首页 > 文章中心 > 微生物研究

微生物研究范文精选

微生物研究范文第1篇

关键词:微生物肥料;粮食的可持续发展;农业发展

DOI:10.16640/ki.37-1222/t.2017.11.236

微生物肥料的施放能促M土壤中的有益微生物的生长增殖,从而有益微生物将土壤中氮、磷、钾等更多的分解,促进植物的生长发育。微生物肥料的发现其实有100多年的历史,1890年科学家维诺格拉得斯基分离硝化细菌的纯培养,以及1896年商品根瘤菌菌剂开始获得销售专利 [1]。我国微生物肥料最早研究开始于20世纪40年代,当时主要研究应用的是根瘤菌试剂。50年代早期我国研究了根瘤菌在内的固氮菌、硅酸盐细菌等细菌肥料。60年代推出了“5406”放线菌抗生菌肥料。70-80年代中期则研究土壤真菌制成的泡囊―丛枝菌根(AM菌根) [2]。从以上看得出来微生物肥料的研制有着间隔的研究,这是由于微生物肥料的安全性、统一性、质量性以及销售性都得不到保障。

到了90年代特别是21世纪以来,由于化肥的使用过于频繁,使得土壤结构造成破坏,影响了农作物的可持续发展,以及化肥的流失造成的水质污染以及大气污染,从而引起了世界的关注。科学家们急需找到其他肥料来替代化肥,从而把目光转向了微生物肥料。这样,引起了研究微生物肥料的热潮。中国科学家们也开始着手研究微生物肥料,科学家们根据先辈科学家们的研究,先后研究出了固氮菌肥、硅酸盐菌剂、光合细菌菌剂以及PGPR制剂等试剂[3],这些试剂减少了化肥的使用,减少了环境的污染以及有效的解决了食品安全的问题,所以在农业的发展当中,微生物肥料越发的重要,值得我们去研究发现新的产品。

1 微生物肥料的作用

1.1 对病原菌的抑制以及环境的影响

微生物肥料不但能有着增殖微生物的作用,还能有效的抑制病原微生物增殖,原因在于微生物的增长会形成一个优势种群,对于病原微生物的增长有着限制作用,这称之为微生物之间的拮抗作用。微生物肥料种类繁多,有着解磷、解钾、以及固氮的作用。它能将土壤中的肥料利用率提高10%~30%,城市淤泥、粉煤灰、家禽粪便等有机肥料均可有效利用,这样一方面减少环境的污染,还可缓解一定的能源危机,据统计[4],微生物肥料每年能消耗禽畜5万吨、处理厂污泥1.6万吨、以及粉煤灰1万吨。

1.2 对土壤有着改良作用

土壤团粒结构是土壤肥力的重要指标,土壤团粒的破坏会使土壤的保水以及通透力下降。过量的氮、磷、钾等正是使土壤板结的主因,而微生物肥料正是解决土壤板结的有效办法。微生物肥料能使土壤中的微生物增加,而微生物分泌物能将难溶的磷酸盐、磷以及钾等微量元素释放出来,有效的解决了土壤板结的问题[5]。

2 微生物肥料的种类

目前我国的微生物肥料主要分为三类,分别是生物有机肥、微生物菌剂、复合微生物肥料。生物有机肥通常是指特定功能的微生物与有机固体废物(包括畜禽粪便、秸秆、有机垃圾等)经无害化处理、除臭、腐熟后复合而成的兼具微生物肥料以及有机物效应的化肥。微生物本身不含有营养物质,它是增加微生物的数量以及活性作用于土壤,分解出农作物所需要的营养物质,通常的农业微生物菌剂包括根瘤菌剂、固氮菌剂、解磷菌剂、解钾菌剂等肥料。复合微生物肥料是指特定的微生物与营养物质复合而成,具有有益微生物和农作物所需的营养物质,具有速效性、缓效性。PGPR类制剂就是当今主要的生产的微生物肥料常用的这是未来市场主要发展的潜力微生物肥料[6]。

2.1 根瘤菌肥料

根瘤菌肥料是推广最早的,效果显著的一种高效的菌肥。它提高土壤中的氮素含量,确保豆科植物生长良好,增加豆科植物的产量。目前生产的主要根瘤菌剂主要有花生根菌剂,大豆根菌剂等。有于它里面含有大量的根瘤菌,人们称它为活肥料[7]。目前由于工业化生产根瘤菌肥料较为复杂,投资高,工业生产的根瘤菌肥料并没有普及,所以制作这种肥料通常采用简单易行的干馏法和鲜瘤法。

2.2 解磷菌肥料

解磷菌肥料是增加土壤中的解磷微生物,将土壤中的不能被作物利用的有机磷和无机磷分解成能被作物利用的磷素,促进粮食增产的菌肥。按照其对磷种类的转化分为两类[8],一类为微生物产生的酸将不溶性的磷矿物溶解成为可溶性的磷酸盐,称之为无机磷细菌,如氧化硫硫杆菌。还有一类是将土壤中的难溶性的磷素以及有机磷酸盐矿化,形成植物能够吸收的磷元素,如巨大芽孢杆菌。施用磷细菌肥料能增加作物的产量,提高土壤中的有效磷含量像解钾菌肥料也是和解磷菌肥料一样的原理。

2.3 PGPR类制剂

PGPR类制剂是一种复合微生物肥料。所谓的PGPR(plant growth-promoting rhizobacteria):是一群定居于植物根际的细菌,当接种于植物种子、根系、块根、根茎或土壤时,能够促进植物的生长繁殖。PGPR类制剂对植物有着直接促生机理的效果,它能够为植物提供营养物质,比如生物固氮作物、提高根系养分的利用性、增强其他有益的共生作用以及复合促进作用,很多种的PGPR能够促进植物根的生长、增长根的长度以及根毛数、根质量以及表面积等[9]。光合细菌肥料是能将光能转化成为微生物代谢活动能量的原核微生物,为植物根系分泌出氨基酸和核酸,提高植物的抗病作用,还有抗生菌肥料,就是平常我们所说的“5406”抗生菌,菌种通常是放线菌,对农作物无毒无害,也有着抗病的作用。

3 微生物肥料所存在的问题

3.1 基础研究落后于生产实践

微生物应用生产已经有了十几年的时间了,但是还有着一些技术问题没有得到解决,有许多不明白的地方。还有对微生物肥料的研究也是过于单一。比如像许多研究仅仅停留在菌株分离、大田试验以及增长原因分析方面,对于像影响肥料肥效的制约因子、微生物的自身突变性以及微生物本身的生物学特性、作用机制等都缺乏相应的深入研究[10]。而且现在的微生物肥料的研究存在严重偏向性。例如对根瘤菌的固氮作用研究较多,某些方面都已经达到了分子水平,但是对于解磷、解钾等细菌缺乏深入的研究,造成的是微生物肥料的种类单一,无法解决多种问题。

3.2 产品性能差

微生物肥料有着巨大的市场潜能,很多企业看到其利润和以及商业价值就赶紧投入这种行业。殊不知微生物肥料的生产技术要求的是非常专业的技术和设备。一些企业设备落后,工艺不完善,导致产品中杂菌较多或者菌株完全检测不到[11],甚至产生出有害的菌株,为农业粮食带来巨大的损失。自己企业亏损还不算,还让农民们对这一产品失去信心,这对未来发展微生物肥料带来巨大的阻碍。

3.3 微生物肥料的宣传力度不够

很多农民对于微生物的了解不够,有的密封不严导致杂菌进入;有的没有放在阴凉处保存,在阳光下暴晒,有的甚至和杀菌农药一起使用,使得肥料中的微生物减少甚至杀光。这些都是各个部门对于它的宣传力度不够或者没有达到详细且正确引导,再加上以上所说的企业的问题,导致自身的粮食有损失,使得农民不再轻易相信微生物肥料,影响其声誉。以上问题都影响着微生物肥料的开发与推广。

4 微生物肥料的发展对策

虽然微生物有着这样那样的问题来制约它的发展,但是作为未来的巨大潜力股,我们要做的不是逃避它,而是迎难而上,解决问题,为今后的农业发展带来新的繁荣。对于微生物的发展前景我带来三点建议。首先加强理论以及应用基础研究的应用,应该创新性的解决微生物肥料所面临的问题,对于它的研究我们应该展开多方面进行研究[12],而不是仅仅研究个别菌株;其次企业要完善生产菌株的设备,做到严谨且一丝不苟,政府部门应加大这方面的监督,完善生产工艺。对于企业生产出无效或是有害于农田的微生物肥料进行严惩;最后,做好微生物肥料的普及以及技术推广工作,对于农户要有一定的培训,让其施肥掌握要领,做好保存好微生物肥料的工作。

5 微生物肥料未来的发展前景

中国是一个农业大国,在微生物肥料如此具有潜力的发展前景下,我们没有理由不好好创新发展好微生物肥料。随着世界人口的增加,微生物的发展研究愈发的重要。何况环境的问题也在日益的严重,化肥的过量使用不但使得水质污染、环境污染等,它还会有严重的土地污染,使得土壤板结,使得我们耕种的土地越来越少,这就影响粮食的可持续发展[13]。所以发展微生物肥料,促进现代化农业的进程,其市场在未来将无比的广阔,让我们今后多研究出新的微生物肥料产品,为中国的农业发展做出贡献。

参考文献:

[1]赵秉强,张福锁,廖宗文等.我国新型肥料发展战略研究[J]. 植物营养与肥料学报,2004,10(05):536-545.

[2]王粉莲,苏利民,王萍等.生物肥料在国内外的研究进展[J].内蒙古农业科技,2010(06):74-75.

[3]占新华,蒋延惠,徐阳春等.微生物制剂促进植物生长机理的研究进展.植物营养与肥料学报,1999,05(02):97-105.

[4]夏铁骑.微生物肥料的研究与评价.濮阳职业技术学院学报, 2007,20(3):20-23.

[5]朱英,朱国胜,刘作易等.微生物肥料的研究进展.贵州农业科学, 2005,33(增刊):89-91.

[6]冯欣,刁治民,曹玲珍等.PGPR作为微生物肥料的研究进展[J]. 安徽农学通报,2005,11(06):85-87.

[7]Marra LM,Sousa C R F,Oliveira S M, et al.Biological nitrogenfixation and phosphate solu-bilization by bacteria isolated fromtropical soils[J].Plant Soil,2012(357):289-307.

[8]R春浩.解磷微生物及其应用研究综述[J].安徽农学通报, 2007,13(04):34-36.

[9]黄鑫.微生物肥料应用现状分析[J].华章,2011(12):310.

[10]蒋宝贵,赵斌.解磷解钾自生固氮菌的分离筛选及鉴定[J].华中农业大学学报,2005,24(01):43-48.

[11]唐欣的,张明,于连海等.微生物肥料及其应用推广分析[J]. 现代农业科技,2010(17):288-291.

微生物研究范文第2篇

摘要:深海微生物是地球生物系统的重要组成部分,深海微生物由于其在生态、资源、环境等方面的重要性,越来越受到人们的重视。本文对深海微生物研究开发的历史和进展进行概述。

关键词:深海微生物;研究;开发

Researchanddevelopmentofdeepseamicrobes

ABSTRACTDeepseamicrobesaretheimportantcomponentsofearthbiologicalsystem.Deepseamicrobeshavereceivedmoreandmoreintensiveattentionastheirimportanceintheresearchandapplicationinecology,resources,environments,andsoon.Inthisstudy,thehistoryandmainachievementsindeepseamicrobialresearchanddevelopmentswerebrieflyintroduced.

KEYWORDSDeepseamicrobes;Research;Development

深海的概念通常指1000米以下的海洋,占到海洋总面积的3/4,而其中深海沉积物覆盖了地球表层的50%以上。深海及深海沉积物中的微生物生存面临高压,低温或高温、黑暗及低营养水平等几个主要极端环境,长期以来一直被认为是一片“荒芜的沙漠”。20世纪中期,深海测量技术发现深海洋底也有高山峻岭,全世界有8万公里长的山脊蜿蜒在各个大洋,大洋中山脊的发现使人们认识到海洋环境与陆地环境的统一性。1977年美国“阿尔文”号深潜器最早在太平洋上的加拉帕戈斯群岛附近2500米的深海热液区发现了完全不依赖于光合作用而独立生存的独立生命体系。位于生命体系金字塔底部的是微生物,能直接利用深海火山口喷出的硫化物、氮化物、甲烷等低分子化合物作为食物和能源,合成各种生物大分子如蛋白质、糖等。位于金字塔上部的是一些大型生物包括长管虫、蠕虫、蛤类、贻贝类,还有蟹类、水母、藤壶等特殊的生物群落。有人将这样五彩缤纷、生机勃勃的海底生物世界称为海底“生命绿洲”。目前已经有几十个深海热液区生物体系被研究,这种依靠地球内源能量支持,在深海黑暗和高温的环境下,通过化合作用生产有机质的“黑暗食物链”的发现使人类对深海环境以及生物圈有了更进一步的了解。在目前已发现的各种极端环境中深海蕴藏着的生物资源极为丰富,其中最主要的是深海微生物,但这些微生物大部分还鲜为人知。深海环境下极端微生物的研究不仅是目前生命科学最前沿的领域之一,也是海底深部生物圈研究和海底流体活动研究重要的组成部分。该项研究将回答生命起源、生物进化、外太空生命探索等生命科学的重大问题并带动包括21世纪地球科学内的其它学科领域的重大发展。2001年美国国家科学基金(NSF)在其题为“OceanScienceattheNewMillenium”的科学发展展望报告中,将海底流体活动研究列为海洋科学今后十年最重要、最有可能取得重大突破和科学发现的前沿研究方向之一,生命科学与海底地球物理、地球化学等在上述研究中将占据重要地位。于2003年10月份开始的整合大洋钻探计划(IODP)将深部生物圈和洋底、海底列为该计划中三大科学课题之一。深海深部生物圈的发现是对“生物圈”广泛范围的进一步了解。虽然海底采集沉积柱状样已经有近80年的历史,大规模的系统研究开始于1968年的深海钻探计划。“深海钻探(DSDP,1968~1983)”、“大洋钻探(ODP,1985~2003)”和“综合大洋钻探(IODP,2003~至今)”等深海研究的三部曲,是国际地球科学历时最长、规模最大,也是成绩最为突出的合作研究计划。大洋钻探计划ODP以独特的视角为我们呈现出另外一个生命世界――掩埋在洋底沉积物中和地壳中的生物圈。在数千米深海海底存在着由微小的原核生物组成,数量极大的生物群,有人估计其生物量相当全球地表生物总量的1/10。与热液口“自养”的微生物不同,深部生物圈的原核生物依靠地层里的有机物实行“异养”。深海大洋中生物圈的发现,让人类认识到地球生态系统的真正基础在于原核生物。正是这些原核生物多种多样的新陈代谢过程,产生了多种多样生物地球化学效果,在此基础上建立了地球的生态系统。微生物总是出现在它们能够生存的一切物理、化学、地质环境中,这似乎是一条基本规律。那些在极端环境中生长并通常需要这种极端环境正常生长的微生物被统称为极端微生物。极端环境涵盖了物理极端环境(如温度、辐射、压力、磁场、空间、时间等)、化学极端(如干燥、盐度、酸碱度、重金属浓度、氧化还原电位等)和生物极端(如营养、种群密度、生物链因素等),海底被认为是上述极端环境中的极端。在深海环境中广泛存在着嗜酸(pH3以下)、嗜碱(pH10以上)、嗜盐(25mol/L以上)、嗜冷(可达0℃以下)、嗜热(120℃以上)、嗜压(500大气压以上)微生物。深海环境下极端生物特征的研究也为生命极限的研究提供了良好的生物材料并对外太空生命探索不断提供新的线索和依据。科学家们设想:既然在如此严酷的极端环境下微生物还能很好地生存,那么在火星上也会有生命存在。深海微生物学的建立应该追溯到上世纪70年代,美国Scripps海洋研究所Yayanos教授设计、改进高压培养罐并于1979年首先分离出深海嗜压菌,1989年Bartlett首先分离出压力调控的外膜蛋白(OmpH)。1990年日本三菱重工和三洋公司开始为日本海洋科学技术中心研制深海微生物高温/高压培养系统,1994年才完成,耗资七亿五千万日元。该系统的建设和深潜、采样系统的建设极大地推动了深海生物圈的研究进步。1995年Kato等分析了一个压力调控基因簇,1999年Nogi等从马里亚纳海沟分离、鉴定出极端嗜压菌Moritellayayanosii[1~3];2003年日本、美国和意大利相继展开了深海嗜压菌ShewanellaviolaceaDSS12和PhotobacteriumprofundumSS9全基因组测序[4,5];2005年3月P.profundumSS9全基因组序列及初步分析在Science上发表[6,7]。除了巨大的科学研究价值,深海微生物研究还具有极大的经济、社会价值而引起广泛的关注。深海生物处于独特的物理、化学和生态环境中,在高静水压、剧变的温度梯度、极微弱的光照条件和高浓度的有毒物质包围下,它们形成了极为特殊的生物结构、代谢机制系统。由于这种极端的环境,深海生物体内的各种活性物质,特别是酶,具有高度的温度耐受性,高度的耐酸碱性、耐盐性及很强的抗毒能力。这些特殊的生物活性物质是深海生物资源中最具应用价值的部分。除了发展、改进海洋微生物的分离培养方法获得新的海洋微生物,筛选活性物质外,应用基因组学研究方法,构建海洋微生物基因组文库,通过研究,操作海洋微生物遗传基因,来获得新的海洋微生物活性物质,这是探索海洋特别是深海微生物资源,研究开发海洋新药物的必然而有效的选择,也是目前深海微生物资源开发的热点。概括来说,深海生物在以下几个方面具有潜在的应用价值:

1工业应用

工业生产常常要求一些特殊的反应温度、酸碱度并加入一些有机溶剂,在这种条件下,普通酶无法保持活性,因此,依赖酶的工业必须花费大量资金采取特殊的工艺以保持这些酶的活性,从而大大提高了成本,而极端酶在普通酶失活的条件下仍然能保持较高的活性,所以在工业上有着广泛的的应用前景。目前已经有高温聚合酶、糖酶、淀粉酶、蛋白酶等几种极端酶开始工业化生产,并且已经创造了数十亿美元的经济效益。

2医药应用

从生物体内研制药物治疗人类的各种疾病由来已久。由于越来越多的病原菌或病毒对目前的药物产生了抗药性,并且不断产生新的疾病。因此从海洋中筛选新的生物药物成为海洋药物研究开发的方向。深海生物由于环境的独特性而成为新型特效药物、抗肿瘤、抗病毒、降压降脂等药物的来源。目前国际上在深海药物的筛选方面还未见太多报道,但是可以预料它的前景将是十分广阔的。

3环境保护

在海底,由于动物尸体聚集、火山喷发等原因造成有毒物质及硫化物等对陆地生物有害物质的浓度较高,而生存在这里的微生物能分解这些物质并以其为能源繁衍生息,因此,这些生物在清除地球表面的重金属、石油等污染物方面具有重要的应用价值。目前日本科学家已经从深海中筛选到具有较高的石油分解能力的菌株,并已开展了应用研究。从20世纪后期开始,随着深海技术能力的提高,越来越多的国家投身于深海研究的前沿领域。目前的深海载人潜器下潜深度达到6500m,无人缆控潜器ROV则可达到11000m水深,并获得最深处马里亚纳海沟深海沉积物样本,研究发现其微生物含量达到103~104/g的水平。实验室深海环境模拟也取得突破进展,已分离鉴定出嗜压、嗜碱、嗜酸、嗜盐、嗜冷、嗜热等极端微生物。目前国际上进行深海微生物研究的国家主要分布在欧洲,美洲及亚洲,其中美国、日本、德国和法国都是深海微生物研究的主力军。目前,在深海微生物的分离培养、多样性调查、功能基因研究和适应性机制研究(如深海嗜压菌的嗜压机制)等方面取得了一定的进展;各类极端微生物在工业用酶、工具酶、环境修复以及生物活性物质等方面的开发应用也有了突破,使人们看到了深海微生物开发的巨大潜力和广阔的应用前景。深海生物资源尤其是微生物资源越来越得到人类的重视。随着科学的发展进步,水下工程技术和探测技术的改进和完善,人类对深海微生物的研究和开发有了更大的空间和可能性。我国深海生物基因的系统研究起步时间较晚,从本世纪初开始主要得到了国家科技部和中国大洋专项的资助。中国大洋协会依托国家海洋局第三海洋研究所成立了中国大洋生物基因研究开发基地,研制、配备了一批船载和实验室深海微生物培养专用设备。在深海设备的支持下,真正意义的深海微生物研究得以开展。到目前为止,基础研究主要开展了深海微生物在物质循环中的作用;极端微生物分离、培养;微生物遗传、代谢研究,深海极端环境下微生物适应性机理的研究等。成功分离、鉴定出各类深海嗜压、嗜热、嗜冷、嗜盐、嗜碱、嗜酸微生物,从中发现了多个未经报道的新种。以此为基础,正在建设国内第一个深海微生物菌株资源库。克隆了多种深海极端酶基因,进行了基因表达和分析。深海微生物抗菌、抗肿瘤活性物质筛选工作也已经开展。深海耐压菌ShewanellacomraWP3已基本完成全基因组序列测定,正在开展后基因组研究。开展了深海沉积物宏基因组文库的构建,成功构建了一个深海5000米水深沉积物的cosmid基因文库,通过对克隆子的分析发现文库中微生物来源主要是一些不可培养的微生物新种,部分克隆子序列测定发现克隆子上大部分基因是新基因。目前已筛选到多个能表达生物活性物质的克隆子,正在进行序列测定。总之,深海生物研究是一个依赖于工程技术的高投入项目,我国深海生物基因资源开发利用研究的快速发展还需要更多资金和人才的不断投入。

参考文献

[1]IshiiA,NakasoneK,SatoT,WachiM,etal.IsolationandcharacterizationofthedcwclusterfromthepiezophilicdeepseabacteriumShewanellaviolacea[J].JBiochem,2002,132(2):183

[2]HorikoshiK,Tsujii.Extremophilesindeepseaenvironments[M].Tokyo:SpringerVerlag,1999:91

[3]KatoC,NogiY.CorrelationbetweenphylogeneticstructureandfunctionexamplesfromdeepseaShewanella[J].FEMSMicrobiolEcol.,2001,35(3):223

[4]BidleKA,BartlettDH.RNAarbitrarilyprimedPCRsurveyofgenesregulatedbyToxRindeepseabacteriumPhotobacteriumprofundumstrainSS9[J].JBacteriol,2001,183(5):1688

[5]NakasoneK,IkegamiA,KatoC,etal.AnalysisofciselementsupstreamofthepressureregulatedoperoninthedeepseabarophilicbacteriumShewanellaviolaceastrainDSS12[J].FEMSMicrobiolLett,1999,176:351

[6]VezziA,CampanaroS,D′AngeloM,etal.Lifeatdepth:Photobacteriumprofundumgenomesequenceandexpressionanalysis[J].Science,2005,307(5714):1459

[7]CampanaroS.VezziA,D′AngeloM,etal.LaterallytransferredelementsandhighpressureadaptioninPhotobacteriumprofundumstrains[J].BMCGenomics,2005,6:122

[8]VetrianiC,JannaschHW,MacgregorBJ,etal.Populationstructureandphylogeneticcharacterizationofmarinebenthicarchaeaindeepseasediments[J].ApplEnvironMicrobiol,1999,65(10):4375

[9]PriestFG,GoodfellowM.Appliedmicrobialsystematics[M].Dordrecht:KluwerAcademicPublishers,2000

[10]ReysenbachAL,VoytekM,MancinelliR.Thermophilesbiodiversity,ecology,andevolution[M].NewYork:KluwerAcademic/PlenumPublishers,2001

[11]BullAT,WardAandGoodfellowM.Searchanddiscoverystrategiesforbiotechnology:theparadigmshift[J].MicrobiolMolBiolRev,2000,64(3):573

[12]AkerleyBJ,RubinEJ,CamilliA,etal.Systematicidentificationofessentialgenesbyinvitromarinermutagenesis[J].ProcNatlAcadSciUSA,95(15):8927

[13]BernanVS,GreensteinMandMaieseWM.Marinemicroorganismsasasourceofnewnaturalproducts[J].AdvApplMicrobiol,1997,43:57

[14]StoreyKB,StoreyJ.Environmentalstressorsandgeneresponses[M].ElsevierScienceB.V.2000:277

[15]AbeF,KatoC,HorikoshiK.Pressureregulatedmetabolisminmicroorganisms[J].TrendsMicrobiol,1999,7(11):447

[16]YamadaM,NakasoneK,TamegaiH,etal.PressureregulationofsolublecytochromescinadeepSeapiezophilicbacterium,Shewanellaviolacea[J].JBacteriol,2000,182(10):2945

[17]KatoC,QureshiMH.Pressureresponseindeepseapiezophilicbacteria[J].JMolMicrobiolBiotechnol,1999,1(1):87

[18]LiS,XiaoX,LuoJ,etal.IdentificationofgenesregulatedbychangingsalinityinthedeepseabacteriumShewanellasp.WP3usingRNAarbitrarilyprimedPCR[J].Extremophiles,2005,publishedonline

微生物研究范文第3篇

关键词:微生物燃料电池 产电 新能源

中图分类号:X703.1 文献标识码:A 文章编号:1672-3791(2013)04(c)-0003-02

微生物燃料电池(Microbial fuel cells, MFCs)是一种新兴的高效的生物质能利用方式,它利用细菌分解生物质产生生物电能,具有无污染、能量转化效率高、适用范围广泛等优点。因此MFCs逐渐成为现今社会的研究热点之一。

1 微生物燃料电池的工作原理

图1是典型的双室结构MFCs工作原理示意图,系统主要由阳极、阴极和将阴阳极分开的质子交换膜构成。阳极室中的产电菌催化氧化有机物,使其直接生成质子、电子和代谢产物,氧化过程中产生的电子通过载体传送到电极表面。根据微生物的性质,电子传送的载体可以为外源、与呼吸链有关的NADH和色素分子以及微生物代谢的还原性物质。阳极产生的H+透过质子交换膜扩散到阴极,而阳极产生的电子流经外电路循环到达电池的阴极,电子在流过外电阻时输出电能。电子在阴极催化剂作用下,与阴极室中的电子接受体结合,并发生还原反应[1]。

下面以典型的葡萄糖为底物的反应为例说明MFCs的工作原理,反应中氧气为电子受体,反应完成后葡萄糖完全被氧化[2]。

2 微生物燃料电池的分类

目前为止,MFCs的分类方法没有统一标准,通常有以下几种分类方法。

(1)基于产电原理进行分类,包括氢MFCs、光能自养MFCs和化能异养MFCs。氢MFCs的原理是利用微生物制氢,同时利用涂有化学催化剂的电极氧化氢气发电;光能自养MFCs是利用藻青菌或其他感光微生物的光合作用直接将光能转化为电能;而化能异养MFCs则是在厌氧或兼性微生物的作用下,从有机底物中提取电子并转移到电极上,实现电力输出[3]。

(2)基于电池构型进行分类,包括单极室微生物燃料电池、双极室微生物燃料电池和多级串联MFCs。图1中的微生物燃料电池即为双极室结构,电池通过质子交换膜分为阳极室和阴极室两个极室。单极室MFCs则以空气阴极MFCs为主,将阴极与质子交换膜合为一体,甚至是去除质子交换膜。为了提高产电量,将多个独立的燃料电池串联,就形成了多级串联MFCs[4]。

(3)基于电子转移方式分类,包括直接微生物燃料电池和间接微生物燃料电池两类。直接微生物燃料电池是指底物直接在电极上被氧化,电子直接由底物分子转移到电极,生物催化剂的作用是催化在电极表面上的反应。间接微生物燃料电池的底物不在电极上氧化,而是在电解液中或其它地方发生氧化后,产生的电子由电子介体运载到电极上去[5]。

(4)基于电子从细菌到电极转移方式进行分类,可分为有介体MFCs和无介体MFCs两类。电子需要借助外加的电子中介体才能从呼吸链及内部代谢物中转移到阳极,这类为有介体MFCs。某些微生物可在无电子传递中间体存在的条件下,吸附并生长在电极的表面,并将电子直接传递给电极,这称为无介体MFCs。

3 电池性能的制约因素[6~7]

迄今为止,MFCs的性能远低于理想状态。制约MFC性能的因素包括动力学因素、内阻因素和传递因素等。

动力学制约的主要表现为活化电势较高,致使在阳极或者阴极上的表面反应速率较低,难以获得较高的输出功率[8]。内电阻具有提高电池的输出功率的作用,主要取决于电极间电解液的阻力和质子交换膜的阻力。缩短电极间距、增加离子浓度均可降低内阻。不用质子交换膜也可以大大降低MFC的内阻,这时得到的最大功率密度为有质子交换膜的5倍,但必须注意氧气扩散的问题[9]。另一个重要制约因素为电子传递过程中的反应物到微生物活性位间的传质阻力和阴极区电子最终受体的扩散速率。最终电子受体采用铁氰酸盐或阴极介体使用铁氰化物均可以获得更大的输出功率和电流。

另外,微生物对底物的亲和力、微生物的最大生长率、生物量负荷、反应器搅拌情况、操作温度和酸碱度均对微生物燃料电池内的物质传递有影响[10]。

4 微生物燃料电池的应用

(1)废水处理与环境污染治理。

微生物燃料电池可以同步废水处理和产电,是一种废水资源化技术。把MFC用于废水处理是其最有前景的一个应用方向,也是当前微生物燃料电池的研究热点之一。同时,在生物脱氮、脱硫、重金属污染的生物治理等方面MFCs也具有不可忽视的作用。

(2)海水淡化。

普通的海水淡化处理技术条件苛刻,需要高压、高效能的转化膜,有的还要消耗大量的电能,故不能大规模的处理,并且成本较高,难以有效地解决海水淡化问题。如果找到一种高效的产电微生物和特殊的PEM交换膜,那么MFC,就可以达到海水淡化的目的,而且具有能耗低,环保和可持续的优点。利用MFC淡化海水也将成为具有发展潜力的研究方向[11]。

(3)便携式电源。

微生物燃料电池能够利用环境中自然产生的燃料和氧化剂变为电能,用于替代常规能源。可以为水下无人驾驶运输工具、环境监测设备的长期自主操作提供电源。

(4)植物MFCs。

通过光合作用,植根在阳极室的绿色植物将二氧化碳转换为碳水化合物,在根部形成根瘤沉积物;植物根系中的根瘤沉积物被具有电化学活性的微生物转化为二氧化碳,同时产生电子。这种植物MFCs能够原位将太阳能直接转换为电能[12]。

(5)人造器官的动力源[13]。

微生物燃料电池可以利用人体内的葡萄糖和氧气产生能量。作为人造器官的动力源,需要长期稳定的能量供给,而人体内源源不断的葡萄糖摄入恰好可以满足MFC作为这种动力源的燃料需要。

5 微生物燃料电池技术研究展望

MFCs技术正在不断成长并且已经在许多方面取得了重大突破。但是,由于其功率偏低,该技术还没有实现真正的大规模实际应用。基于其产电性能的制约因素,今后的研究方向主要可归纳为以下几点。

(1)深入研究并完善MFCs的产电理论。MFCs产电理论研究处于起步阶段,电池输出功率较低,严重制约了MFCs的实际应用。MFCs中产电微生物的生长代谢过程,产电呼吸代谢过程以及利用阳极作为电子受体的本质是今后的研究重点[14]。

(2)筛选与培育高活性微生物。目前大多数微生物燃料电池所用微生物品种单一。要达到实际应用的目的,需要寻找自身可产生氧化还原介体的高活性微生物和具有膜结合电子传递化合物质的微生物。今后的研究应致力于发现和选择这种高活性微生。

(3)优化反应器的结构。研究与开发单室结构和多级串联微生物燃料电池。利用微生物固定化技术、贵金属修饰技术等改善电极的结构和性能。选择吸附性能好、导电性好的材料作为阳极,选择吸氧电位高且易于扑捉质子的材料作为阴极[15]。

(4)改进或替代质子交换膜。质子交换膜的质量与性质直接关系到微生物燃料电池的工作效率及产电能力。另外,目前所用的质子交换膜成本过高,不利于实现工业化。今后应设法提高质子交换膜的穿透性以及建立非间隔化的生物电池[16]。

6 结语

MFCs作为一种可再生的清洁能源技术正在迅速兴起,并已逐步显现出它独有的社会价值和市场潜力。随着研究的不断深入以及生物电化学的不断进步,MFCs必将得到不断地推广和应用[17]。

参考文献

[1] 李旭文.碳纳米管和有序介孔碳在微生物燃料电池电极材料中的应用研究[D].华南理工大学硕士学位论文,2012.

[2] 张怡然,吴立波.微生物燃料电池在废水处理中的应用进展[J].水资源与水工程学报,2010,21(6):100-104.

[3] 孙健,胡勇.有废水处理新理念-微生物燃料电池技术研究进展[J].工业用水与废水,2008,39(1):1-6.

[4] 陈少华,汪家权,程建萍.微生物燃料电池处理污染废水的研究进展[J].环境污染与防治,2012,34(4):68-74.

[5]胡文娟.含氮杂环化合物对微生物燃料电池性能影响的研究[D].湖南大学硕士论文,2010.

[6] Liu H ,Cheng S,Logan BE. Power generation in fed—batch microbial fuel cells as a function of ionic strength,tempera—ture,and reactor configuration[J]. Environ Sci Technol,2005b,39(14):5488-5493.

[7] 关毅,张鑫.微生物燃料电池[J].化学进展,2007,19(1):74-79.

[8] 江世青,王亚南,尹逊亮.微生物燃料电池及其在污水处理方面应用的研究现状[J].山东煤炭科技,2011(6):79-80.

[9] Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane [J].Environ Sci Technol.,2004,38(14):4040-4046.

[10] Rabaey K, Lissens G, Siciliano SD, et al. Biotechnology Letters,2003,25:1531-1535.

[11] 何建瑜,刘雪珠,陶诗,等.微生物燃料电池研究进展[J].安徽农业科学,2013,41(2):785-788,793.

[12] 刘宏芳,郑碧君.微生物燃料电池[J].化学进展,2009,21(6):1349-1355.

[13] 朱宁正.同步废水处理及产能的微生物燃料电池[D].哈尔滨工程大学硕士论文,2009.

[14] 卢娜,周顺桂,倪晋仁.微生物燃料电池的产电机制[J].化工进展,2008,20(7~8):1233-1240.

[15] 谢晴,杨嘉伟,王彬,等.用于污水处理的微生物燃料电池研究最新进展[J].水处理技术,2010,36(3):10-16.

微生物研究范文第4篇

关键词:解磷菌;解磷机制;发展与展望

中图分类号:X172文献标识码:A文章编号:16749944(2014)10023203

1引言

磷是植物细胞的重要组成元素之一,可参加植物的光合作用,且对植物代谢和遗传起到重要作用。在我国,缺磷的现象非常严重占到土壤的74%,在北方,由于盐碱地和钙化土壤较多,可与土壤中的Ca2+结合,形成难溶的无效磷,无法被植物直接吸收利用。而在我国南方地区,由于降雨量充足,水土流失量大,全年日照充足,热量丰富,形成了酸性强,铁铝含量高,土壤易板结的特点,难溶性的磷被铁铝离子所固定,形成难溶性磷酸盐,而可溶性的磷却被雨水所带走,导致了山地土壤磷元素严重缺失,而且水体富磷化严重,再加之农民不科学的施用磷肥,使土壤更加板结加重,通气透水性更差,使得土壤更加缺磷和水体富磷化。

很多因素影响了土壤磷素的有效利用,然而解磷微生物对土壤中难溶磷酸盐具有巨大的转化能力,能将其分泌为植物生长所需的植物生长素类物质,从而促进植物生长发育。解磷菌产生的酸性物质可以加快含磷不溶有机化合物的分解,其分泌的植酸酶、核酸酶和磷酸酶等可与无机磷进行螯合,使不可利用的无机磷转换成有效磷,促进磷素释放[1] ,若用解磷菌作为生物肥料,其优势是显而易见的:成本低,效果好,缓释可持续,施用后不但可以增加作物产量,改善土壤质量和结构,还能提高土壤有机质含量,提高土壤中磷的有效利用率,节肥增产,对保持生态环境平衡具有重要意义。

目前,对解磷微生物的研究主要是集中在以下几个方面。

(1)解磷微生物的分离、纯化和鉴定等工作(类群的研究);

(2)对解磷微生物分布规律和数量以及同植物的协同等作用的研究;

(3)对解磷机制的分析研究;

(4)对如何开展解磷微生物的研究方法进行讨论;

(5)不断地发现新的效果更好,能够与多种植物共生的优良微生物和菌肥。

2解磷微生物的研究概况

1935年蒙基娜从土壤中获得一株解磷巨大芽孢杆菌(Bacillus megatherium phosphaticum)[2]。随后,陈廷伟、Sperber、尹瑞玲等对解磷微生物不断进行研究,发现了欧文氏菌、假单胞菌、产碱菌、多粘芽孢杆菌、枯草杆菌等[3~5]。1998年林凡等研究了水稻经联合固氮菌的浸种后,该菌剂在全国12个省市的应用结果表明其对水稻的增产效果非常明显[6]。

3解磷微生物的种类

能够分解磷的微生物主要为细菌、真菌和放线菌。目前已经报道的解磷细菌主要有芽孢杆菌(Bacillus)、假单胞杆括菌(Pseudomonas)、欧文氏菌(Erwinia )、土壤杆菌(Agrobacterium )、沙雷氏菌(Serratia)、黄杆菌(Flavobacterium)、肠细菌(Enterbacter)、微球菌(Micrococcus)、固氮菌(Azotobacter)、根瘤菌(Bradyrhizobium)、沙门氏菌(Salmonella)、色杆菌(Clromobacterium)、产碱菌(Alcaligenes)、节细菌(Arthrobacter)、硫杆菌(Thiobacillus)、埃希氏菌(Escherichia)。真菌类主要有青霉菌(Penicillium)、曲霉菌(Aspergillus )、根霉(Rhizopus)、镰刀菌(Fusarium)、小菌核菌(Sclerotium)。放线菌有链霉菌(Streptomyces AM)、菌根菌(Arbuscular Mycrrhhiza)[7~9]。

在不同作物根际和不同土壤性质之间,解磷菌种群分部是存在差异的。如尹瑞玲[5]发现在东北黑钙土中,主要以芽孢杆菌和假单孢杆菌为主,红壤和黄棕壤中解磷菌种类则较为繁多。林地中主要是假单胞杆菌属和沙门菌属,而无机磷细菌种类比较少。溶磷微生物数量因土壤不同而不同,黑钙土>黄棕壤>白土>红壤>砖红壤>瓦碱土。

解磷菌在不同植物根圈不同区域的数量分部也是不同的,Katznelson(1962)[10]对小麦根圈解磷细菌分部的研究得到,根际上的解磷菌要比非根际的高6~18倍。林启美和赵小蓉对小麦和玉米的研究也表明根际土壤比非根际土壤高10~100倍。

2014年10月绿色科技第10期

陈治宇,等:解磷微生物研究进展工程与技术

4解磷微生物的分布

林启美等在分析草地、林地、农田和菜地壤中解有机磷的细菌和解无机磷细菌的数量和种群结构时,发现有机磷细菌数量要比无机磷数量多,尤其是菜地中细菌数量和种类最多[11]。不同作物的根际所分布的解磷微生物的种群也存在差异。SundaraRao和Sinha发现小麦根际解磷菌主要为芽孢杆菌属(Bacillus)和埃希氏菌属(Escherichia)[12]。Elliott等报道春小麦根际解磷菌主要为芽孢杆菌属(Bacillus)、假单孢菌属(Pseudomonas)、链霉菌属(Streptomyces)[13]。赵小蓉等研究发现玉米成熟时期根际有机磷细菌为假单胞菌属和黄杆菌属,无机磷细菌为欧文氏菌属[9]。

5土壤中磷的有效性和转化过程

土壤中的磷是以有机和无机两种形式存在的。

有机磷一般是存在于植物枯枝落叶和动植物尸体当中(主要存在形式为核酸、磷脂、磷酸肌醇和部分含磷蛋白质),有机磷微生物需要很长时间慢慢分解才能释放出来,但是这也要考虑到当地环境的复杂性,尤其在干旱或无动植物活动的地区,有机磷含量非常有限,但是在热带雨林等自然气候复杂,多雨,多动植物的地区,有机磷和解磷微生物都非常活跃,导致这些地区生有机磷含量较高。

土壤中无机磷的存在形式主要是被固定在岩石中(原生矿石和次生矿石),包括磷灰石和一些闭蓄态、非闭蓄态(磷酸铁,磷酸铝,磷酸三钙)盐组成,这与土壤类型关系非常密切,一般也不容易释放出来,不能达到供植物吸收利用的目的。

在我国的南方地区,主要是以酸性土壤为主(红壤,砖红壤,赤红壤),由于日照强烈、雨水充足的原因,风化程度高。而且铁铝含量较高,多数可利用的磷肥被大量游离的铁铝离子所固定并转化为磷酸铁和磷酸铝,这两种化合物含磷量可高达80%~90%之多[14,15],而部分游离态的磷元素由于淋溶作用被雨水带走。北方地区,主要是盐碱性土壤,由于风化程度低,土壤中含有大量的钙离子,可与游离的磷素很快转化为可沉淀的磷酸二钙进而转化为磷酸八钙,最终转化为磷酸十钙[14,16]。尤其是石灰性土壤中的无机磷主要以磷酸和钙占主导,平均占无机磷总量的70%以上,其次是磷酸八钙占10%左右,磷酸二钙占1%,磷酸铁和磷酸铝较少占无机磷的4%~5%,氧化磷占10%左右[14,17]。

6解磷能力测定方法

测定微生物是否具有解磷能力一般有两种方法:一是钼磷比色法;二是同位素示踪法。

6.1钼磷比色法

将解磷微生物加入不溶性磷化物[如Fe3(PO4)2],与不含解磷微生物的培养液进行对照,培养一段时间后,过滤,再将滤液经钼磷试剂处理,让培养液显色后,比色,间接求出溶解性磷的含量[4]。梁绍芬等还采用离心除去细胞后测定水溶磷的含量;还有报道将菌株接种于30mL不溶性磷化物的培养基中经过21d培养后,再加入0.1mol/L的HCl震荡过滤后进行测定,他们认为能够被HCl提出来的无机磷都属于微生物分解获得的磷[18]。但是考虑到微生物在自身的生长繁殖过程中能够分泌一些含有溶解性磷酸盐的能力,而且有些磷被微生物吸收后驻藏在有机体中,所以这种方式不能较为准确地测定解磷菌的解磷能力,必须通过消煮和过滤才能准确反应微生物解磷能力[19]。

6.2同位素示踪法

测定培养基中植物吸收的同位素可溶性磷的含量。具体做法是:在已有可溶性P33的溶液中加入解磷菌和不溶性P32,培养一段时间后,放入一直能够水培的植物幼苗,使植物生长一段时间进行同位素P32的检测(对照组是只含可溶性P33和不溶性P32),测定植物体内P32的增加量。尹瑞玲等利用从土壤中分离出的265株解磷菌来分解摩洛哥磷矿粉,其平均分解能力为2~30mg/g[4]。

7解磷机制研究

赵小蓉、林启美等人研究发现,微生物的解磷机制被认为是由于微生物能够分泌一些酸性物质,其不但能够降低土壤pH值而且能够使难溶的磷酸铁、磷酸钙、磷酸铝、磷酸镁等不溶性磷酸盐溶解。林启美等还发现细菌能够分泌柠檬酸、乙酸、苹果酸、乳酸、丙酸等有机酸,而且不同菌株之间的差异还很大;真菌分泌的却比较复杂,种类较多,同种菌株之间差别也比较大,一般是草酸、酒石酸、柠檬酸、丁二酸、乳酸和乙酸等。赵小蓉等的研究还表明,微生物的解磷能力与培养基中pH值存在一定的相关性(r=0.732),但同时也提出培养介质pH值的下降,其实并不是解磷的必要条件,表明不同的有机酸对铁铝钙等难溶性磷酸盐的分解能力也存在差异。Illmer et al发现在有些不产生有机酸的微生物中,也具有溶解磷酸盐的现象,其本质可能与呼吸作用(产生的氢离子)有离子交换作用的存在。Penicillium effuscum现象的研究也表明,微生物在交换阳离子的过程中,利用ATP转化时所产生的能量,将氢离子放在细胞的表面,能够促进有机磷的溶解[20]。多硫细菌属的细菌可以依靠氧化硫产生的硫酸来溶解难溶性的磷[21]。

AM(Arbuscular Mycorrhiza)菌根菌近年来也是研究得较多的,它能够促进植物对磷元素的吸收,增加植物磷的含量促进植物生长。宋永春[22]对缺磷土壤施用植酸和卵磷脂的实验中发现,菌根菌能够增加土壤酸性磷酸酶和碱性磷酸酶的活性,使土壤中的磷素有效化。Arihara等在对AM与玉米生长关系的研究显示,播种前土壤中有效磷含量相同,玉米的产量也和AM根菌的施入成正相关[23]。AM菌株能够促进植物磷吸收的主要机制为:AM菌根能够增加植物根系吸收磷素的表面积,增加了磷溶圈的面积,并转化和传递给植物,且AM菌根能够提高酸性磷酸酶和碱性磷酸酶的活性,使转化的效率提高。

8解磷微生物发展方向和未来展望

(1)必须从分子方面去追寻,去了解解磷微生物的分子机制,从DNA的复制、转录和翻译方面去全新地认识解磷基因或者是促解磷基因。在解磷过程中有哪些小分子RNA或小分子蛋白质信号的变化以及细胞从接收信号到做出具体反映的微变化,从而更全面地了解解磷微生物。

(2)通过转基因或分子、细胞杂交的方式,筛选出高效、生存能力强、变异率小、比较稳定的,无论在什么环境、什么土壤中都能很好地生存的解磷微生物。

(3)解磷菌的种类较为繁多,我们可以通过采集不同地区,不同环境的土壤或水体的解磷微生物进行系统研究,鉴定和分离,提取DNA,利用系统聚类的方式将解磷真菌和细菌的种属关系一一确定。

(4)要对解磷菌和其他的根际微生物的协同等相互关系、发生、发展进行研究。

参考文献:

[1]LQ M, Zhao XR, SunYX, et a1. Community characters of soil phophobacteria in four ecosystems(In Chinese)[J]. Soil and Environment. 2000,9(1),34~37.

[2]梁绍芬.解磷微生物肥料的作用和应用[J].土壤肥料,1994(2):46~48.

[3]陈廷伟.微生物对不溶性无机磷化合物的分解能力及其接种效果[J].微生物,1995,2(5):210~215.

[4]尹瑞玲.我国旱地土壤溶磷微生物[J].土壤,1988, 20(5):243~246.

[5]Sperber J I.Solution of apatite by soil microorganisms producing organic acids[J].Australia Journal of Agricultural Research,1958,(9):782~789.

[6]林凡,王正芳,宋末,等.联合固氮茵的应用效益与增产机理[J].中国农学通报,1998,14(3):32~34.

[7]李阜棣,胡正嘉.微生物学[M].5版. 北京:中国农业出版社,2000:228.

[8]陈华癸,李阜棣,陈文新.土壤微生物学[M].上海:上海科学技术出版社,1979:225~228.

[9]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001(3):37~11.

[10]KATZNELSON H, PETERSON E A, ROUATT J W. Phosphate dissolving microorganisms on seed and in the root zone of plants[J].Can J Bot, 1962, 40: 1 181~1186.

[11]林启美,赵小蓉,孙焱鑫.四种不同生态环境中解磷细菌的数量及种群分布[J].土壤与环境,2000,9(1):34~37.

[12]ELLIOTT J M, MATHRE D E, SAND D C. Identification and characterization of rhizosphere-competent bacteria of wheat[J]. Appl Environ Microbiology, 1987, 53: 2793~2799.

[13]SUNDARA RAO W V B, SINHA M K. Phosphate dissolving microorganisms in the rhizosphere and soil[J], India J Agric Sci, 1963, 33(4): 272~278.

[14]陆文龙,张福锁,曹一平.磷土壤化学行为研究进展[J].天津农业科学,1998,4(4):2~7.

[15]Lindsay W L,et a1.Identification of reaction products from phosphate fertilizers in soils [J].Soil Sci Soc Artier Proc,1959(26):446~452.

[16]鲁如坤.土壤磷素化学研究进展[J].土壤学进展,1990(6):1~5.

[17]沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性[J].土壤学报,1992(29):80~86.

[18]梁绍芬,姜瑞波,葛诚.微生物肥料的生产和发展及存在的问题[M].北京:中国农业科学技术出版社,1996.

[19]赵小蓉,林启美.细菌解磷能力测定方法的研究[J].微生物学报,200l,28(1):l~4.

[20]ASEA,KUCEY RMN,STEWART.J W B.Inorganic phosphate solublization by two Penicillium species in solution culture and soil[J]. Soil Boil Biochem, 1988, 20: 459~464.

[21]A.Ghani.S.S.S.Rajan and A.Lee.Enhancement of phosphate rock solubility through biological processes [J].Soil Biol.biochem,1994.26:127~136.

微生物研究范文第5篇

在森林生态系统中,人们往往只注意到树木及其林下植被,而对林下土壤中的微生物认识很少。诚然,与参天大树相比,微生物的的确确微不足道,然而,微生物在森林生态系统中的功能性作用是任何人都不能忽视的。森林是微生物天然活动和繁衍的重要场所,微生物依赖植物而生存,同时微生物对森林乃至整个生态环境都有着重要的作用。试想,假如森林中没有腐生型微生物,森林中的枯枝落叶将不能分解,地球也将成为一个大垃圾库;假如森林中没有共生型微生物,营共生生活的植物物种将无法正常生长,许多植物将会从地球上消失;缺少微生物,森林生态系统中的营养循环和能量循环就无法实现。当然,在森林生态系统脆弱条件下,微生物也会给森林带来灾害,如流行性病害。随着人们对森林微生物的研究和认识的不断加深,许多新的研究方法和技术也相继得到了发展和应用。本文对DNA分析技术在森林微生物学领域的应用和研究进展进行综述,希望对广大林业工作者有所启发。

1森林微生物DNA分析技术

1.1DNA技术概述

DNA分析技术是在一系列分子技术的基础上发展起来的,其中PCR(PolymeraseChainReaction)、RAPD(RandomAmplifiedPolymorphicDNA)、RFLP(RestrictionFragmentLengthPolymorphism)、AFLP(AmplifiedRestrictionFragmentPolymorphism)等技术是分子生物学技术的核心。以PCR技术(即聚合酶链式反应)为例,这一DNA分析技术是20世纪80年代末发展起来的一种快速体外基因扩增技术[1],原理是用于扩增位于两段已知序列之间的DN段,在DNA聚合酶催化作用及引物存在条件下,连续进行高温变性、低温退火、中温DNA合成这一循环。

1.2森林微生物DNA分析技术

在森林中,与参天大树相比,微生物显得非常渺小。由于微生物的/微观0特征,使得林业工作者们在研究森林微生物时困难重重,尤其是对微生物资源的分类鉴定,因此在一定程度上阻碍了人们对微生物在森林生态系统中的功能性作用的了解和进一步认识。借助DNA分析技术,无疑有助于鉴定和从量化角度去研究这些微观生命体。下面以森林真菌DNA分析技术为例,讨论森林微生物DNA的提取、纯化和分析方法。

1.2.1DNA的提取高等真菌DNA的提取,通常可以采用子实体/子囊果、孢子、担孢子或菌丝体等作为起始材料,DNA的提取可以直接从细胞的破碎开始。但由于从林地里采取的样品中,可能会混杂有植物材料,因此在进行DNA提取时要清除污染DNA,同时,还要考虑土壤及其它化合物的污染。鉴于真菌细胞壁结构特性,用于植物DNA的提取方法,需要根据情况做必要的修改和补充,才能取得较好的分离效果。真菌组织细胞和菌丝体细胞的破碎,通常采用液氮或干冰研磨。SDS(十二烷基硫酸钠)细胞壁裂解技术是常用的方法之一,在担子菌和子囊菌DNA的提取上十分有效[2]。另外,与植物DNA提取不同,对森林微生物细胞壁的破碎和DNA提取,通常不加细胞壁裂解酶,以避免目的DNA的降解;提取缓冲液中的EDTA浓度不宜过高,否则可能会影响核酸的活性。

1.2.2DNA的纯化根据真菌类型和DNA分析的要求不同,对DNA需要进一步纯化。DNA纯化通常采用酚、酚氯、氯仿等溶剂反复抽提,以降解并除去蛋白质杂质。也可采用CsCl密度梯度超速离心法。CsCl密度梯度超速离心是根据各分离物质密度的不同而达到分离的目的。分离蛋白质的CsCl密度大约为1.2g#ml-1,RNA密度较大,约为1.8g#ml-1,DNA约在1.5~1.7g#ml-1,同时还依赖于嵌入DNA中的溴化乙锭(EB)的量。较理想的CsCl终浓度在1.57~1.62g#ml-1。除此以外,还可采用蛋白酶K消化蛋白质杂质,或加入核糖核酸酶RNase消化除去RNA杂质。许多与树木共生的真菌,如豆马勃(Pisolithusspp.)、桩菇(Pax-illusspp.)等担子菌,多含有较高浓度的醛类物质,因此对这类微生物DNA的纯化需要特别小心。

1.2.3DNA的分析对微生物DNA分析之前,首先要对DNA含量和纯度进行评价。常用的评价方法有紫外分光光度法、荧光检测法和EB染色法。琼脂糖凝胶电泳法是微生物DNA分离鉴定和DNA纯化的常用方法。这一技术可分离出其它方法无法分离的DN段,而且分离的片段范围较广,不同浓度的琼脂糖凝胶可分离出长度在200pb~50kb的DN段。用EB染色便于在紫外灯下观察,有利于特定DNA条带的回收。目前一般实验室多采用水平板式凝胶电泳装置。琼脂糖主要在DNA制备电泳中作为一种固体支持基质,凝胶的密度取决于琼脂糖的浓度。采用RFLP技术进行森林微生物DNA分析,是对含有特殊序列的DN段进行比较分析的常用手段。鉴于RFLP是对不同大小的DN段进行分析,因而对于带有不同的核酸序列却具有相近大小的DN段,用电泳的方法是不易区分开的,而DNA杂交技术可以显著提高灵敏度。

1.2.4DNA杂交技术在对森林微生物进行菌种鉴定,研究菌种个体间或其他分类水平上的亲缘关系,或进行环境检测时,都要借助DNA杂交技术。DNA杂交是ssDNA分子间具有高度同源性的核苷酸序列间的结合。探针序列被标记,以用来检测其与目的DNA结合的情况。采用35S或32P标记探针,经放射自显影技术可以对杂交产物进行观察和研究。在反应条件和探针选择方面,要考虑到杂交条件的限制性及探针的选择问题。

2DNA技术在森林微生物研究中的应用

2.1森林微生物的分类鉴定

由于森林微生物一般形体较小,结构较简单,传统分类学方法仅依赖于形态结构的描述,已很难保证分类的准确性和科学性,因而借助现代分子生物学手段可大大提高微生物的分类鉴定水平。在对森林微生物进行DNA分析时,需要根据微生物DNA结构的相似性和特异性,合成特异探针或引物。合成探针或引物的模板,可以是rRNA序列、染色体总DNA、rRNA基因的全部或非保守片段,甚至可以是rRNA基因保守区域及那些编码蛋白质、木质素酶、纤维素酶或色素产物的基因。研究者们对多种植物和微生物的rDNA进行了测序分析,发现ITS和IGS片段具有较高的稳定性,菌物学家Gardes和Bruns等以ITS片段为模板,合成了多种引物(表1)[3],其中ITS1-F对真菌类特异性较高,可用于从混杂的植物或其它微生物类群的基因中将真菌区分开来,而ITS4-B对真菌中的担子菌有很好的特异性。Erland等(1994)[4]采用引物CNL12(5p-CTGAACGCCTCTAAGTCAG-3p)和5SA(5p-CAGAGTCCTATGGC-CGTGGAT-3p)对外生菌根真菌TylosporafibrilloseDonk的rDNA进行了RFLP分析,该菌与其它外生菌根真菌具有显著不同的RFLPs图谱,因此可用于菌种的分离与鉴定。

2.2森林微生物多态性及亲缘关系的研究

在研究微生物亲缘关系时,通常用到DAN杂交技术。DNA杂交技术是建立在核酸碱基互补配对这一基本特性之上的。近些年来,在森林微生物研究中应用DNA分析技术,已取得显著进展,尤其在森林病原菌和林木共生菌(包括固氮细菌和菌根真菌)方面成绩斐然。Ry-giewicz等(1994)[2]研究了共生真菌DNA的提取和分析方法,使这一技术更趋成熟。Arm-strong等(1989)[5]从真菌子实体中提取DNA,然后采用限制性核酸内切酶对DNA进行酶切,得到的产物用于DNA的杂交研究,以揭示菌种间的亲缘关系。Cummings等(1990)应用限制性片段长度多态性(RFLP)技术,对丛枝菌根真菌的遗传关系进行了研究;Henrion等(1992)[6]对4种蜡蘑菌(Laccariabicolor、L.laccata、L.proxime、L.tortilis)的26个菌株的DNA分别进行PCR扩增,揭示出这些菌株在种间和种内存在多态性。研究发现,森林中常见的担子菌双色蜡蘑(Laccariabicolor),经过DNA提取和进行RFLP分析,如果采用完整基因杂交,放射自显影对RFLP的观察结果应与紫外观察的一致;但如果用探针编码一个从该菌中分离出来的特定基因,则在其染色体DNA的RFLP中通过放射自显影仅能观察到一条或几条带。在瑞典Karen等(1997)[7]通过对隶属17属的44种大型真菌rDNA的ITS区域进行CfoI,HinfI和MboI消化和RFLP分析,对真菌种间遗传多样性做了比较;并对部分菌种ITS序列进行了分析。Lobuglio等(1990)[8]对大型真菌土生空团菌(CenococcumgeophilumFr.)71个菌株的种内同源性及多样性进行了研究,种间相似性的变化范围较大(100%到44%),表明该真菌可能具有广泛的遗传多样性,同时也表明,该真菌的分类学地位尚有待深入细致的研究,例如,从分子生物学角度可能会分出几个不同的种来。

微生物研究范文第6篇

1微生态学与微生物学的关系

微生态学是这几年不断发展的一门学科,它的首次出现是在1977年由一名德国博士VolkerRush提出的,他认为微生态学是相对于生态学的一种较为微观的表现,并且他还对微生态下了一个定义:微生态学是停留在分子水平或者细胞水平上的生态学。因此,微生态学是一种相对于生态学的一种较为微观的更加深层次的表现形式。微生态学以微生物与微生物之间和宿主与微生物之间环境与生态之间的关系为其研究范畴的,而为生态学的涉及领域主要在微生态学的结构关系,微生态体系的平衡与失调以及微生态学的防治等领域展开科学研究与探讨。微生态学是在吸收微生物学的基础上对其生态学理论进行研究创新而发展而来的一种新型学科,而微生物学是研究微生物的形态特征、新陈代新以及遗传进化等自然界生存与繁衍的一门学科,微生物学的最直接应用就是利用自然界的微生物关系来促进社会生产需要,通过对微生物的研究从而不断将那些对人类有害的微生物进行消灭或者改造,从而不断的为人类的生存安全服务,微生物学虽然涉及到了生物关系的问题,但是其研究问题的重点是微生物活动和生存规律,而生态学研究的是生物与环境之间的相互作用关系,它所反映的是各个生命体系与自然环境之间以及与人类生命生存环境之间某种相互作用关系。生态学是在关系的问题上进行研究和探讨,从关系的角度去探索生物、生态以及人类之间的要素联系,微生态学与微生物学之间具有较为紧密的关系,其涉及到人类社会的方方面面,从而推动了人类社会认识自然提高医学认识水平都有较好的促进作用。

2微生物学与医学微生物学的关系

医学微生物学是微生物学医学领域的一个重要的分支,把病原微生物与人类的各种疾病为其研究对象,医学微生物学与传染病以及各种感染性传染病的医学实践和理论有着密切的关系,还和人类社会的卫生防预和疾病预防有着重要的关系,随着科学技术的进步,医学领域特别是分子生物学领域得到了较快的发展,开始揭示分子领域的微生物学的生命现象和特征,并且解决了许多以前不能解决的生物现象问题,微生物的生命特征在分子生物学的领域下不断地被揭示,因此在临床卫生学诊断上也进入到了分子领域,因此,分子生物学在应用上推动了临床微生物学的发展。而分子生物学在医学分类上还不能成为一个独立的学科,但是它在认识领域和技术指导上处于主导地位,分子生物学在实际应用上适合各个领域的发展,分子生物学也有效的推动了人类对生命的认识进入到了一个全新的水平,但是它还是存在一些不足的地方,人们可以通过对基因和蛋白质的研究创新,弄清疾病和微生物之间的特殊关系,但是这些研究和临床实践仍然不能解决很多疾病临床和实践的关系问题,不能较好的拿来用在临床实践当中去,而随着微生态学和微生物学的发展,对医学领域提出了新的认识和观念,对推动医学生物学的发展具有重要的意义。

3微生态学对医学生物学具有重要的启示作用

微生态的发展为医学生物学的发展注入的新的活力,为人们认识疾病本质开辟了新的道路,指出了新的方法,随着医学领域的不断完善,医学领域开始从传统单一的医学模式向多元化的医学模式转变,微生态学与医学微生物在医学领域的关系极为密切,微生态学的基本理论对微生物学疾病的预防和治疗具有重要的启示意义。

3.1微生态学对病因学的启示

在传统的医学领域中,表现为引起一种疾病的病因只有一种,著名的医学家郭霍法则是这样认为的,特殊病原菌应该在同一种疾病中进行查询,在健康者身上是查不到的,并且这种特殊的病原菌经过分离能够得到纯培养,而这种纯培养如果接触到一些容易感染的动物,在动物身上也可以得到同样的病症。这个法则一直被人们理解接受。从微生态学的角度看,地球上根本就不存在病原微生物,按照这种观点,微生态学就没有所谓的病原菌和非病原菌的概念陈述,任何的微生物都是具有独立生存能力的种群,之所以会引起疾病是因为某种微生物链在一定的环境下被打破所致,在某种情况下,疾病的发生和发展取决于微生态的某种状态,随着人类社会的不断进步,人们的饮食习惯、心理状态已经生存环境的变化在某种程度上也会引起微生态的失衡,从而引起疾病的发生,而在临床上也发生着许多正常微生物群被感染的实例。

3.2疾病预防的认知

运用微生态失调原理对微生态失调的现象进行调整是防治疾病发生的一个重要方式,而在我们身边常见的微生态制剂就是运用以感染的方法来治疗已经被感染的病原体,从而达到治疗的目的,随着医学领域技术的不断完善,我国微生态制剂领域取得了较好的发展,而随着其在医学领域的不断运用,在不久的将来会成为医药领域的一个新亮点。

4结语

微生物研究范文第7篇

关键词 微生物驱油;采油率;研究

中图分类号 TE357 文献标识码 A 文章编号 1673-9671-(2012)122-0166-01

1 微生物驱油技术的提出

在世界范围内,用常规采油技术只能从地下油藏采出30%-40%的原油。如何提高采收率,从地下采出更多的原油,多年来一直是世界许多国家不断研究的重要课题。

微生物采油技术有很多优点:一是它对边际生产油田具有经济吸引力,成本低,见效周期长;二是所需设备简单,采用传统的注水地面设备即可达到施工要求;三是微生物培养物注入液成本低廉且不受原油价格影响;四是可用于各种类型的原油(如重质油、轻质油等);五是对地层伤害小,相对来说对环境污染小,并且可以在同一口井中多次使用;六是微生物体积小,运移能力强,能进入其他工艺不能触及的死角和裂缝。

随着世界原油价格的不断攀升和世界能源消耗的不断增长,世界各国必将对提高原油采收率的微生物采油技术更加重视,相应的加大其投资力度。

2 研究概况

80年代初微生物驱油技术从实验室起步,90年代在中国、美国、澳大利亚、秘鲁、罗马尼亚和俄罗斯开展现场试验,大部分获得成功。据报道,这些微生物驱油项目提高采收率各不相同,从零到13%、19%、36%、50%~65%,甚至204%。除了增加原油产量外,有的还降低含水率、提高油气比和改善注入能力。

但MEOR技术局限于微生物在较高的温度、盐度、重金属浓度条件下易于遭到破坏,微生物本身产生的表面活性剂和生物聚合物有造成沉淀的危险,并且培养微生物的条件不易把握,故该方法的方向是培养耐温、耐盐、耐重金属的易培养菌种。用MEOR技术采油所用的微生物多种多样,代谢产物不尽相同,采油微生物代谢产物及分析是微生物提高采油率应用技术的重要组成部分,应加强代谢产物分析及MEOR作用机理的深入探讨。

3 驱油用微生物的类型

根据调查研究,提高原油采收率的微生物工艺可划分为两个主要的类型:第一类是把细菌代谢物(又称外源微生物)作为驱油剂使用的工艺。该类工艺与化学驱类似,其原理是利用生物表面活性剂,生物聚合物、溶剂、乳化剂等组合物,改善水的驱油性能。第二类是直接在地层中有目的地培养和发展微生物(又称内源微生物),形成具有驱油特性的细菌代谢物。方法是把地层中存在的或者注水带入的有益微生物,依靠地层固有的营养物(残余烃、矿物组分)或者向地层注入的营养物(糖蜜、无机化合物等)进行地球化学作用,形成细菌代谢产物(脂肪酸、乙醇、表面活性组合物、生物聚合物、二氧化碳等),这种类型的微生物驱适用于注淡水开采一年以上的油田或区块,因为注水使注入井井底附近形成了微生物群落(或生物群落)。第二种类型工艺简单、操作方便,是目前微生物采油技术的发展方向。

4 微生物采油技术机理

微生物采油技术是技术含量较高的一种提高石油采收率的技术,不但包括微生物在油层中的生长、繁殖和代谢等生物化学过程,而且包括微生物菌体、微生物营养液、微生物代谢产物在油层中的运移,以及与岩石、油、气、水的相互作用引起的岩石、油、气、水物性的改变。

微生物以石油中的正构烷烃作为碳源而生长繁殖,从而改变原油的碳链组成。微生物不断老化,改变了石蜡基原油的物理性质,影响了原油液或固相的平衡,降低了石蜡基原油的临界温度和压力。微生物的增加能大大减少储层、井眼和设备表面的原油结蜡的温度和压力。微生物生长时释放出的生物酶,可降解原油,使原油碳链断裂,高碳链原油变为低碳链原油,使重组分减少,轻质组分增加,凝固点和黏度均可降低,不仅改善原油在油层中的流动性,而且会使原油品质得到改善。大港油田、青海油田试验证明微生物作用后原油高碳烃密度减少,原油组成改变。东濮凹陷胡状集油田19块进行微生物现场试验,对胡19-6、胡19-28和胡19-14等3口井注微生物前、后采出原油的物理性质进行全烃色谱分析,注微生物后采出原油中低碳数正构烷烃增加而高碳数正构烷烃相对减少;胡19块3口井注入微生物仅1个月,采出原油的凝固点降低了0.5~2.0℃,黏度降低了16.0~31.2mPa·s。

5 微生物采油方法及其特点

利用微生物提高采收率主要有4种方式:一是微生物清蜡和降低重油粘度。微生物清蜡技术可以代替溶剂的使用和热油处理方法,微生物清蜡降粘机理在于细菌对石蜡和重质原油的代谢作用。通常,大多数细菌对蜡质脂肪烃的代谢速度高于对芳香烃的代谢速度。细菌产生的溶剂对近井区域地层也能起到很好的清洗作用;二是微生物选择性封堵地层。把能产生生物聚合物的微生物注入地层,或向地层注入适当的营养液,使微生物在高渗透层内大量萦殖形成生物多糖,可起到封堵高渗透层的作用。生物多糖能够有效地封堵地层岩石表面的孔喉,使高渗透层的渗透能力大幅度下降,这种方法比注入人工合成有机聚合物或疑胶更为有效;三是周期注微生物采油。该技术是将微生物、营养液和生物催化剂注入一口生产井内关井一段时间,发酵数天到数周,然后开井生产,经过一段时间的生产,当产量明显下降时,可重复上述过程。该法尤其适用于低产井和枯竭井;四是微生物强化水驱。在水驱油藏中开展微生物强化水驱,可有效地提高水驱效率。将菌种和营养液混合而成的微生物处理液由注水井注入地层,处理液被注入水推进通过油层时,微生物代谢作用产生出溶剂、表面活性剂、有机酸、和繁衍出新细菌,这些代谢产物通过物理、化学作用将岩石孔隙中的原油释放出来,使不能流动的原

油以油水乳化液的形式被注入水驱向生产井从而延长油井寿命。

6 微生物驱技术分类

微生物可以在油藏中也可以在地面增长。地面培养时,可以分离和收集微生物的代谢产物,经过加工和处理再注入到油藏里驱油。

从专业角度来看,微生物驱油有些类似于地下生物改造作用。注入的营养物与本源或外源微生物一起促进地下微生物的增长和代谢产物,使更多原油流动,通过油藏降压作用、界面张力/油相降黏以及选择性堵塞高渗区来提高剩余油流动性。另外,经发酵后的活微生物再注入油藏也能达到增采的效果。

微生物在地下不但要生成原油流动所必需的化学物,而且要在油藏环境下繁殖增长。在微生物驱油过程中,要经常注入营养物保持微生物代谢作用,有时还往油藏注入可发酵的碳水化合物作为碳源。有的油藏还需要无机营养物作为细胞生长的基液或者作为有氧呼吸的另一种电子受体。

参考文献

[1]卢家亭,李闽.微生物采油现状及前景展望[J].内蒙古石油化工,2003,5:24-25.

[2]刘骊川.微生物驱油技术的研究进展与应用前景[J].中外能源,2009,14(3):41-45.

[3]高政华等.微生物驱油技术研究及应用[J].内蒙古石油化工,2006,9:93-94.

[4]庞林绪,莫冰.微生物采油中原油组分的变化[J].石油勘探与开发,1998,25(1):50-51.

[5]梅博文,袁志华.地质微生物技术在油气勘探开发中的应用[J].天然气地球科学,2004,15(2):156-161.

微生物研究范文第8篇

早期的研究中以植物内生菌为题报道的绝大部分都是非豆科植物根系内分离到的固氮根瘤菌Frankia属细菌,宿主植物主要有四川桤木(Alnuscermastogyne)、木麻黄(Casuarinasp)、沙棘(Hippophaesp.)、赤场(Alnussp.)、杨梅(Myricasp.)和胡颓子(Elaeagnussp.)等。此外还有百合科(Liliaceae)百合(Liliumsp.)细胞中的内生菌研究。篇名中第一次出现内生细菌的原著论文是1996年中国农业大学刘云霞等关于水稻内生细菌巨大芽孢杆菌(Bacillusmegaterium)在水稻内分布的研究[5],以及吴加志等关于Enterobacter,Pseudomonas和Bacillus三属植物内生细菌在植物病害生物防治潜力方面的研究[6]。受国外植物内生细菌研究的影响,作为植物病害的生防因子,我国棉花、水稻、马铃薯等作物的内生细菌首先受到了关注。我国首次正面研究内生真菌的是已故南京农业大学终身教授李扬汉关于麦田有毒杂草毒麦(Loliumtemulentum)中的内生真菌的观察[4],此后我国内生真菌的研究沉寂了约10年。邱德有等关于红豆杉内生真菌的先驱性研究开启我国药用植物内生真菌研究的火热时代[3,7-9]。目前,关于药物开发指向的植物内生微生物及其所产生理活性物质研究,在我国遍及以药用植物和农用植物为主的数十科野生植物和农作物,连年产出百余篇原著论文和十余篇文献综述(图1)。按现在的趋势,我国年度发表植物内生真菌相关原著论文将很快会超过两百,研究的热潮有增无减,成为植物内生微生物研究中最活跃的领域。植物内生真菌的另一个重要内容——禾本科植物麦角类内生真菌的研究则到甘肃草原生态研究所南志标从新西兰留学回来后才真正兴起。南志标先生回国后在甘肃省自然科学基金和国家人事部归国留学人员科研启动资金的资助下,利用执行联合国粮食计划署2817项目咨询任务时从新疆阿勒泰地区采集到的野生植物样品,首次检测到我国产布顿大麦草(Hordeumbugdanii)中含有内生真菌,并指出了内生真菌的植株能促使宿主植物总生物量、干物质产量、根重以及分蘖数均有所增加。同时也发现,甘肃省的中华羊茅、紫羊茅和部分雀麦属植物中不同程度的含有内生菌[10-11]。同时,在美国牧草种子公司的资助下,新疆草原研究所的李宝军等利用新疆种质资源库的11种牧草种子进行了内生真菌的检测,发现醉马草种子中含有内生真菌[12]。进入21世纪后,关于禾本科植物内生菌的研究有兰州大学的南志标/李春杰课题组、南开大学的高玉葆/任安芝课题组以及南京农业大学的王志伟/纪燕玲课题组等开展持续性的研究。

2植物内生微生物研究的基本特点

首先应该指出,国际国内植物内生微生物研究最大的特点是其范围之大、涉及微生物的种类之多样、功能之繁杂、潜力之广阔。据现行学术界通用的概念和范畴,只要是有机会在植物体内出现的微生物,几乎无所不包含在植物内生微生物的范畴之内[13-15]。这个特征决定了植物内生微生物的研究领域是广阔的,所涉及的学科除生物科学类各基础学科外,还有农学和林学类各基础学科、药物化学、医学、生物工程、食品保藏与加工等多方面的学科。因此,植物内生微生物的研究适合多领域共同协作,在视角和概念运用等方面出现多元化也是很自然的。第二,植物内生微生物基本功能是多层次的。最基本的层次是微生物本身的显。这种功能以微生物的分离物为基础、在人工培养时即得以表达,可通过人工培养以及人工发酵进行研究、挖掘和改良,我国这方面的研究报告最多[16-18]。第二层次是微生物和宿主植物形成共生体(Symbiota)所表现出来的功能。就像绝大多数产毒素的冷季型禾本科植物与其Epichloae类内生真菌的共生体那样,这种毒素的生产和积累的功能不是植物或微生物单独所具有的,或者单独能达到的强度和高度,只有通过宿主植物和内生微生物形成共生体后才体现出来[19-21]。第三层次是内生微生物/宿主植物共生体在不同环境中所表达出来的不同功能或不同程度。上述产毒Epichloae类内生真菌和其宿主植物的共生体也不是在任何时候、任何环境中都能生产和积累毒素,在某种特定的环境条件下生产毒素(多),在另外的条件下则少生产或根本不生产毒素[19,22]。植物生长环境直接介入微生物和宿主植物共生体的生物学特性的表达。这一现象十分符合植物和微生物相互作用的基本规律,可能对利用植物内生微生物的生理活性物质进行生物制药研究和开发的科研人员也会有积极的启发。第三,植物内生微生物给人类带来的影响不全是有益的,有时也会出现有害的一面。从文献的描述来看,这一点在我国目前仅在少数研究中引起了注意。黑麦草内生真菌、苇状羊茅内生真菌、疯草内生真菌等该宿主植物带来的毒素生产和积累则是最突出的例子。无论是产毒的禾本科植物内生真菌还是疯草内生真菌,已经被人们发现的这些有害事例已经给社会造成了巨大的损失[19,23]。另外,虽然没有出现鹅观草致毒的报道,但从其中的内生真菌中也检测到了一些毒素生产基因(王志伟等,未发表)。因此,我们有必要对植物内生微生物给人类带来有害影响也给以足够的关注。同样,我们固然可以期望植物内生微生物给宿主植物带来或加强抗菌作用(Antagonism)、化感作用(Allelopathy)等抑制其它生物生长和发育的功能,在植物抗病、抑制杂草等方面起到一定的正面作用。但另一方面,这些作用是否会导致区域内生物多样性的降低[24-25],产生新的生态问题?这些都需要今后去认真评价。第四,植物内生微生物的功能一部分可通过生物学/生物化学的特征表现出来,另有一部分功能必须通过生态学的方法才能加以研究和利用。新西兰在飞机场及其周边大规模种植产毒素Epichloae类内生真菌和其宿主植物共生体,以此驱避在机场聚集的鸟类(JohnCuradus,私人通信)。这是通过生态学的方法对植物内生微生物的功能加以利用的一个代表性事例。在我国,利用植物内生微生物进行植物病虫害的生物防治也是这类事例中的典型[25-27]。在这些情况下,内生微生物和其宿主植物的共生体特征的稳定表达就十分重要。一般来说,植物内生微生物作为药用微生物利用时,微生物本身相对重要一些,而作为农用资源或环境修复手段加以利用时,共生体的特征则往往更加重要。

3我植物内生微生物研究的发展和特点

进入21世纪,特别是近10年来,我国植物内生微生物的研究发展迅猛。据最保守统计,在我国发行杂志上由我国科研人员发表的植物内生微生物的论文(篇名中含有“内生菌”、“内生细菌”或“内生真菌”字样的论文)在2008年以后每年都超过200篇,2013年论文总数已逼近300(图1)。考虑篇名中没有体现出来的论文以及在国外发表的论文,我国科研人员近年来发表的植物内生微生物研究的论文大约每年可达400篇以上。研究领域也全面开花,基本形成了4大板块、24个分支的局面(表1)。至此,我国已形成了一支队伍庞大、成果丰硕的科研力量,在国际植物内生微生物研究中占有十分显要的地位。从整体趋势来看,我国植物内生微生物研究的特点可概括为“四多四少”。资源探索多、分离培养多、活性检测和生物功能研究多,基础性前期工作多;方法研究少、涉及林木少、与宿主的关联少、实际应用少。特别是以药物开发为目的的资源探索性研究报告最多,以抗菌、抗肿瘤等指标为主的药物开发指向的论文大量出现,形成了我国植物内生微生物研究中最耀眼的亮点[17,28-29]。植物内生微生物研究以生理活性检测以及活性物质探索为主要范式(Paradigm)之一,思路清晰易懂、方法简单、实施容易,是研究生训练的好材料。关注我国植物内生微生物论文数量的上升时机,也不难发现其上升趋势和研究生毕业数量的上升基本同步(图1)。从论文数量整体来看,从20世纪末开始我国科研人员在本国的科学杂志上(中国学术期刊网络出版总库收录部分,1979-2013年),植物内生微生物的研究有了飞速的发展。在21世纪的第一个10年中,我国关于植物内生微生物研究的突飞猛进,论文数量从2000年的14篇增加到2010年的257篇,翻了18.4倍(图1);研究对象也从Frankia等非共生固氮根瘤菌为主、加上几个关于红豆杉内的紫杉醇生产菌以及冷季型禾本科植物中的麦角菌类真菌等零星报道,发展到包括草本、木本、单子叶、双子叶以及蕨类等数十科近百属植物中的微生物;研究方向也增加到包括医药、农业、环境、食品等多个领域(表1)。最近几年来,植物内生微生物相关的论文数量继续增加、研究范围继续扩大,形成了我国微生物学研究中发展最快、研究人员增长和人才积累最快、研究范围扩大最快的领域。在这个领域中,显示各种生理活性、具有潜在的药物开发价值的植物内生真菌以及它们所生产的生理活性物质不断出现,具有抗病虫害活性的内生微生物菌株也大量积累,新的微生物物种被相继提出,并不断开发出重金属抗性增强、难降解化合物的分解等新的应用功能。同时,通过参与植物内生微生物研究而得到基本科学训练的年轻学者也大量进入社会,我国植物内生微生物的研究蕴含着巨大的发展潜力。但是,我国植物微生物研究发展不平衡。在我国的期刊上发表的研究报告主要集中在医药方向和农业方向,尤其是以生物医药开发为目标的药用植物内生微生物的论文数量尤为突出[17,28-29]。而在大尺度生态学中十分重要的天然林木以及草原野草中的内生微生物则报道相对较少[12,30-33]。在研究程度上也存在着“初步研究多、深入追究少”的特点。在生物活性和活性物质研究方面,分离和初步鉴定多、周密的分类鉴定少,活性菌株的初级筛选多、达到或接近可应用水平的筛选少,活性检测和物质初步提纯多、化合物纯化与鉴定少,发展到后期应用的事例则寥寥无几,有关生理活性物质生产的基因及其调控的研究则更少[17,29]。在生态学研究方面,也存在微生物的群落结构、生态分布、生活史研究、培养条件的优化等都比较少的倾向[33-36]。此外,微生物的分离技术、培养技术、微生物的消除技术、接种技术等开发还相对薄弱。考虑这些内生微生物的农业应用,能将植物内生微生物进行工具化的上述操作技术也有待于今后进一步开发。因此,我国的植物内生微生物研究的质量进一步提高、应用面继续扩大、实用性大幅度增加的空间依然很大。

4我植物内生微生物研究的成

4.1医药指向的研究

1993年,Strobel等发表了关于红豆杉内生真菌合成紫杉醇这一发现,在国际上形成了药用植物内生微生物开发的范式。受此范式影响,我国医药指向的植物内生微生物研究以药用植物为材料居多,尤以红豆杉类植物、红树类植物、鬼臼类植物、石斛等兰科植物以及银杏等植物较为常见。红豆杉属(Taxus)植物主要有短叶红豆杉(Taxusbrevifolia)、红豆杉(T.wallachiana)、南方红豆杉(T.chinensisvar.mairei)、云南红豆杉(T.yunnanensis)、东北红豆杉(T.suspidata)等,我国微生物学工作者从中分离得到了紫杉霉属(Taxomyces)、镰孢霉属(Fusarium)、链格孢属(Alternaria)、拟盘多毛孢属(Pestalotiopsis)、曲霉属(Aspergillus)等植物内生真菌和内生细菌。从这些微生物中又分别检测到了抗肿瘤、抗氧化、抗动物病原物、抗病原媒介物、抑制特定酶活性等生物活性,分离到了生物碱类、苯丙素、萜类、醌类、脂类、酮类、酚类、有机酸类、甾体类等活性化合物及其衍生物,其中关于紫杉醇生产的研究报告最多[17,28-29,37-38]。常用的红树类植物主要包括生长在包括港澳地区在内的华南沿海的红海榄(Rhizophorastylosa)、秋茄(Kandeliacandel)、木榄(Bruguieragymnorrhiza)、桐花树(Aegicerascorniculatum)、白骨壤(Auicenniamarina)、海漆(Excoecariaagallocha)等。我国微生物学工作者从中分离得到了链格孢属(Alternaria)、曲霉属(Aspergillus)、芽枝霉属(Cladosporium)、镰孢霉属(Fusarium)、拟青霉属(Paecelomyces)、拟盘多毛孢属(Pestalotiopsis)、青霉(Penicillium)、茎点霉(Phoma)、叶点霉(Phyllosticta)、木霉(Trichoderma)、芽孢杆菌属(Bacillus)等植物内生真菌和内生细菌[39-41]。从这些微生物中又分别检测到了抗菌、抗肿瘤、抗氧化等活性,分离到了肽类、多糖类、尿囊素、异香豆素等活性化合物[37,40-42]。小柴科的桃儿七(Sinopodophyllumhexandrum)、八角莲(Dysasmaversipellis)、南方山荷叶(Diphylleiasinensia)等鬼臼类(Podophylloideae)植物内生微生物中有些菌株能合成具有抗肿瘤活性的鬼臼毒素(Podophyllotoxin);银杏(Ginkgobiloba)的内生微生物中有些具有明显的抗氧化作用;夹竹桃科的长春花(Catharanthusroseus)的内生微生物中,镰孢霉属(Fusarium)真菌等有些能合成具有明显的抗癌作用的长春新碱(Vincristine);天麻(Gastrodiaelata)、石斛类植物(Dendrobiumspp.)等兰科(Orchidaceae)植物中的密环菌属(Armillaria)、角担菌属(Ceratobasidium)、皮伞菌属(Marasmius)、镰孢霉属(Fusarium)、丝核菌属(Rhizoctonia)等内生真菌也生产多种生理活性物质,获得了高度的关注[17,29,37]。关于药用植物的内生微生物及其药物指向的生理活性物质的研究在我国如火如荼,从各个角度总结出来的综述也层出不穷[9,37,43-44],在此不一一赘述。但是王剑文,谭仁祥等提出的利用内生菌寡糖诱导黄花蒿(Artemisiaannua)发根(Hairyroot)合成青蒿素(Artemisinin)的研究提示了植物内生微生物利用的一个新方向[45],提示了植物内生微生物的作用并非一定要以微生物为主的思路,唤起我们对内生菌和宿主两者的相互作用的关注,值得借鉴。

4.2涉农的植物内生微生物研究

微生物研究范文第9篇

关键词:病原微生物 分子生物 诊断技术

【中图分类号】R4【文献标识码】A【文章编号】1008-1879(2012)02-0027-01

1 自动化鉴定技术的应用

临床微生物的实验室检查以染色、培养、生化鉴定等为主,尤其是分离培养,目前仍然是许多病原体检测的“金标准”。但是,由于细菌的生长繁殖需要一定时间,使检测周期难以缩短。此外,很多病原体的培养受营养要求、抗生素应用及病原体含量等因素的影响,用传统人工方法操作复杂、检测周期长,敏感性与特异性也有限。为解决这一问题,各种自动化培养和鉴定系统不断产生,随着计算机的发展和应用,先后出现了许多自动与半自动细菌鉴定与药敏系统,统称为“微生物鉴定专家系统”,这些系统大大提高了临床实验室的工作效率和检测的准确性,传统鉴定方法也在逐步改进,并在一定程度内加快了检测速度。

2 免疫学方法

免疫学技术是利用特异性抗原抗体反应,检测病原微生物,简化了病原微生物的鉴定步骤,备受关注。各大文献数据库提供的数据显示,几乎建立了所有病原体的血清学检测方法,表明该方法已成为一种微生物实验室常用的成熟的检测技术。

2.1 凝集技术常用的凝集技术有乳胶凝集技术和血清凝集技术。用于微生物的初步诊断、分型、鉴定,例如霍乱弧菌和志贺菌的分型,大肠杆菌O157:H7、脑膜炎球菌等,短时间内就可完成鉴定。该诊断法具有操作简便、快速、准确、特异性强、阳性率高等特点。

2.2 荧光抗体技术荧光抗体技术是根据抗原抗体反应具有高度的特异性,把荧光素作为抗原标记物,在荧光显微镜下检查呈现荧光的特异性抗原抗体复合物及其存在部位。荧光抗体技术的主要特点是特异性强、速度快。吕治林等报道由美国同行所作的用炭疽杆菌细胞壁(CW-DFA)和荚膜抗原(CAP-DFA)特异的荧光标记的单克隆抗体,可快速鉴别炭疽杆菌。

2.3 酶免疫技术酶联免疫技术现已被广泛地应用于多种病原微生物的检测,可检测样本中病原体抗原,也可检测机体中的抗体成分。应用单克隆抗体结合硝酸纤维膜上的斑点ELISA技术,已成功地自患者的咽拭标本中同时检出可能存在的肺炎支原体、流感病毒、副流感病毒、呼吸道合胞病毒和腺病毒。Gehring等用酶联免疫化学发光法(ELIMCL)测定大肠杆菌O157:H7。许多疾病的检测都已有商品化的试剂盒出现。

3 分子生物学技术

随着分子生物学技术的迅速发展,使人们对微生物的认识从外部表型逐渐转向内部基因结构特征,微生物的检测也从生化、免疫方法转向基因水平检测,对于那些难培养和不可能培养的微生物,可直接通过获得基因信息,给微生物学的检测带来崭新的领域,为科学快速发展提供了新的机遇。

3.1 PCR技术PCR具有高度敏感性和特异性,在病原体检测上,对形态和生化反应不典型的微生物鉴定,常规方法常难以准确检测,即使出现大量死菌PCR也能做出准确的鉴定;不受混合标本的影响,可轻易从含有大量正常菌群的标本中鉴定病原菌;对于生长缓慢或难于培养的微生物鉴定,如分枝杆菌、幽门螺杆菌、支原体、衣原体、螺旋体等,目前其他方法阳性检出率很低,PCR技术对这类菌株的鉴定有重要意义。但是常规PCR技术也存在一些问题,如出现假阳性、形成引物二聚体,检测操作也比较繁琐,中间污染环节多,易出现假阳性或假阴性结果。为了克服这些不足,一些新的PCR技术渐衍生出来并被用于实践,如巢式PCR、逆转录PCR、多重PCR、通用引物PCR(UP-PCR)、PCR单链构象多态性分析、随机引物DNA多态性扩增(RAPD)、限制性长度多态性分析(RFLP)、实时荧光定量PCR等。

3.2 基于16S rRNA与GyaB的检测技术。

3.2.1 以16S rRNA为靶基因进行检测16S rRNA存在于所有原核生物细胞中,它们相对稳定且有较高的拷贝数,其序列中含可变区及高度保守区,因此可设计群、属、种特异性的探针。现阶段各种常见细菌的16S rRNA基因几乎全部测序完成,16SrRNA编码基因的这些特点使之成为较理想的细菌基因分类的靶序列,逐渐成为细菌鉴定、分类的“金标准”。

3.2.2 以促旋酶(gyrase)B亚单位基因靶基因进行检测GyaB除了具有16S rRNA所具有的优点外,其基因进化率高于核糖体基因,还有GyaB在近乎全部细菌中呈单拷贝形式。有研究表明,基于GyaB序列构建的进化图谱与基于DNA-DNA杂交的相一致。因此,GyaB的分析特别适合于菌株的区别和鉴定。Fukushima等以GyaB基因为靶基因设计基因芯片来检测分枝杆菌属,实验结果显示此芯片鉴别分枝杆菌达到种水平,并且能区别密切相关的菌种,这对临床治疗具有重要的参考价值,说明分析GyaB基因序列对于在菌种水平鉴别细菌是快速而有效的方法。

3.3 多位点序列分型多位点序列分型(MLST)是近年来发展很快的分子生物学分析方法,具有很高的分辨能力,既适于分子流行病学研究,也可用于分子进化学的研究。MLST越来越多地被作为能进行国际间菌株比较的常用工具,建立一种更为准确的分析系统方法,并且用于研究出现的不同的抗生素抵抗株,相关特殊基因型及新的变异株引起的疾病流行病学分析和种群结构的研究。

参考文献

[1] 毕春霞,闫志勇,王斌.病原微生物临床检验技术进展[J].青岛大学医学院学报,2005,41(4):369-371

微生物研究范文第10篇

关键词:课程思政;微生物学;教学改革

1微生物学课程开展课程思政的必要性分析

由于社会环境的消极影响以及认知局限等多重原因,高校学生作为我国重要的人才储备,其道德建设正面临严峻挑战[6]。学生在步入大学校园后极易产生懈怠心理,甚至出现无故旷课、沉迷网络游戏等不良行为[7]。尤其是在互联网技术蓬勃发展的当下,大学生的“三观”极易受到网络信息的影响,导致部分学生存在利己主义、拜金主义等错误的思想观念[8]。此外,新时代的大学生常会面临经济、就业、考研等多重压力,心理健康问题也随之而来[9]。如何改善学生的这些心理问题已成为思政教育关注的重点。然而,长期以来高校德育教育仍以思想政治理论课程为主,专业课程往往只注重专业知识的传授,与思政教育严重脱钩[10]。微生物学课程中蕴含诸多的科学与人文精神,但大量育人资源尚未被充分挖掘。因此,依据专业及学生特点重构微生物学课程思政教育格局,落实微生物学课程与思政教育同向同行,是新时代对微生物学任课教师提出的新要求。

2微生物学课程思政元素的挖掘与融入

2.1微生物学课程思政元素的挖掘

微生物学课程的教学内容蕴含大量思政元素,如何挖掘和甄选思政内容是实现课程思政的关键。微生物学课程开展课程思政,可以有效激发学生的爱国情怀,培养学生良好的职业道德素养和工匠精神等。为了达到既教书又育人的目的,教师根据授课内容,充分梳理和甄选了大量思政融合点。

2.2混合式教学模式实施

结合微生物学课程内容繁杂且课时有限的特点,为提高课程思政实施效果,笔者利用线上线下混合式教学模式开展微生物学课程思政教学,从而实现全员全过程全方位育人。线上教学主要以超星学习通为依托分享多个课程思政资源,如在讲授蕈菌相关内容时,学生需在线上观看视频《开讲吧之李玉院士》,同时参与相关讨论,以扩展知识面并认识蕈菌的两面性。在课堂授课过程中,项目小组成员需结合线上学习内容及文献资料,完成项目内容(我国蕈菌产业的发展现状)的展示,此过程能够大大增强学生的民族自信心和自豪感,坚定学习本专业的理想信念。另外,针对我国蕈菌产业尚存的一些薄弱环节,笔者引导学生利用本专业知识科学合理开发蕈菌资源,不断创新,让学生为实现中华民族伟大复兴的中国梦贡献自己的智慧和力量。

3微生物学课程开展课程思政的效果研究

面对生物工程类专业学生,授课教师在深入挖掘和梳理微生物学课程思政元素的基础上,以课堂为舞台,充分利用超星学习通这一教学平台将思政元素与本课程教学内容进行柔性融合,取得了较好的教学效果。笔者对期末考试成绩进行对比分析发现,与以往的无思政育人的专业理论教学相比,参与专业课课程思政学生的考试成绩明显更高(见图1)。另外,在开展课程思政的情况下,学生的出勤率也更高(见图2)。这两个方面均证明微生物学课程开展课程思政大大激发了学生的学习热情。微生物学教学过程中引入思政教育可以激发学生的爱国热情和民族自豪感,培养学生勇担重任、不惧危险的品质,学生对微生物学课程开展课程思政的认同度高达94.33%。

4结语

微生物学课程的教学内容中蕴含丰富的思政元素,笔者通过线上线下混合式教学模式将生物工程类专业微生物学课程与思政育人进行了柔性融合。这种教学方式的初探一方面提高了学生的学习兴趣,增强了学生对专业知识掌握的深度和广度;另一方面也利于培养学生的社会主义核心价值观,更好地培养适应时代潮流的高素质人才。因此,在今后的教学工作中,笔者将更为深入地挖掘本学科的思政元素,探索更为灵活多样的课程思政教学方式,进一步推动微生物学课程思政育人的步伐。

参考文献

[1]曲超,卢安.计算机课程中的思政教育探[J].黑龙江教育(高教研究与评估),2021(4):74-76.

[2]刘晓军,张鑫悦.电动力学课程思政建设的思考与实践[J].大学物理,2021,40(4):37-39.

[3]邹莹.“三全育人”视野下的会计学课程思政教学改革实践[J].林区教学,2021(4):22-25.

[4]王占军,辛淑静,刘锦轩,等.基于抗疫精神的“基因工程”课程思政教学设计与实践[J].微生物学通报,2021,48(6):2259-2269.

[5]杨小玲.“模拟电路”课程思政的教学探索[J].电气电子教学学报,2021,43(2):34-36.

[6]刘莹.网络社会大学生的道德现状[J].商业文化,2021(3):28-29.

[7]王家丽.新时代高校“课程思政”建设的现状及对策研究[J].现代职业教育,2021(14):18-20.

[8]张莉.新时代大学生思想政治素养状况与教育引导路径[J].百色学院学报,2020,33(4):134-136.

[9]马翠婷.大学生心理问题研究现状及解决方法[J].科教文汇,2020(9):167-168.