示在正加工的工件上,工人根据此模板控制代加工过程。传统生产方法是先做样机、实验、然后投人正式生产,而在虚拟现实条件下,计算机生成全部工件原形,然后对虚拟原形进行预装配,在预装配同时还能进行碰撞检测、阶段性的性能检测等,若对测试结果不满意,还可对工件设计图进行实时修改。在制造过程中,所有步骤预先在计算机上设计完成,大大减少了设计更改、错误和返工等浪费。“虚拟原形”代替“真实零部件”进行预装配提高了可靠性,节约了大量原材料。

3.2农业脱粒机械的实验仿真研究

脱粒装置是脱粒机械的核心部分,它在很大程度上决定了机器的脱粒质量与生产率,而且对分离清选也有很大影响。在就喂人量、滚筒速度、凹板栅栏间距、脱粒间隙等因素对脱尽率、破损率、夹损失率、含杂率与单位功耗等脱粒性能指标进行研究时,由于脱粒过程的复杂性、非线性,实验费用大,开发周期长,往往都先作计算机仿真实验。传统的数值仿真,其结果都是以数值、曲线表示,不直观,而且有些信息表达不出来。而采用虚拟现实技术,将其复杂的数据计算和数据处理推向后台,用户与图形打交道,通过交互方式的方法可获取仿真过程,可千预和引导计算机并最终获得计算机结果的图形、颜色、静态和动态画面,使研究者了解仿真过程和发展的趋势,理解计算机数值仿真难以“体验”的过程。同时可以提高仿真精度和仿真效率,降低对用户的操作水平.

现实虚拟技术范文第5篇

虚拟现实技术在二十世纪末、二十一世纪初方才兴起一项新兴的综合实用技术。其将计算机图形学、传感测量技术、仿真及人工智能、多媒体技术以及底滞枷翊理技术等多项技术融为一体。该项技术可以创建出一个交互式、虚拟的、逼真的三维立体空间环境,同时可以对于人的操作以及活动作出相对准确、及时的反应,使人们有种出于现实中的感受。本文就虚拟现实技术的起源发展、现实应用以及发展现状进行分析,简要的对未来发展的方向进行介绍。

【关键词】虚拟现实技术 应用 现状 发展趋势

随着计算机技术的高速发展,近年来虚拟现实技术也得到了快速的成长。虚拟现实技术是一个可以进行虚拟世界创建与体验的计算机系统。虚拟现实技术是对计算机技术加以利用,从而形成一个逼真的、包含有视觉、听觉、触觉等多个感官的虚拟环境,使用者利用各式交互设备与虚拟环境内的实体进行相互作用,从而产生一种身临其境的信息交流,是当前时期较为先进的实现数字化人机交互感受的技术。

1 虚拟现实技术的简介

1.1 虚拟现实技术原理

虚拟现实(Virtual Reality),简称为VR,是使用计算机模拟出一个三维的虚拟空间,为使用者提供包括视觉、触觉、听觉等感官感受进行实际模拟,同时可以快速、不受限制地对事物进行观察。使用者在进行移动位置时,计算机将会及时展开复杂运算,精确地将虚拟三维世界的视频传输给使用者,从而产生亲身临场的感觉。是一种经过计算机技术加以辅助而产生的高技术性的模拟系统。虚拟现实技术集成了计算机仿真、人工智能、计算机图形、传感、显示以及网络处理等技术的发展成果。

1.2 虚拟现实技术的发展史

虚拟现实技术的发展大致上可分为四个发展时期。1963年以前式虚拟现实技术发展的萌芽期,1963年至1972年的十年间将带有声音的形动态进行模拟过程中便包含有虚拟现实思想。1973年至1989年,该时期虚拟现实的概念以及理论开始产生。1990年至今虚拟现实技术得到不断的发展与完善并应用于实际中。2012年Google首次了Google Glass,将虚拟现实技术、头戴式显示器、增强现实展现到普通民众的视野中,这对原有的图像显示设备进行完全的颠覆。2013年,头戴式显示器得到了广泛的关注,随后世界众多公司均加入到虚拟现实头盔的竞争中。

2 虚拟现实技术的应用范围

虚拟现实技术主要在现实中应用于如下几方面。

2.1 医学

虚拟现实技术应用于医学方面有着极其重要的实际意义。创建虚拟人体模型的环境中,可以利用HMD、感觉手套、跟踪球等更加方便的对人体内部的器官构造进行了解,在进行外科手术时,医生可以通过虚拟技术在显示器上进行模拟手术,寻求最佳的手术方案同时可以提升医生的操作熟练度。

2.2 娱乐、教育

由于虚拟现实技术拥有丰富的感知力以及3D现实环境致使其成为了理想的视频、游戏工具。因为娱乐上在虚拟现实技术上的真实性要求较低,因此近年来该项技术在娱乐、游戏方面发展较快。此外,在家庭娱乐上也取得可较为良好的发展前景。

2.3 军事航天

模拟和练习始终是军事航天业里的一个重点的内容,这对虚拟现实技术的应有提供了极为广阔的前景。此外,虚拟现实技术可以对零重力进行真是的模拟,来对现有对宇航员的训练方式进行替代。

此外虚拟现实技术还在房地产开发、动作捕捉、数字地球、室内设计、工业仿真、文物保护、应急演练等方面均有所应用。

3 虚拟现实技术发展现状

虚拟现实技术是由美国人提出的概念,后来由美国宇航局对其的利用,从而展开了对成本较低的虚拟现实系统的研制,从而对虚拟现实技术的硬件发展有着一定的推动作用。现在虚拟现实技术虽已获得了较大的发展,但是仍处于研究的初级阶段。目前虚拟现实技术主要在感知、后台软件、硬件以及用户界面四个方面进行研究。就当前时期的技术来看,场馆虚拟漫游存在的最大难点是建模与实施绘制。通常情况下,会选择在绘制速度与模型精细度上选取一个平衡点,这样不仅可以保证绘制质量又不会为用户造成不适感。目前世界上有着诸多的虚拟现实应用的开发商,已经开发了一些虚拟现实软件的平台,比如Superscape公司的VRT、Deneb Robotics公司的ENVISION等。这类平台面对不同的目的,在很大程度上提升了虚拟现实应用系统的研制效果,但是在开发中依然有着很多的问题,尤其是对自主知识产权缺乏的问题,对其中的核心了解不充分,一旦要对新功能进行开发补充时,都会造成无法运行的状况。

2015年三星公司了一个新的配件Gear VR,吸引了广大用户的关注,Gear VR是一款利用手机作为屏幕的移动虚拟现实的配件,可以实现虚拟现实得应用体验。三星公司的这款虚拟现实的设备对于同行业的其他品牌有着很大的竞争优势,由于其是第一家将其应用于手机上。此外将虚拟现实技术应用于航拍中,再结合三维制作技术,实现现实拍摄与三维制作的交互,这在游戏上应用较为广泛。目前有大量的游戏制作商将虚拟现实技术应用于游戏开发,例如“星球大战”、“鹰击长空”、“最终幻想14”等,均实现了将现实内容与三维制作相结合,制作出的游戏效果使玩家有者身临其境的游戏感受,得到了广大玩家的喜爱。

4 虚拟现实技术发展趋势

对虚拟现实技术的发展历程来看,虚拟现实技术在今后的发展过程中依然会遵循“低成本、高性能”的原则。本文将从软硬件上展开探讨,主要的发展方向如下。

4.1 动态环境建立技术

虚拟环境的创建是虚拟现实技术最为核心的内容,动态环境建模主要的目的在于获得现实环境数据的基础上,以此来创建相应的虚拟环境的模型。

4.2 实时三维图像生成与显示

三维图像生成技术已经较为成熟,目前关键是实时生成如何实现,目前就如何不降低图像质量与复杂程度的基础上对频率的刷新是今后发展的重点研究内容。另外,虚拟现实技术的发展依赖于传感器与立体显示器的发展,当前时期的虚拟设备上无法满足系统的需求,需要对三维图像的生成与显示技术进行不断的开发。

4.3 研制新型交互设备

虚拟现实要能够完成人可以自由的和虚拟世界内的对象实现交互,有一种身临其境的感受,使用的主要输入、输出设备有数据手套、头盔显示器、三维声音产生器、三维位置传感器以及数据衣服等。所以,价格低廉、新型、耐用性好的数据衣服和手套将成为今后的研究重点。

4.4 智能语音虚拟建模

虚拟现实建模过程是较为复杂的,需要有较多的时间和精力。假设将智能、语音识别等技术与虚拟现实技术相结合的话,可以很好的对这一问题加以解决。可以将模型的方法、属性、特点的描述利用语音识别技术来对建模数据加以转化,之后再使用计算机的图像处理技术以及人工智能来进行设计、评价,将模型用对象进行表示,同时逻辑地使各个模型进行动、静态的连接,最终创建出系统模型。在模型形成后对其进行评价,给出一定的评价结果,同时由人工使用语言对其编辑和确认。

4.5 应用大型分布式网络虚拟现实

分布式网络虚拟现实是将零散的虚拟现实系统和仿真器利用网络将其连接在一起,采取协调一致的标准、结构、数据库以及协议,创建出一个在空间、时间相互联系的虚拟合成系统,使用者可以进行自由的交互。当前,分布式虚拟现实交互已经成为国际上的研究热门。网络分布式显示虚拟在航天上有着极为重要的应用价值,可以减少研制经费以及设备费,同时可以降低人员的出差费以及出差造成的不适。

5 结语

综上所述,虚拟现实技术有着广阔发展前景的高新技术,但是仍有着诸多的需要解决的问题。虚拟现实技术已经在现实生活中的许多方面得到应用,并发挥出了极为重要的作用。作为二十一世纪大力发展的技术,在今后的发展中将会取得越来越广泛的应用,将会对人们的习惯以及理念加以改变,同时深入的应用与我们的日程生活和工作中。

参考文献

[1]黎学坚,黄泽文,苏渊湖.浅谈虚拟现实技术在医学I域中的应用[J].广东科技,2015,07(14):76-77.

[2]朱和鲲.浅谈虚拟现实技术及其在机械设计与制造中的应用[J].科技与创新,2015,08(16):140-143.

[3]俞友良.虚拟现实技术在地理信息系统中的应用研究[J].科技经济导刊,2016,06(06):23.

[4]赵晶,李建亮,李福海.虚拟现实技术在地震应急救援训练基地中的应用[J].华北地震科学,2016,02(02):63-66.

[5]诸葛.浅谈虚拟现实技术在教学中的应用[J].教育观察(上旬刊),2014,01(01):38-39+45.

[6]李东.浅谈虚拟现实技术在煤矿中的应用[J].中国信息化,2014,11(11):48-51.

[7]司占军,李文霞,顾.简述虚拟现实技术[J].电脑知识与技术,2013,08(08):1923-1951.

现实虚拟技术范文第6篇

虚拟现实采用以计算机技术为核心的现代高技术,生成逼真的视、听、触觉一体化的特定范围的虚拟环境,使用户如身临其境一般,可以及时而没有限制地观察三维空间内的事物。由此可见,虚拟现实的主要特征为交互性、沉浸感和构想性。具体来说可以用3个“I”来概括,即Immersion、Interactivity和Imagination。

1.交互性(Interactivity)

虚拟现实的交互性是指参与者对虚拟环境内物体的可操作程度以及用户从该虚拟环境中得到反馈的自然程度。而这种交互的产生,需要借助于各种专用的三维交互设备。例如,船舶结构虚拟装配系统中借助三维鼠标,用户便可以感受在虚拟船舶内走动并可以拆装设备。

2.沉浸感(Immersion)

又称临场感,指用户感到作为主角存在于该虚拟环境中的真实程度。VR技术最主要的技术特征就是使用户具备一种在计算机虚拟环境中的沉浸感,即让使用者觉得自己是计算机系统所创建的虚拟环境的一部分,使人由观察者变为参与者,从而能投入到计算机实践并沉浸其中。在曼恒数字呈现的虚拟船舶内,用户戴上三维立体眼镜便能感觉自己抽离了现实,沉浸于大海之中的船舶上。理想的模拟环境应该使用户全身心投入到计算机创建的三维虚拟环境中,在该环境中,看起来、听起来、闻起来、摸起来甚至尝起来感觉都是真的,跟现实世界毫无分别。

3.构想性(Imagination)

构想性强调虚拟现实技术广阔的想像空间,可拓宽人类认知范围,不仅可再现真实存在的环境,也可以随意构想客观不存在的甚至是不可能发生的环境。在电影《阿凡达》中,卡梅隆依靠自己的想象和虚拟现实技术,创造了一个梦幻般的星球――潘多拉星球,片中的岩石沙尘、森林陡山、外星生物都是构想的,虚拟现实的构想性应用给观众带来了首当其冲的视觉震撼。

虚拟现实的分类

虚拟现实技术是一门涉及到计算机、图像处理与模式识别、语音和音响处理、人工智能技术、传感与测量、仿真、微电子等技术的综合集成技术。从不同角度出发可以有不同的分类,这里我们从系统性能进行分类,主要分为沉浸式、分布式、增强现实型和桌面式虚拟现实。

1.沉浸式虚拟现实

沉浸式虚拟现实是一种最佳的虚拟现实模式,提供一个完全沉浸的体验。虚拟现实影院(VR theater)就是一个完全浸入式的虚拟现实系统,用几米高的6个平面组成的立方体屏幕环绕在观众周围,设置在立方体的6个投影设备共同投射在立方体的投射式平面上,观众置身于立方体中可同时观看由5个或6个平面组成的图像,完全沉浸在图像组成的空间中。沉浸式虚拟现实选用了完备的虚拟现实硬件设备和先进的虚拟现实软件技术支持,从而模拟出一套比较复杂的系统,优点是使用户全身心地体验该虚拟环境,但是在硬件和软件方面投资较大。

2.分布式虚拟现实

分布式虚拟现实(通常又称为分布式虚拟环境)是多用户基于网络进行分布式交互、信息共享和仿真计算等,如暴雪公司2004年推出公测的魔兽世界网络游戏,中视典2012年推出的“超炫VRPIE多人在线MMO”支持多人在线互动等。分布式虚拟现实需要通过互联网传递虚拟现实环境中的各类数据,对网络的实时性、稳定性、带宽都有较高的要求。

3.增强现实型虚拟现实

也称混合现实,通过计算机技术,将虚拟的信息叠加到真实世界中,用户既能感受真实世界,同时又能看到虚拟对象,以此实现对真实世界的增强。这种系统不但减少对构成复杂真实环境的计算,又可对实际物体进行操作,真正达到亦真亦幻的境界。戴上谷歌最新的Project Glass增强现实眼镜,在马路上行走时,Google Maps会自动导航;到达迪特时,自动显示地铁停运信息;还能通过语音控制眼镜取景拍照等。

4.桌面式虚拟现实

也称基本虚拟现实技术模式,是基于普通PC平台的小型桌面虚拟现实系统。计算机屏幕作为虚拟场景观察窗口,位置跟踪器、鼠标、数据手套、力反馈器等作为手控输入设备,来模拟操作虚拟场景,是不完全沉浸的。它最大的特点是缺乏完全投入,但是成本相对较低。现在,各大高校都建立起虚拟校园,用户能够游览虚拟校园内的三维景观游览校园。

虚拟现实的关键技术

由于虚拟现实需要提供使用者关于视觉、听觉、触觉等感官的模拟,因此需要依托于计算机科学、数学、力学、声学、光学、机械学、生物学乃至美学和社会科学等多种学科。归根到底,虚拟现实技术包括实物虚化、虚物实化和高性能的计算处理技术这3个主要方面。因此,虚拟现实的关键技术可从以上3方面进行概括。

1.实物虚化

实物虚化就是将真实世界的物体或构想出来的物体映射到虚拟世界中,主要包括模型的构建、空间跟踪、声音定位、视觉跟踪等关键技术,这些技术使得真实感强的虚拟世界产生、虚拟环境获得用户操作数据成为可能。其中模型构建可以利用现阶段的一些三维制作软件,比如3DMax、Maya等,对于空间、视觉和声音跟踪则需要借助于硬件设备,比如3DSpace数字化仪、SpaceBall空间球等。

2.虚物实化

通过实物虚化产生虚拟环境,而要确保用户在虚拟环境中获取视觉、听觉和触觉等感官感受则需要依托于虚物实化。

虚物实化的实现主要是各种传感器的作用,包括视觉、触觉、听觉和力学等传感器,比如数据手套、数据衣、头盔显示器、3D眼镜等。但是现有的虚拟现实还远远不能满足虚拟现实系统的要求,例如,数据手套有延迟大、分辨率低、作用范围小、使用不方便等缺点;虚拟现实设备的跟踪精度和跟踪范围也有待提高,因此有必要开发出更先进的传感器。

3.高性能计算处理技术

虚拟现实是以计算机技术为核心的现代高新科技,高性能的计算处理技术是直接影响系统性能的关键所在。具有计算速度高,处理能力强,存储容量大和联网特性强等特征的计算处理技术。

4.应用系统开发工具

虚拟现实应用的关键是寻找合适的场合和对象,即如何发挥想象力和创造性。选择适当的应用对象可大幅度提高效率,减轻劳动强度,提高产品质量。为了达到这一目的,有必要研究VR的开发工具,例如VR系统开发平台、分布式VR技术等。

虚拟现实的应用

现实虚拟技术范文第7篇

【关键词】 虚拟现实 3I 应用

虚拟现实即Virtual Reality ,简称VR,这个名词始创于上个世纪八十年代,由美国发明家Jaron Lanier提出,是一门崭新的综合性信息技术,而且已经成为当今计算机科学界最振奋人心的研究课题之一。

一、什么是虚拟现实

VR是指利用多媒体计算机技术生成一个具有逼真的视觉、听觉、触觉及嗅觉等的模拟现实环境,利用人的自然技能对这一虚拟出来的现实环境进行交互体验,体验的结果(即该虚拟的现实反应)与在相应的真实现实中的体验结果相似或完全相同。

二、虚拟现实技术的系统构成

如图所示,VR的系统由以下模块构成:

1.检测模块:检测用户的操作指令,并通过传感器模块作用于虚拟环境。

2. 反馈模块:接受来自传感器模块的信息,为用户提供动感、触觉、力觉等多方面感受的实时反馈。

3. 传感器模块:一方面接受来自用户的操作指令,并将其作用于虚拟环境;另一方面将操作后产生的结果以各种反馈的形式提供给用户。

4. 控制模块:对传感器进行控制,使其对用户、虚拟环境和现实世界产生作用。

5. 建模模块:运用知识库、模式识别、人工智能等技术,获取现实世界组成部分的三维表示,通过音响制作实现对现实世界的声音模拟,并由此构成对应的虚拟环境。

6. 三维模块:通过三维技术实现对虚拟环境的视觉模拟。

此外,在开放式的虚拟现实系统中,还可以通过传感装置与现实世界构成反馈闭环,在用户控制下,利用虚拟环境对现实世界进行直接操作或遥控操作。

三、虚拟现实技术的特征

虚拟现实技术具有如下四个特征,即:多感知性、沉浸感、交互性、想象性。

1. 多感知性(Multi-Sensory)――所谓多感知性,是指通过多种媒体,产生视觉、听觉、触觉、力觉、和运动等的感知。理想的虚拟现实技术应该实现人所具有的一切感知功能。由于科技发展的局限性和不成熟,目前的虚拟现实技术所开发的感知功能仅限于视觉、听觉、力觉、触觉、运动等几种。

2. 沉浸感(Immersion)――又称临场感,指用户感到作为主角存在于虚拟环境中的真实程度。理想的虚拟环境应该达到使用户难以分辨真假的程度。当用户全身心地投入到计算机创建的三维虚拟环境中时,眼睛看到的、耳朵听到的、鼻子闻到的、嘴巴尝到的、还有身体触摸到的等等,都跟在现实世界里体会到的感觉是一样的。

3. 交互性(Interactivity)――指用户对虚拟环境内的物体进行操作时,对象将给用户以感觉上的反馈。例如,在虚拟环境中参加足球比赛,当用户用脚去踢虚拟环境中的足球时,会产生触觉和力的反馈。

4. 构想性(Imagination)――强调虚拟现实技术应具有广阔的可想象空间,可拓宽人类认知范围,不仅可再现真实存在的环境,也可以随意构想客观不存在的甚至是不可能发生的环境。

一般来说,“身临其境”般的沉浸感,友好亲切的人机交互性,和发人深思的构想性是虚拟现实的三大主要特征,亦即我们常说的“3I”特性。

四、虚拟现实技术的应用

虚拟现实技术创建伊始,就承载着巨大的应用价值,它涉及科研、军事、航天、医学、教育、工程技术、影视娱乐等众多领域。典型的应用领域有:

1. 医学方面

虚拟现实技术在医学上的应用大致分为两类,一类是虚拟人体,也就是数字化人体,可用于构造人体模型,便于医生对人体构造和功能的辨识;另一类是虚拟手术系统,可用于指导高难度手术的进行。

2. 教育方面

在教育领域,虚拟现实技术具有广泛的作用和影响。基于虚拟现实技术带来的崭新的教育模式,使我们的教育理念和教育方法也在随之变革,授课内容以大量详实、生动、直观的虚拟情节出现,寓教于乐。

3. 娱乐方面

娱乐领域是虚拟现实技术的一个重要应用领域。它能够提供更为逼真的虚拟环境,借助于头盔显示器、数据服、立体声耳机、数据手套等传感装置,使人们能够享受到强烈的感官刺激,带来更好的娱乐感觉。

4.军事科研领域方面

军事和科研都是需要巨额资金投入的领域,而且难度大、危险系数高,在某种情况下,利用虚拟现实技术进行虚拟实验,既可以节省人力物力资源,打破时间和空间的限制,又可以缩短开发周期、提高生产效率、削减项目经费。

五、虚拟现实技术的发展前景

虚拟现实技术是许多相关学科领域集成、交叉的产物,它融合了人工智能、电子学、数字图像处理、计算机图形学、多媒体技术、传感器技术、心理学等多个技术分支,大大推进了计算机科学软硬件技术的全面发展。虚拟现实技术的发展,从根本上改变了人们的工作方式和生活方式,将劳逸真正结合了起来,而且虚拟现实技术与美术、音乐等文化艺术的结合,将诞生出人类的第九大艺术,前景一片光明。而且虚拟现实技术继理论分析、科学实验之后,成为人类探索客观世界规律的又一手段和方式。

虽然虚拟现实领域的技术潜力是巨大的,应用前景也是很广阔的,但仍存在着许多尚未解决的理论问题和尚未克服的技术障碍。客观而论,目前虚拟现实技术所取得的成就,绝大部分来说,还只是扩展了计算机的接口能力,刚刚开始涉及到人的感知系统、肌肉系统与计算机的集合作用问题。只有当真正开始涉及并找到针对这些问题的技术实现途径时,人和信息处理系统间的隔阂才有可能被彻底地克服。

六、小结

综上所述,无论是现在还是将来,虚拟现实技术在各行各业都将得到不同程度的发展,并且越来越显示出广阔的应用前景。虚拟城市、虚拟战场、虚拟校园、甚至“数字地球”都会不断涌现,带给我们一种全新的视觉、身心体验。虚拟现实技术将使众多传统行业和产业发生颠覆性的变革,给我们的生产和生活带来巨大的经济效益。

参考文献

[1] 刘锦德,敬万钧. 关于虚拟现实 ― 核心概念与工作定义. 计 算机应用,1997.5

[2] 刘惠芬. 什么是虚拟现实. 父母必读

[3] 周炎勋. 虚拟现实技术综述. 计算机仿真,1996.1

[4] 曾建超,俞志和. 虚拟现实的技术及其应用. 清华大学出版 社,1996

现实虚拟技术范文第8篇

关键词:虚拟现实 沉浸感 交互性

中图分类号:TP391.9 文献标识码:A 文章编号:1007-9416(2012)10-0123-01

虚拟现实(Virtual Reality,简称VR)也称灵境技术。虚拟现实是就是利用计算机生成一个关于视觉、听觉、触觉等感官的三维空间的虚拟世界,让参与者身临其境一般,产生沉浸感。

VR是一项综合集成技术,涉及计算机图形学、人机交互技术、传感技术、人工智能等领域,它利用计算机模拟产生逼真的三维空间,以人们习惯的能力和方法,对这个虚拟世界进行客观的观察、体验、控制甚至分析,让使用者通感应装置,自然地参与到虚拟环境中,进行逼真体验,与之交互。简单的说,虚拟现实并不是真实的环境,更不是现实世界,而是人们利用计算机把抽象、复杂的计算机数据表现为他们所熟悉的、直观的可以交互的高级人机接口。

1、虚拟现实技术的重要特征

VR 技术最初起源于20 世纪中期的美国,发展到现在仍然处于探索阶段。由于其发展所依托软硬件环境和研究方向及其应用领域的不同,人们对它的理解也不尽相同。

VR 技术始终以其三个重要特征而发展,即沉浸感(Illusion of Immersion)、交互性(Interactivity)和构想(Imagination)。沉浸感,是指利用计算机产生一个虚拟的三维环境,能通过看、听、嗅、触等感知到虚拟环境中的真实状况,入在其中,身临其境。交互性,是指参与者能够自主地与虚拟环境中的对象进行操作、感知和互动。就如同人们在现实中抓取物体的感觉,可以判断出物体的重量、形状甚至运动状态等。构想,是指参与者通过虚拟环境中的运动状态或程度,可以启发人们对事物的学习、认识甚至创新。构想注重思维发散与创新,拓展视野,真实环境再现,甚至可以构想客观上根本不可能存在的环境。

2、虚拟现实的研究内容和关键技术

虚拟现实是多种学科技术的综合,具体涉及计算机图形技术、人工智能、仿真学等领域,是通过计算机软硬件以及传感器,构建一个使参与者获得身临其境的逼真感。其研究内容主要有以下几个方面:

2.1 动态环境建模技术

虚拟环境的建立是VR技术的基础理论,更是核心内容,动态环境建模技术的目的在于获取实际环境的三维数据,并根据应用的需要,利用获取的三维数据建立与之相适应的虚拟环境模型。

2.2 实时三维图形生成和显示伎术

目前,三维图形的生成技术已经比较成熟,而虚拟现实的关键是“实时生成”。基于实时目的的关键性,计算机图形的刷新频率就显得尤为重要,其刷新频率起码高于30帧/秒。为此,在不影响图形质量和复杂程度的基础上,提高刷新频率将是未来我们主要的研究内容。除此之外,VR 还依赖于立体显示和传感器技术的发展,目前的计算机设备还不能有效满足VR技术的发展需要,因此开发更高技术的三维图形生成、显示技术是关键。

2.3 新型交互设备的研制

虚拟现实能够实现人们与虚拟环境中的对象进行随心所欲的交互,如入其境。所依赖的设备主要有头盔显示器、数据手套、数据衣服、三维位置传感器和三维声音产生器等。为此,新型交互设备的研制是未来研究虚拟现实技术的重要方向。

2.4 应用系统开发工具

VR应用的关键是如何发挥想象力和创造性。尤其,选择合适的应用对象,可以有效提高工作效率,优化产品质量,可谓事半功倍。因此,人们研究了VR系统开发平台、分布式VR技术等开发工具。

2.5 系统集成技术

由于VR系统中包含大量的感知信息和数据模型,为此,系统集成技术对虚拟现实的发展起着至关重要的作用。集成技术包括信息同步、模型标定、数据转换、数据管理模型、识别与合成等等技术。

3、VR技术的发展及其应用前景

虚拟现实概念起源于60年代,到80年代逐步兴起,90年代产品问世。目前,虚拟现实技术的应用涉及航天、军事、通信、医疗、教育、娱乐、图形、建筑和商业等各个领域。

VR技术在医学方面的应用具有极其重要的现实意义。该技术可用于虚拟实验室的解剖教学、复杂手术模拟与规划。另外,在远距离遥控就诊,医疗手术的统筹安排以及具体手术中的信息指导和结果预测,甚至新型药物研制等方面,VR技术都有十分重要的意义。

在航天航空方面,VR技术的作用也非常突出。例如,在航天飞行过程中,失重是最大的障碍和困难,由于物体在失重情况下运动轨迹或状态难以预测,因此解决驾驭失重状态下的物体的运动状态是一个重要课题。为了逼真地模拟太空中的情景,美国航天局NASA在“哈勃太空望远镜的修复和维护”计划中采用了VR仿真训练技术。

在军事领域中,VR技术应用可以模拟军事演习,可用来训练坦克、直升机和进行军事演习,利用无线电通信和声音来加强真实感,以及训练部队之间的协同作战能力等。

在三维游戏中,虚拟现实技术得到了广泛应用,同时,三维游戏的快速发展也为虚拟现实技术的提升起了巨大的支撑和牵引作用。由于BS模式的三维游戏所特有的实时性和交互性,需要在游戏中进一步提高、加强逼真性和沉浸感。 目前,在三维游戏中,尽管虚拟现实技术的应用还有很多技术难题,但是它在三维游戏领域的应用越来越广泛。

4、结语

虚拟现实是一种穿越时空,将难以实体展现在人们面前的事物或对象,通过计算机等高科技手段,让我们可以看、听、嗅、触,并与之互动的技术。其本质是人与计算机的通信技术,涉及领域广泛,是未来社会发展重要学科技术。

虚拟现实技术正逐步向实用方向发展,同时也向世界展示了其广阔的应用前景。随着计算机技术的进一步发展,凭借虚拟现实技术的神奇作用和广阔前景,未来,虚拟现实将会进入千家万户,成为人们生活不可或缺的重要组成部分。

参考文献

[1]曾芬芳.虚拟现实技术.上海交通大学出版社,1997.

[2]苏建明.张续红,胡庆夕.展望虚拟现实技术.计算机仿真,2004.

现实虚拟技术范文第9篇

随着计算机技术的飞速发展,虚拟现实技术已经从前沿的航天、军事领域开始进入教育领域,并涉及高等教育的各个学科。计算机变成实验台,软件变成仪器,网络变成实验室的虚拟现实技术能形象生动地表现各个学科的教学内容,有效地营造随技术发展的教学环境,提高教学质量。

二、虚拟现实技术概述

虚拟现实(VirtualReality,VR)技术利用三维图形生成技术、多传感交互技术以及显示技术,生成三维的虚拟环境,介入者利用键盘、鼠标等输入设备,或者带上头盔、数据手套等传感设备进入虚拟环境,在虚拟环境中进行实时交互,并且能够感知和操作虚拟环境中的各种对象,获得身临其境的感受和体验。

虚拟现实技术具有沉浸感、交互性和想象力三个基本特征。在具体的教学实验中,学生可以作为主角存在于虚拟环境中,对虚拟环境内的物体进行操作并从环境中得到自然的反馈,而且当学生沉浸在多维信息空间中时,能够主动地获取知识,寻求解答,形成新的概念。

虚拟现实技术以其诸多的优点决定了它在教育领域中的重要作用。一是避免真实实验或操作所带来的各种危险并降低真实实验的实验用品损耗;二是在虚拟实验中可以获得与真实实验一样的学习效果,还可根据实验教学发展需求“引入”新设备,不断对新设备进行扩展。三是彻底打破空间与时间的限制。总之,虚拟现实技术结合多媒体技术和计算机网络,能提高实验效果与效率,充分发挥教学优势。

三、虚拟实验室的实现

虚拟实验室是由虚拟现实技术生成的一类适于进行虚拟实验的实验系统,包括相应实验室环境、有关的实验仪器设备、实验对象以及实验信息资源等。在虚拟实验室中,学生能够在计算机建立的三维的模拟实验场景中从不同的视角观察一个实验对象,通过鼠标的选择或者拖曳操作便可完成与虚拟实验对象之间的交互。

(一)仿真实验

虚拟实验室实际上就是数字化的仿真技术在实验教学中的应用,一个真正的虚拟实验教学系统的前台是多媒体或是虚拟化的环境,后台是实时仿真的过程。

目前的仿真软件很多,如EASY-T、VT-LINK3.3、SPW、Cadance、Mentor、MatLab、Protel2004、LabView、OpenGL、MultiGen等。在构建虚拟实验时,应根据具体需求,选择合适的开发工具。如何将计算机仿真技术与虚拟化的仪器或多媒体环境有机的结合起来是虚拟实验室建立的关键和核心技术。

(二)支持技术

目前国内外对虚拟实验室的开发大致采用以下几种方法:

1.使用JAVA+VRML进行开发。Java目前已经成为跨平台应用软件开发的一种规范,主要讨论对象行为。VRML是一种虚拟现实建模语言,着重于虚拟场景中对象的特征。采用JAVA+VRML混合编程是实现较复杂动态场景控制等高级交互功能的有效方法。但基于VRML虚拟现实的虚拟实验在制作上较复杂,客户端需要有大量的专业的设备(如头盔、触觉手套等),附加成本较高,并且运行VRML对客户端计算机的性能要求也很高。

2.使用ActiveX控件进行开发。ActiveX技术是Microsoft为适应网络发展的需要而将OLE技术在Internet上的重定义。在虚拟实验室的开发过程中,代码复用性对于持续开发过程尤为重要。可以利用VB、VC++、Delphi、Builder等任何一种支持COM规范的开发工具来进行ActiveX控件的开发。由于ActiveX控件只能运行在基于MicrosoftWindows的操作系统,因而移植性和通用性较差。

3.使用QuickTimeVR进行开发。QuickTimeVR(简称QTVR)是新一代的、基于静态图像处理的实景建模的虚拟现实技术。QTVR可以应用照片、录像或数字图像等离散数据来创建虚拟环境,完成三维空间及三维物体的造型,并实现全方位观察。具有更高的真实感、更丰富的图像和更鲜明的细节特征。QTVR制作简单、周期较短、可控性也很强,对开发一些简单的网络实验教学软件的难度不大。

4.使用FLASH进行开发。FLASH是一种基于矢量的图形系统,具有短小精悍、任意缩放、兼容性良好、嵌入ActionScript脚本功能等特点。而且Flash中的工作组功能极为强大,包含一套新的工作流程,可自动更新Flash网站的数据驱动,从而大大节约了开发者的时间。因此,FlashActionScript是网上教学虚拟实验室开发的最佳平台。

(三)功能模块设计

无论建设哪个学科的虚拟实验系统,从功能模块上均可划分为三个部分。

1.网络服务。用户可通过网络注册个人信息并经过验证后登录虚拟实验系统。登录该系统后学生可自主选择将要进行的实验,并根据实际需要获得相关的指导。

2.仿真实验。采用计算机仿真技术来构建实验模型,设计出用于测试的虚拟仪器设备、实验线路或回路、实验元器件或构件库、判别实验效果的评价标准等。用户选择相关的仿真实验以后,根据提示进行相关的操作,观察实验现象并记录实验结果。

3.数据库。为虚拟实验系统提供相关的数据服务。维护虚拟实验系统的数据信息及用户的相关权限,为仿真实验提供支持。

现实虚拟技术范文第10篇

5月24日,中视典数字科技有限公司了其新一代虚拟现实平台软件VRP12.0,并提出了建立虚拟现实生态圈的计划。“合理的生态圈应当由技术研发、产品开发、应用集成等多个环节组成。中视典希望与更多业内厂商合作,共同将虚拟现实产业做大。”中视典CEO方浩表示。

应用日渐广泛

随着科技的不断发展,虚拟现实产业已经几乎在各个产业链都有应用,除航天与军事之外还包括公共安全、重工机械、矿业勘探、展馆旅游、市场活动以及市政设计规划等领域。

记者了解到,借助以往的VRP系列软件平台,中视典虚拟现实技术在教育业已经得到较成熟的应用,在军事、公共安全、重工机械、矿业勘探、医疗、数字娱乐、展馆旅游以及市政设计规划等领域已有成熟解决方案。例如,北京理工大学、北京师范大学都和中视典结成了合作关系,并在逐渐推进虚拟数字校园的建设。另外,很多电影的拍摄过程中也用到了虚拟现实技术。

不过,相对来说,虚拟显示技术还处于起步阶段,其产业链并不完善。记者了解到,目前中视典所做的很多项目,很大程度上都是和相关行业的用户经过反复交流,了解行业需求后再合作开发的。如果虚拟现实要渗透到更多行业应用中,就需要与更多更了解行业用户需求的系统集成商、独立软件开发商合作。圆桌论坛上,中视典首席战略官费广正表示,中视典已经做了相关规划,将在未来几年与更多的集成商合作,将虚拟现实技术应用到更多行业。

新版本更注重交互

中视典此次推出的VRP 12.0版本虚拟现实平台中,更加简单易用的开发界面和更直观的交互方式是最大的亮点。