首页 > 文章中心 > 温度控制系统

温度控制系统范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

PLC制作温度控制系统

【摘要】在现代自动化的过程控制中,各种系统都会对温度的控制有要求。随着现代化水平的逐步提高,实现温度的自动控制已成必需。本文主要介绍了利用可编程控制(PLC)进行温度控制与检测的过程。详细介绍了利用PLC的基本单元而不是特殊功能模块构成的控温系统。PLC控温设计主要是通过LM35温度传感器,LM331电压/频率转换器,将温度信号转换成频率信号,送入PLC进行比较输出,从而实现对温度的自动控制。

【关键词】PLC;控温系统

一、PLC系统总体设计方案

PLC控温系统主要包括硬件系统和软件系统两大部分。硬件部分由测温电路、电压/频率转换电路、PLC控制电路、加热控制电路和显示电路等构成,如图1所示。

软件部分应用三菱FX系列PLC可编程控制,型号为FX2n-32MR。

PLC控温系统工作原理:在测温电路中LM35温度传感器测量加热装置的温度,把测得的实际温度转换成电压信号送到电压/频率转换电路,在电压/频率转换器(LM331)的输出端输出脉冲,PLC对脉冲计数。由PLC程序将脉冲个数转换为实际温度,与由拨码开关设定的温度进行比较,若设定温度大于实际温度,则继电器吸合,加热装置开始加热。等加热到设定温度时,继电器自动断开停止加热。PLC将此时的实际温度值送到译码器(CD4511),译码器将输入的BCD码转换成七段码,在LED数码管上显示出来。

二、PLC控制器

PLC是一种通用的智能化工业控制设备,其档次和功能面向各种各样的应用,众多的生产厂家提供各种系列且功能各异的产品。目前常见的国内外的PLC产品的型号有几百种。

全文阅读

制曲温度自动控制系统

【摘 要】 随着自动控制技术的进步和人工成本的不断上升,采用自动控制技术一方面减少了人为因素对生产过程影响的不确定性。另一方面,自动控制技术可以部分取代或减少工人劳动强度,降低人工成本提高生产效率。本文将介绍一种通过对目前国内普遍采用的通风制曲设备简单改造,实现制曲过程自动化的方法。为传统酿造行业寻找一条提高产品质量、提升生产效率、降低人力成本的新方法。

【关键词】 通风制曲;温度控制;自动控制;程序设计

1 前言

制曲是酿造过程中重要工序之一。曲子的优劣将直接影响到成品的风味口感、理化指标以及原料的利用率。制曲过程中按生长阶段可分为孢子发芽期、菌丝生长期、菌丝繁殖期、及孢子着生和孢子成熟期。每一生长阶段所需要的温度是不同的,每一个生长阶段都有其最适宜的温度范围。控制好制曲过程中曲池每一阶段的温度,对酶系的生长状况以及杂菌的控制将起到至关重要的作用。

图1 制曲过程温度设定图

2 曲池及通风制曲介绍

考虑到成本等诸多因素,目前国内普遍采用通风制曲的方法。曲池一般长9米、宽2.1米、壁厚0.15米。可分为上下两部分,上部分是曲料箱盛放曲料。下部分是风道,风道与曲料箱之间铺设带通风孔的铁板。曲料均匀的平铺在曲池中,料层厚度一般在25~30cm之间。

图2 通风制曲示意图

全文阅读

热轧机温度控制系统

摘要:热轧机温度控制系统采用计算机系统控制,并且,通过现场总线和工业以太网通讯模式进行数据传输和控制。控制带材的温度直接影响产品的质量和成品率。

关键词:计算机系统;现场总线;工业以太网

中图分类号:S624.4+4 文献标识码:A

热轧机温度控制系统由可逆轧机温度控制系统和连轧机温度控制系统组成。它们之间采用高速工业以太网通讯方式进行数据传输,高温测量传感器的信号通过现场总线传送到温度控制单元,计算机通过数学模型的信息处理,输出控制信号,控制轧机电机传动系统的速度和喷射系统流量,实现带材的温度控制在允许的范围内。

下图为热轧机计算机控制系统:

热轧机轧制过程中,可逆轧机和连轧机的带材温度变化,直接影响带材的质量和板形,所以,为了保证连轧机能轧制出优质的产品,精确控制可逆轧机出口转移坯料的温度是非常必要的。但是,需要考虑与温度控制相关的主要问题:带材宽度、不同的合金和用途。它们对温度控制的要求是不同的。特别是不同的合金,轧制过程中,带材的温度变化是不同的。考虑到上述问题,首先在可逆轧机出口安装了带材温度控制系统,其包括:控制计算机系统、喷射系统、温度检测系统。

可逆轧机温度控制过程:

可逆轧机出口安装了冷却带材的喷射装置,喷射设备分区控制,每个区域的喷嘴控制阀可以独立控制。另外,一个高温检测传感器T1安装在喷射区的入口侧,另外一个高温检测传感器T2安装在喷射区的出口侧。带材温度控制过程中,预先设定冷却液的流量、温度和喷射区域,当带材通过喷射区时,又控制计算机控制带材的移动速度、冷却液的流量和喷射时间,带材通过喷射区的速度是根据喷射区入口高温传感器T1的测量温度偏差进行修正的,带材通过喷射区时,将导致带材温度下降,并且,温度下降的多少是由带材通过喷射区域的速度和时间长短决定的.速度控制由过程控制器完成,因此,带材的温度能精确控制。

全文阅读

温湿度独立控制系统

摘要通过温湿度独立控制系统与传统热湿联合处理空调方式的比较,得出传统热湿联合处理空调方式的弊端。合理采用温湿度独立控制系统,既满足高品质的空气要求,有带来节能效果。

关键词温湿度独立控制系统显热潜热

中图分类号: P426 文献标识码: A 文章编号:

0引言

空调系统中,温度和湿度分别独立的控制系统,具有较好的控制和节能效果,表现在温、湿度的分控,它可以消除参数的耦合,各控制参数容易得到保证。

1传统的热湿联合处理空调方式的弊端

空调方式的排热、排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热、排湿的目的。传统的热湿联合处理的空调方式存在如下弊端:

能源浪费。由于采用冷凝除湿的方法排除室内余湿,冷源的温度需要低于室内空气的露点温度。考虑到传热温差与介质输送温差,实现16.6℃的露点温度需要7℃的冷源温度,这是现有空调系统采用5~7℃的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5℃的原因。在空调系统中,占总负荷一半以上的是显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7℃的低温冷源进行处理,造成了能源利用品味上的浪费。而且,进过冷凝除湿后的空气虽然湿度满足要求,但温度过低,有时还需要再热,造成能源的进一步浪费与损失。

全文阅读

温度控制系统设计

1OPC技术

应用程序与OPC服务器之间必须有OPC接口,OPC规范提供了两套标准接口:Custom标准接口和OLE自动化标准接口,通常在系统设计中采用OLE自动化标准接口。OLE自动化标准接口定义了以下3层接口,依次呈包含关系。OPCServer(服务器):OPC启动服务器,获得其他对象和服务的起始类,并用于返回OPCGroup类对象。OPCGroup(组):存储由若干OPCItem组成的Group信息,并返回OPCItem类对象。OPCItem(数据项):存储具体Item的定义、数据值、状态值等信息。3层接口的层次关系如图2所示。

2菇棚温度控制系统的设计

2.1菇棚的温度控制原理宁夏南部山区杏鲍菇生产基地采用大棚式培养方式,作为对杏鲍菇生长起最重要影响的因素,温度显得尤为重要[8]。菇棚温度采用自动记录仪对温度进行检测,利用空调对菇棚温度进行调节。由于温度控制系统具有大时变、非线性、滞后性等特点,采用模糊控制非常合适[9-10]。本文对菇棚的温度进行了控制设计,最终采用模糊PID控制方案,达到对温度的实时控制,从而将出菇阶段的温度控制在14~17℃的范围之内。菇棚温度控制系统的原理如图3所示。图3中,虚线框内的部分在工业控制环境中大多由PLC等控制设备完成,而这些设备很难实现模糊PID的控制功能。因此,将虚线框部分在Simulink中实现,把在Simulink中创建的模糊PID控制器直接应用到现场设备中。菇棚实时温度控制系统原理图如图4所示。图4中,该系统以PCACCESS软件作为OPC服务器,用MATLAB/OPC工具箱中的OPCWrite模块和OPCRead模块与Simulink进行数据交换。传感变送装置检测温度后将电信号传送给S7-200PLC的模拟量输入模块EM231,经过A/D转换后得出温度值;PCACCESS软件从PLC中读取温度值,通过OPCRead模块传送给Simulink;在Simulink中与设定的温度值进行比较后,进行模糊PID计算,将结果通过OPCWrite模块传送给PCACCESS软件,经PCACCESS软件写入到PLC中,计算分析得出数字量,输出到模拟量输出模块EM232,经D/A转换为电信号送给温控装置(空调),实现对菇棚温度的模糊PID控制。2.2模糊PID控制系统2.2.1模糊PID控制器的设计菇棚的温度控制系统是一个复杂的非线性系统,很难建立精确的数学模型,而常规的PID控制则需建立被控对象的精确数学模型,对被控过程的适应性差,算法得不到满意的控制效果。单纯使用模糊控制时,控制精度不高、自适应能力有限,可能存在稳态误差,引起振荡[11-12]。因此,本文针对PID控制和模糊控制的各自特点,将两者结合起来,设计了模糊PID控制器,可以利用模糊控制规则对PID参数进行在线修改,从而实现对菇棚温度的实时控制,将出菇阶段的温度控制在14~17℃的范围之内。基于上述分析,将菇棚温度作为研究对象,E、EC作为模糊控制器的输入,其中E为设定温度值与实际温度值的差值。PID控制器的3个参数KP、KI、KD作为输出。设输入变量E、EC和输出变量的KP、KI、KD语言值的模糊子集均为{NB,NM,NS,ZO,PS,PM,PB}={负大,负中,负小,零,正小,正中,正大},误差E和误差变化率EC的论域为{-30,-20,-10,0,10,20,30},KP的论域为{-0.3,-0.2,-0.1,0,0.1,0.2,0.3},KI的论域为{-0.06,-0.04,-0.02,0,0.02,0.04,0.06},KD的论域为{-3,-2,-1,0,1,2,3}。为了论域的覆盖率和调整方便,均采用三角形隶属函数。根据对系统运行的分析和工程设计人员的技术知识和实际操作经验,得出KP、KI、KD的模糊控制规则表,如表1所示。利用Simulink工具箱,建立系统的模糊PID控制器的模型,如图5所示。2.2.2系统的仿真菇棚温度的传递函数采用G(s)=e-τsαs+k。其中,α为惯性环节时间常数,α=10.3s/℃;k=0.023;τ=10s,为纯滞后时间。设定菇棚温度值为15℃,常规PID控制器的仿真结果如图6所示,模糊PID控制器的仿真结果如图7所示。结果表明,菇棚温度控制系统采用模糊PID控制器具有超调小、抗干扰能力强等特点,能较好地满足系统的要求。

3Simulink与S7-200PLC数据交换的实现

PCACCESS软件是专用于S7-200PLC的OPC服务器软件,它向作为客户机的MATLAB/OPC客户端提供数据信息。在菇棚温度控制系统中,模糊PID控制器的输出值和反馈值就是Simulink与S7-200PLC进行交换的数据。实现数据交换的具体步骤如下:1)打开软件PCACCESSV1.0SP4,在“MicroWin(USB)”下,单击右键设置“PC/PG”接口,本文选用“PC/PPI(cable)”。然后,右键单击“MicroWin(USB)”进入“新PLC”,添加监控S7-200PLC,本文默认名称为“NewPLC”。右键单击所添加的新PLC的名称,进入“NewItem”添加变量,本文为输出值“wendu1”和反馈值“wendu2”,设置完成,如图8所示。PCACCESS软件自带OPC客户测试端,客户可以将创建的条目拖入测设中心进行测试,观察通信质量,如图9所示。测试后的通信质量为“好”。2)打开MATLAB,在工作空间输入命令“opctool”后,将弹出OPCTool工具箱的窗口,在该窗口的MAT-LABOPCClients对话框下单击右键,进入“AddClient”添加客户端,用户名默认“localhost”,ServerID选择“S7200.OPCServer”;与PCACCESS软件连接成功后,在“S7200.OPCServer”中添加组和项,把在PCACCESS软件中创建的两个变量“wendu1”和“wendu2”添加到项中,操作完成后结果如图10所示。3)新建Simulink文件,导入模糊PID控制器模型,调用OPCWrite模块、OPCRead模块和OPCConfigura-tion模块,设置OPCWrite模块和OPCRead模块的属性,把OPC工作组中的变量“wendu1”添加到OPCWrite模块中,把变量“wendu2”添加到OPCRead模块中,设置完成后两个模块与控制器相连,如图11所示。这样,基于Simulink和S7-200PLC的模糊PID实时温度控制系统的设计就完成了。

4结论

针对工业现场中PLC难以实现复杂控制算法这一问题,采用OPC技术将Simulink与PLC连接实现数据交换,解决了Simulink仅用于数字仿真的缺点,完成了对宁夏南部山区杏鲍菇菇棚温度控制系统的设计。仿真结果表明,采用模糊PID控制器较常规PID控制器具有更好的动态适应性和良好的抗干扰能力,对温度的控制效果更好,设计方案可行。虽然PLC在工业控制中应用广泛、可靠性强,但是由于自身编程语言的限制,难以实现诸如模糊控制、神经网络控制、遗传算法等复杂的智能算法,而MATLAB拥有强大的运算功能和丰富的工具箱,能仿真实现各类算法。因此,采用OPC技术将二者结合,能将复杂的算法直接应用到现场PLC中,具有良好的实用性。

全文阅读

温度控制系统管理

摘要:介绍了PID的三个参数在实际控制系统中的作用、设定与调整应用。提出并验证了系统PID现场实验整定法在基于单片机基于键盘设定的温度控制系统中实现PID控制的可行性。

关键词:温度控制;PID;现场实验整定法

PID调节是连续系统中技术最成熟,应用最广泛的一种调节方式。PID调节的实质就是根据输入的偏差值按比例、积分、微分的函数关系进行运算。运算结果用于控制输出。

在实际应用中,根据被控对象的特性和控制要求,可灵活的改变PID结构,取其中的一部分环节构成控制规律,如比例调节、比例积分调节、比例积分微分调节等,特别在计算机控制系统中,更可以灵活运用,以充分发挥微型机的作用。PID调试最困难的部分是参数的设定与调整,即指系统PID参数整定方法。

本文介绍了PID的三个参数在实际控制中的作用如何设定与调整,及在实际中如何应用。提出了并实际验证了系统PID现场实验整定法在基于单片机基于键盘设定的温度控制系统中实现PID控制的可行性。

1系统设计原理及功能

本系统采用典型的反馈式温度控制系统,数字控制器的功能由AT89C51单片机实现。温度控制系统由DS18B20单总线传感器构成输入通道,用于采集炉内的温度信号。其中,热敏电阻选用器mf12-26型号,它将温度信号转变为阻值变化信号再经电桥变为0~5v标准电压信号,以供A/D转换用。转换后的数字量与与炉温的给定值数字化后进行比较,即可得到实际炉温和给定炉温的偏差。炉温的设定值由键盘输入。由单片机构成的数字控制器按最小拍进行计算,计算出所需要的控制量。数字控制器的输出经标度变换后送给由p3.0通过t0调制的pwm波送至ssr,从而改变电烤箱单位时间内电压导通的百分比,从而控制电烤箱加热功率,起到调温的作用。温度控制系统的硬件设计图分别如图1。

1.控制模块:采用ATMEL公司的AT89C51作为控制器的方案;2.温度采集模块:采用数字式温度传感器DS18B20;3.开关电路:采用固态继电器继电器;4.键盘和显示模块:采用独立式键盘;5.电源模块:采用过滤,滤波,稳压等电路实现。

全文阅读

单片机温度控制系统

摘要:单片机具有体积小、功能强、成本低、应用面广等优点,可以说,智能控制与自动控制的核心就是单片机。目前,一个学习与应用单片机的高潮在全社会大规模地兴起。学习单片机的最有效方法就是理论与实践并重,本文用80c51单片机自制了一个温度控制系统,重点介绍了该系统的硬件结构及编程方法。

关键词:单片机、温度传感器、模/数转换器

一、单片机温度控制系统的组成及工作原理

在工业生产和日常生活中,对温度控制系统的要求,主要是保证温度在一定温度范围内变化,稳定性好,不振荡,对系统的快速性要求不高。以下简单分析了单片机温度控制系统设计过程及实现方法。现场温度经温度传感器采样后变换为模拟电压信号,经低通滤波滤掉干扰信号后送放大器,信号放大后送模/数转换器转换为数字信号送单片机,单片机根据输入的温度控制范围通过继电器控制加热设备完成温度的控制。本系统的测温范围为0℃~99℃,启动单片机温度控制系统后首先按下第一个按键开始最低温度的设置,这时数码管显示温度数值,每隔一秒温度数值增加一度,当满足用户温度设置最低值时再按一下第一个按键完成最低温度的设置,依次类推通过第二个按键完成最高温度的设置。然后温度检测系统根据用户设定的温度范围完成一定范围的温度控制。

二、温度检测的设计

系统测温采用ad590温度传感器,ad590是美国模拟器件公司生产的单片集成两端感温电流源。它的主要特性如下:

1、流过器件的电流(ma)等于器件所处环境的热力学温度(开尔文)度数;即: ,式中:ir—流过器件(ad590)的电流,单位为ma;t—热力学温度,单位为k。

2、ad590的测温范围为-55℃~+150℃;

全文阅读

温度集散控制系统设计

摘 要:详细介绍VP系统的软硬件体系结构,讨论IO模块的选取、流程图、功能图和调整PID各参数来实现仿真。以CENTUM VP为核心,采用温度变送器、可控硅控制器、流量变送器、数据采集卡(PCL-818L)、模拟信号端子板(PCLD-9138)以及电压-电流转换器等设计一个温度检测和控制系统,实现对温度实时监控。

关键词:CENTUM VP 温度控制 系统设计 PID参数

中图分类号:TH122

文献标识码:A

文章编号:1007-3973(2012)006-001-02

1 引言

集散控制系统作为自动化技术、计算机技术、通讯技术等发展的产物,已成为显示生成过程自动化的重要控制装置,在国内外的工业过程控制中得到普遍的发展,在提高生产操作、控制、管理水平方面起到极其重要的作用,是目前控制领域发展的一个重要方向。

2 温度控制的原理

全文阅读

基于PLC的温度控制系统

摘要:随着“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。

本设计应用性比较强,设计系统可以作为生物培养液温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统等等。课题主要任务是完成环境温度检测,利用单片机实现温度调节并通过计算机实施温度监控。设计后的系统具有操作方便,控制灵活等优点。

关键词:温度控制;传感器;可编程逻辑控制器

中图分类号:TP273 文献标识码:A 文章编号:1674-7712 (2012) 14-0050-02

一、系统硬件设计

计算机工作的电路设备

(一)温度传感器

温度传感器采用补偿型NTC热敏电阻其主要性能如下:补偿型NTC热敏电阻 B值误差范围小,对于阻值误差范围在5%的产品,其一致性、互换性良好。适合于一般精度的温度测量和计量设备。

全文阅读

DS18B20温度控制系统设计

【摘 要】本设计通过以STC89C52单片机为核心,控制温度传感器DS18B20采集温度信号并直接以数字信号的方式传送给单片机,所测量结果由LCD1602显示出来,单片机将检测的温度与预先设定的温度值进行比较,该设定温度可以通过按键以1℃为单位进行调节。当所测温度超过设定的温度值时,单片机将控制一个发光二极管和一个蜂鸣器进行声光报警,同时控制一个继电器的通断,达到简单调温的目的。

【关键词】单片机;DS18B20;LCD1602;声光报警

一、功能简介

本设计主要是以数字温度传感器DS18B20采集温度信号,将采集到的温度信号送给STC89C52单片机。单片机将检测的温度与预先设定的温度值进行比较,该设定温度可以通过两个按键以1℃为单位进行调节。当超过设定的温度值时,单片机将控制一个发光二极管和一个蜂鸣器进行声光报警,同时控制一个继电器的通断,达到简单调温的目的。按模块可分为:(1)报警控制模块(2)温度采集模块(3)显示模块。

温度检测及显示要求实现以下功能:

(1)用LCD直接显示读数、显示清晰直观。

(2)温度测量范围:0-100℃。

(3)可通过按键实现调节报警温度大小,单位1℃。

全文阅读