首页 > 文章中心 > 挖掘技术论文

挖掘技术论文范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

数据挖掘技术分析论文

[摘要]本文主要介绍了数据挖掘的基本概念,以及数据挖掘的方法。

[关键词]数据挖掘数据挖掘方法

随着信息技术迅速发展,数据库的规模不断扩大,产生了大量的数据。但大量的数据往往无法辨别隐藏在其中的能对决策提供支持的信息,而传统的查询、报表工具无法满足挖掘这些信息的需求。因此,需要一种新的数据分析技术处理大量数据,并从中抽取有价值的潜在知识,数据挖掘(DataMining)技术由此应运而生。

一、数据挖掘的定义

数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程。

二、数据挖掘的方法

1.统计方法。传统的统计学为数据挖掘提供了许多判别和回归分析方法,常用的有贝叶斯推理、回归分析、方差分析等技术。贝叶斯推理是在知道新的信息后修正数据集概率分布的基本工具,处理数据挖掘中的分类问题,回归分析用来找到一个输入变量和输出变量关系的最佳模型,在回归分析中有用来描述一个变量的变化趋势和别的变量值的关系的线性回归,还有用来为某些事件发生的概率建模为预测变量集的对数回归、统计方法中的方差分析一般用于分析估计回归直线的性能和自变量对最终回归的影响,是许多挖掘应用中有力的工具之一。

2.关联规则。关联规则是一种简单,实用的分析规则,它描述了一个事物中某些属性同时出现的规律和模式,是数据挖掘中最成熟的主要技术之一。关联规则在数据挖掘领域应用很广泛适合于在大型数据集中发现数据之间的有意义关系,原因之一是它不受只选择一个因变量的限制。大多数关联规则挖掘算法能够无遗漏发现隐藏在所挖掘数据中的所有关联关系,但是,并不是所有通过关联得到的属性之间的关系都有实际应用价值,要对这些规则要进行有效的评价,筛选有意义的关联规则。

全文阅读

科研数据挖掘技术论文

一、数据挖掘相关概念

数据挖掘技术是近些年发展起来的一门新兴学科,它涉及到数据库和人工智能等多个领域。随着计算机技术的普及数据库产生大量数据,能够从这些大量数据中抽取出有价值信息的技术称之为数据挖掘技术。数据挖掘方法有统计学方法、关联规则挖掘、决策树方法、聚类方法等八种方法,关联规则是其中最常用的研究方法。关联规则算法是1993年由R.Atal,Inipusqi,Sqtm三人提出的Apriori算法,是指从海量数据中挖掘出有价值的能够揭示实体和数据项间某些隐藏的联系的有关知识,其中描述关联规则的两个重要概念分别是Suppor(t支持度)和Confi-dence(可信度)。只有当Support和Confidence两者都较高的关联规则才是有效的、需要进一步进行分析和应用的规则。

二、使用Weka进行关联挖掘

Weka的全名是怀卡托智能分析环境(WaikatoEnviron-mentforKnowledgeAnalysis),是一款免费的、非商业化的、基于JAVA环境下开源的机器学习以及数据挖掘软件[2]。它包含了许多数据挖掘的算法,是目前最完备的数据挖掘软件之一。Weka软件提供了Explorer、Experimenter、Knowledge-Flow、SimpleCLI四种模块[2]。其中Explorer是用来探索数据环境的,Experimenter是对各种实验计划进行数据测试,KnowledgeFlow和Explorer类似,但该模块通过其特殊的接口可以让使用者通过拖动的形式去创建实验方案,Simple-CLI为简单的命令行界面。以下数据挖掘任务主要用Ex-plorer模块来进行。

(一)数据预处理

数据挖掘所需要的所有数据可以由系统排序模块生成并进行下载。这里我们下载近两年的教师科研信息。为了使论文总分、学术著作总分、科研获奖总分、科研立项总分、科研总得分更有利于数据挖掘计算,在这里我们将以上得分分别确定分类属性值。

(二)数据载入

点击Explorer进入后有四种载入数据的方式,这里采用第一种Openfile形式。由于Weka所支持的标准数据格式为ARFF,我们将处理好的xls格式另存为csv,在weka中找到这个文件并重新保存为arff文件格式来实现数据的载入。由于所载入的数据噪声比较多,这里应根据数据挖掘任务对数据表中与本次数据任务不相关的属性进行移除,只将学历、职称、论文等级、学术著作等级、科研获奖等级、科研立项等级、科研总分等级留下。

全文阅读

数据挖掘技术研究论文

[摘要]本文主要介绍了数据挖掘的基本概念,以及数据挖掘的方法。

[关键词]数据挖掘数据挖掘方法

随着信息技术迅速发展,数据库的规模不断扩大,产生了大量的数据。但大量的数据往往无法辨别隐藏在其中的能对决策提供支持的信息,而传统的查询、报表工具无法满足挖掘这些信息的需求。因此,需要一种新的数据分析技术处理大量数据,并从中抽取有价值的潜在知识,数据挖掘(DataMining)技术由此应运而生。

一、数据挖掘的定义

数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程。

二、数据挖掘的方法

1.统计方法。传统的统计学为数据挖掘提供了许多判别和回归分析方法,常用的有贝叶斯推理、回归分析、方差分析等技术。贝叶斯推理是在知道新的信息后修正数据集概率分布的基本工具,处理数据挖掘中的分类问题,回归分析用来找到一个输入变量和输出变量关系的最佳模型,在回归分析中有用来描述一个变量的变化趋势和别的变量值的关系的线性回归,还有用来为某些事件发生的概率建模为预测变量集的对数回归、统计方法中的方差分析一般用于分析估计回归直线的性能和自变量对最终回归的影响,是许多挖掘应用中有力的工具之一。

2.关联规则。关联规则是一种简单,实用的分析规则,它描述了一个事物中某些属性同时出现的规律和模式,是数据挖掘中最成熟的主要技术之一。关联规则在数据挖掘领域应用很广泛适合于在大型数据集中发现数据之间的有意义关系,原因之一是它不受只选择一个因变量的限制。大多数关联规则挖掘算法能够无遗漏发现隐藏在所挖掘数据中的所有关联关系,但是,并不是所有通过关联得到的属性之间的关系都有实际应用价值,要对这些规则要进行有效的评价,筛选有意义的关联规则。

全文阅读

数据挖掘技术探讨论文

一、数据挖掘的定义

数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程。

二、数据挖掘的方法

1.统计方法。传统的统计学为数据挖掘提供了许多判别和回归分析方法,常用的有贝叶斯推理、回归分析、方差分析等技术。贝叶斯推理是在知道新的信息后修正数据集概率分布的基本工具,处理数据挖掘中的分类问题,回归分析用来找到一个输入变量和输出变量关系的最佳模型,在回归分析中有用来描述一个变量的变化趋势和别的变量值的关系的线性回归,还有用来为某些事件发生的概率建模为预测变量集的对数回归、统计方法中的方差分析一般用于分析估计回归直线的性能和自变量对最终回归的影响,是许多挖掘应用中有力的工具之一。

2.关联规则。关联规则是一种简单,实用的分析规则,它描述了一个事物中某些属性同时出现的规律和模式,是数据挖掘中最成熟的主要技术之一。关联规则在数据挖掘领域应用很广泛适合于在大型数据集中发现数据之间的有意义关系,原因之一是它不受只选择一个因变量的限制。大多数关联规则挖掘算法能够无遗漏发现隐藏在所挖掘数据中的所有关联关系,但是,并不是所有通过关联得到的属性之间的关系都有实际应用价值,要对这些规则要进行有效的评价,筛选有意义的关联规则。

3.聚类分析。聚类分析是根据所选样本间关联的标准将其划分成几个组,同组内的样本具有较高的相似度,不同组的则相异,常用的技术有分裂算法,凝聚算法,划分聚类和增量聚类。聚类方法适合于探讨样本间的内部关系,从而对样本结构做出合理的评价,此外,聚类分析还用于对孤立点的检测。并非由聚类分析算法得到的类对决策都有效,在运用某一个算法之前,一般要先对数据的聚类趋势进行检验。

4.决策树方法。决策树学习是一种通过逼近离散值目标函数的方法,通过把实例从根结点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每个结点说明了对实例的某个属性的测试,该结点的每一个后继分支对应于该属性的一个可能值,分类实例的方法是从这棵树的根结点开始,测试这个结点指定的属性,然后按照给定实例的该属性值对应的树枝向下移动。决策树方法是要应用于数据挖掘的分类方面。

5.神经网络。神经网络建立在自学习的数学模型基础之上,能够对大量复杂的数据进行分析,并可以完成对人脑或其他计算机来说极为复杂的模式抽取及趋势分析,神经网络既可以表现为有指导的学习也可以是无指导聚类,无论哪种,输入到神经网络中的值都是数值型的。人工神经元网络模拟人脑神经元结构,建立三大类多种神经元网络,具有非线形映射特性、信息的分布存储、并行处理和全局集体的作用、高度的自学习、自组织和自适应能力的种种优点。

全文阅读

数据挖掘技术应用论文

[摘要]在客户关系管理中,企业将面临大量的来自于客户和市场的数据和信息,这些数据是大量的、不完全的、有噪声的、模糊的、随机的,但同时又是非常有用的。数据挖掘技术可以将这些数据有效的分析、整理,从而给数据使用者提供有效、及时的信息。本文就数据挖掘技术在客户关系管理中如何应用做了粗浅的探讨。

[关键词]数据挖掘客户关系管理应用步骤

根据波特的影响企业的利益相关者理论,企业有五个利益相关者,分别是客户、竞争对手、供应商、分销商和政府等其他利益相关者。其中,最重要的利益相关者就是客户。现代企业的竞争优势不仅体现在产品上,还体现在市场上,谁能获得更大的市场份额,谁就能在竞争中占据优势和主动。而对市场份额的争夺实质上是对客户的争夺,因此,企业必须完成从“产品”导向向“客户”导向的转变,对企业与客户发生的各种关系进行管理。进行有效的客户关系管理,就要通过有效的途径,从储存大量客户信息的数据仓库中经过深层分析,获得有利于商业运作,提高企业市场竞争力的有效信息。而实现这些有效性的关键技术支持就是数据挖掘,即从海量数据中挖掘出更有价值的潜在信息。正是有了数据挖掘技术的支持,才使得客户关系管理的理念和目标得以实现,满足现代电子商务时代的需求和挑战。

一、客户关系管理(CRM)

CRM是一种旨在改善企业与客户之间关系的新型管理方法。它是企业通过富有意义的交流和沟通,理解并影响客户行为,最终实现提高客户获取、客户保留、客户忠诚和客户创利的目的。它包括的主要内容有客户识别、客户关系的建立、客户保持、客户流失控制和客户挽留。通过客户关系管理能够提高企业销售收入,改善企业的服务,提高客户满意度,同时能提高员工的生产能力。

二、数据挖掘(DM)

数据挖掘(DataMining,简称DM),简单的讲就是从大量数据中挖掘或抽取出知识。数据挖掘概念的定义描述有若干版本。一个通用的定义是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取人们感兴趣的知识,这些知识是隐讳的、事先未知的、潜在有用的信息。

常用的数据挖掘方法有:(1)关联分析。即从给定的数据集中发现频繁出现的项集模式知识。例如,某商场通过关联分析,可以找出若干个客户在本商场购买商品时,哪些商品被购置率较高,进而可以发现数据库中不同商品的联系,进而反映客户的购买习惯。(2)序列模式分析。它与关联分析相似,其目的也是为了控制挖掘出的数据间的联系。但序列模式分析的侧重点在于分析数据间的前后(因果)关系。例如,可以通过分析客户在购买A商品后,必定(或大部分情况下)随着购买B商品,来发现客户潜在的购买模式。(3)分类分析。是找出一组能够描述数据集合典型特征的模型,以便能够分类识别未知数据的归属或类别。例如,银行可以根据客户的债务水平、收入水平和工作情况,可对给定用户进行信用风险分析。(4)聚类分析。是从给定的数据集中搜索数据对象之间所存在的有价值联系。在商业上,聚类可以通过顾客数据将顾客信息分组,并对顾客的购买模式进行描述,找出他们的特征,制定针对性的营销方案。(5)孤立点分析。孤立点是数据库中与数据的一般模式不一致的数据对象,它可能是收集数据的设备出现故障、人为输入时的输入错误等。孤立点分析就是专门挖掘这些特殊信息的方法。例如,银行可以利用孤立点分析发现信用卡诈骗,电信部门可以利用孤立点分析发现电话盗用等。

全文阅读

数据挖掘技术下高校图书馆管理论文

一、Web数据挖掘技术简介

要了解Web数据挖掘技术,首先就必须要了解数据挖掘技术。数据挖掘是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。它的表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的,然后发展到可对数据库进行查询和访问,进而发展到对数据库的即时遍历。数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的,然后发展到可对数据库进行查询和访问,进而发展到对数据库的即时遍历。Web数据挖掘是一种综合的技术,它主要是使用数据挖掘技术在互联网挖掘各种有用的、有趣的、隐藏起来的信息或者是有用的模式。与传统的数据挖掘相比,Web数据挖掘所挖掘的信息更加的海量,这些信息具有异构和分布广的特点。对于服务器上的日志与用户信息的挖掘仍然属于传统的数据挖掘。Web数据挖掘由于Web的逻辑结构其所挖掘到的模式有可能是关于Web内容的,也有可能是关于Web结构的。同时有些数据挖掘技术也不能直接运用到Web数据挖掘中。Web数据挖掘的研究范围十分广泛,它的研究主要包括了数据库技术、信息获取技术、统计学、神经网络等。Web数据挖掘根据所处理的对象可以分为三类:Web文档的内容挖掘、Web文档的结构挖掘、Web使用的挖掘。Web文档的内容挖掘指的是从Web文档及对其的描述内容中获取到有用的信息,即是对Web上大量的各种文档集合的内容进行处理,例如摘要、分类、聚类、关联分析等。同时内容挖掘还可以对各种多媒体信息进行挖掘。Web上的内容摘要是用简洁的语言和方式对文档的内容进行描述和解释,让用户在不用浏览全文的情况下就可以对全文的内容和文章写作的目的有一个总体的了解。文章写作的目的有一个总体的了解。而Web内容挖掘的这种方式非常有用,例如应用到检索结果的显示中。Web分类则指的是根据已经确定好的类别,为每一个获得的Web文档确定一个大类。聚类则是指的在没有确定类别之前,将相似度高的文档归为一类。关联分析指的是从文档集合中找出不同语词之间的具有的关系。Web文档的结构挖掘指的是从互联网的整体结构和网页之间的相互链接以及网页本身的结构中获取有用的信息和知识。目前为止针对结构的挖掘主要还是链式结构模式。对于Web结构的挖掘主要源于对引文的分析,引文分析的主要内容就是通过对网页的链接数和被连接数以及对象的分析来建立一个链接结构模式,这种模式可以用来对网页进行归类,同时还可以获取网页之间的相似度和关联度等信息。Web使用的挖掘一般情况下指的是对Web日志的挖掘。其挖掘的对象是用户与互联网交互过程中所抽取出来的各种信息,例如访问记录、用户名、用户注册信息以及用户所进行的操作等。在这一方面的研究已经比较成熟,同时也有很多较为成熟的产品例如NETPERCERPION公司的Netpercerptions,Accrue公司的AccrueInsight和AccrueHitList等都是技术较为成熟的产品。

二、Web数据挖掘技术的工作流程

Web数据挖掘技术的主要工作流程可以分为以下几个步骤:第一步,确立目标样本,这一步是用户选取目标文本,以此来作为提取用户的特征信息;第二步,提取特征信息,这一步就是根据第一步得到的目标样本的词频分布,从现有的统计词典中获取所要挖掘的目标的特征向量,并计算出其相应的权值;第三步,从网络上获取信息,这一步是利用通过搜索引擎站点选择采集站点,然后通过Robot程序采集静态的Web页面,最后再获取这些被访问站点的网络数据库中的动态信息,然后生成WWW资源库索引;第四步,进行信息特征匹配,通过提取源信息的特征向量,去和目标样本的特征向量进行匹配,最后将符合阈值条件的信息返回个用户。

三、Web数据挖掘技术在高校数字图书馆中的应用

高校数字图书馆为师生主要提供以下功能:查找图书、期刊论文、会议文献等数字资源;图书借阅、归还等服务;图书信息、管理制度;导航到图书光盘、视频资源等数据库系统。师生时常登录到网站中查找其需要的信息,根据师生所学专业、研究方向不同,关注目标也不同。通常这类师生会到常用的图书馆网站上,查找自己所需要的特定领域的资源;浏览一下有哪些内容发生变化,是否有新知识增加,而且所有改变常常是用户所关注的内容;另外,当目标网页所在的位置有所改变或这个网站的组织结构、层次关系有所变动时,所有这些问题只要稍加改动,容易使用户难以找到所需内容。本课题采用Web挖掘技术与搜索技术相结合。首先允许用户对感兴趣的内容进行定制,构造数据挖掘的先验知识,然后通过构造浏览器插件,捕获用户在浏览器上的行为数据,采用Web数据挖掘的方法,深入分析用户的浏览行为数据,获得用户的信息资料集,最终为用户提供不同的个性化服务页面,并提供用户对站内信息进行搜索功能,同时可以满足师生对于图书馆资源进行查找访问的需求,实现高校图书馆网站资源真正意义上的个性化服务。

1、为开发网络信息资源提供了工具

数字图书馆需要的是一种可以有效的将信息进行组织管理,同时还能够对信息进行深层的加工管理,提供多层次的、智能化的信息服务和全方位的知识服务,提供经过加工、分析综合等处理的高附加值的信息产品和知识产品的工具。目前许多高校数字图书馆的查询手段还只局限于一些基本的数据操作,对数据只能进行初步的加工,不具有从这些数据中归纳出所隐含的有用信息的功能,也使得这些信息不为人知,从而得不到更好的使用,这些都是对网络信息资源的一种浪费。而通过Web数据挖掘技术科研有效的解决这一问题。这种技术可以用于挖掘文档的隐含的有用的内容,或者可以在其他工具搜索的基础上进一步进行处理,得到更为有用和精确的信息。通过Web数据挖掘技术科研对数字图书关注中的信息进行更加有效地整合。

全文阅读

数据挖掘技术在电子商务中应用论文

摘要:概述了数据挖掘的定义、方法、过程,论述了数据挖掘技术与电子商务的关系,提出了数据挖掘技术在电子商务系统中应用的体系结构,经过测试,达到了预定的结果。

关键词:数据挖掘电子商务应用

当今,国内外电子商务类网站日益兴起。许多电子商务类网站都提供了一定程度的个性化服务,比如提供商品推荐服务。而构成这些个性化服务的基础就是数据挖掘技术。

一、数据挖掘分析

1.数据挖掘的定义。数据挖掘(datamining,DM)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。包括存储和处理数据,选择处理大数据集的算法、解释结果、使结果可视化。

2.数据挖掘的方法。从商业的角度来看,数据挖掘是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数据。数据挖掘的方法大致可以分成4类:关联分析、概括分析、分类分析、聚类分析。(1)关联分析:分析表面上不相关数据之间的内在联系,揭示各事之间的依赖性和相关性,分析范围包括简单关联、因果关联等。在电子商务中,用数据挖掘找到隐藏的关联规则,当客户浏览、搜索关联规则中的某种商品时,就可以在页面中以推荐商品的形式显示关联规则中的其它商品。在进货计划和促销计划中,也可以将这个因素考虑进去。(2)概括分析:即提取数据库中指定的数据集合的一般特性,找出遍性规律。(3)分类分析:设置分类规则,把各个事务或实体按照性质和特征不同进行归类,把数据层次化和规整化,从而建立数据的分类模型。(4)聚类分析:通过分析和归纳实体之间的特征差异,选出具相识特征的实体聚合成为一个类,并用某种规则来描述该类的相同属性,形成一种聚类规则,实际上,它是与分类分析法互逆的过程。

3.数据挖掘的过程。该过程从大型数据库中挖掘先前未知的、有效的、可实用的信息,并使用这些信息做出决策或丰富知识。(1)确定业务对象:清晰地定义出业务问题,认清数据挖掘的目的是数据挖掘的重要一步。挖掘的最后结构是不可预测的,但要探索的问题应是有预见的,为了数据挖掘而数据挖掘则带有盲目性,是不会成功的。(2)数据准备。数据的选择:搜索所有与业务对象有关的内部和外部数据信息,并从中选择出适用于数据挖掘应用的数据。(3)数据挖掘:对所得到的经过转换的数据进行挖掘。除了完善从选择合适的挖掘算法外,其余一切工作都能自动地完成。(4)结果分析:解释并评估结果。其使用的分析方法一般应作数据挖掘操作而定,通常会用到可视化技术。(5)知识的同化:将分析所得到的知识集成到业务信息系统的组织结构中去。

二、数据挖掘与电子商务的关系

全文阅读

运用文本挖掘技术研究形神一体观的理论

摘要:形神一体现是中医基础理论之一,在中医学的理论体系形成过程中发挥着重要的地位,具有指导临床实践的作用。文本挖掘技术能从大量的文本信息中发现潜在的有价值的信息,将文本挖掘技术运用到形神一体观的理论研究为中医的理论研究提供了一条新的思路。  关键词:形神一体观;文本挖掘  中图分类号:R2-03

文献标识码:A  文章编号:1673-7717(2007)12-2480-02

1.形神一体观的理论内涵

形神一体观是中医学基础理论之一,形神学说肇始于《内经》,形与神是人体生命现象中最基本的现象,二者的关系是生命现象中最基本的关系。

1.1形的含义形的本义有二,一为形体、形质。如《易・系辞上》说:“在天成象,在地成形,变化见矣。”二指形状、形貌。如《国语・越语》:“天有还形”。《荀子・非相》:“故相形不如论心,论心不如择术。”中医学所称的形,即是指视之可见、触之可及之脏腑经络组织、五官九窍、四肢百骸等有形躯体,以及循行于脏腑之内的精微物质,此外还指有形物质资生助养下正常的脏腑经络组织功能活动。

1.2神的含义神之本义,系指主宰天地自然变化的自然界本身所固有的客观规律。中医学在充分保留其有关自然界变化莫测规律为神明的同时,还引申出神主宰人体生命活动,反应生命活动规律的生理外在表现以及精神意识思维等内涵进行了阐发,从而进一步丰富了形神理论。中医学理论中,神的概念很广泛,其含义有三:一是指自然界物质变化功能。如荀子说:“万物各得其和以生,各得其养以成,不见其事,而见其功,夫是谓之神。”(《荀子・天论》)天地的变化而生成万物,这种现象是神的表现,有天地之形,然后有神的变化。二是指人体生命的一切活动。中医学认为人体本身就是一个阴阳对立统一体,阴阳之气的运动变化,推动了生命的运动和变化,而生命活动的本身也称之神。神去则气化停止,生命也就完结。可见,神是人体生命的根本,因此,只有积精全神气才能“精神内守,病安从来”。三是指人的精神意识,精神活动的高级形式是思维。

1.3形与神的关系 形与神的关系主要体现形为神之质和神为形之主这两方面。神的物质基础是气血,气血又是构成形体的基本物质,而人体脏腑组织的功能活动,以及气血的营行,又必须受神的主宰。这种“形与神”二者相互依附而不可分割的关系,称之谓“形与神俱”。形乃神之宅,神乃形之主。无神则形不可活,无形则神无以附,二者相辅相成,不可分离。形神统一是生命存在的根本保证。中医学理论中的形神一体观,是养生防病,延年益寿,以及诊断治疗的重要理论基础。

神是机体生命活动的体现,神不能离开人体而独立存在,有形才能有神,形健则神旺,形衰则神惫。故《素问・上古天真论》有“形神合一”及“形与神俱”的理论,说明形与神的关系。经过无数实践证明,神的盛衰的确是健康与否的重要标志之一。反过来看,如形赢色败,虽然两目有神亦是假象。

全文阅读

数据挖掘技术应用于金融行业研究论文

摘要:随着计算机信息技术的发展,信息共享使得人们能得到越来越多的数据。与此同时出现了分析这些海量数据的一门技术——数据挖掘技术。本文首先介绍了数据挖掘技术的定义以及常用挖掘方法,然后介绍了数据挖掘技术在金融行业的典型应用。

关键字:数据挖掘金融数据

金融部门每天的业务都会产生大量数据,利用目前的数据库系统可以有效地实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势。缺乏挖掘数据背后隐藏的知识的手段,导致了数据爆炸但知识贫乏”的现象。与此同时,金融机构的运作必然存在金融风险,风险管理是每一个金融机构的重要工作。利用数据挖掘技术不但可以从这海量的数据中发现隐藏在其后的规律,而且可以很好地降低金融机构存在的风险。学习和应用数扼挖掘技术对我国的金融机构有重要意义。

一、数据挖掘概述

1.数据挖掘的定义对于数据挖掘,一种比较公认的定义是W.J.Frawley,G.PiatetskShapiro等人提出的。数据挖掘就是从大型数据库的数据中提取人们感兴趣的知识、这些知识是隐含的、事先未知的、潜在有用的信息,提取的知识表示为概念(Concepts),规则(Rules)、规律(Regularities)、模式(Patterns)等形式。这个定义把数据挖掘的对象定义为数据库。

随着数据挖掘技术的不断发展,其应用领域也不断拓广。数据挖掘的对象已不再仅是数据库,也可以是文件系统,或组织在一起的数据集合,还可以是数据仓库。与此同时,数据挖掘也有了越来越多不同的定义,但这些定义尽管表达方式不同,其本质都是近似的,概括起来主要是从技术角度和商业角度给出数据挖掘的定义。

从技术角度看,数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在的和有用的信息和知识的过程。它是一门广义的交叉学科,涉及数据库技术、人工智能、机器学习、神经网络、统计学、模式识别、知识库系统、知识获取、信息检索、高性能计算和数据可视化等多学科领域且本身还在不断发展。目前有许多富有挑战的领域如文本数据挖掘、Web信息挖掘、空间数据挖掘等。

从商业角度看,数据挖掘是一种深层次的商业信息分析技术。它按照企业既定业务目标,对大量的企业数据进行探索和分析,揭示隐藏的、未知的或验证已知的规律性并进一步将其模型化,从而自动地提取出用以辅助商业决策的相关商业模式。

全文阅读

挖掘机维护技术论文

摘要:现代挖掘机一般都采用了机电液一体化控制模式,常见故障为发动机转速下降,工作速度变慢,挖掘无力等一些日常使用中的故障。本文简单介绍了挖掘机在这几类故障中的故障判断及维修技术,另外还介绍了挖掘机的日常保养技术,以保障挖掘机的正常工作。

关键词:挖掘机;维修;保养

随着科技的进步,现代挖掘机一般都采用了机电液一体化控制模式,我们在排除一些故障时,解决的多是发动机、液压泵、分配阀、外部负荷的匹配问题。一般在挖掘机作业中,这几方面不能匹配,经常会表现为:发动机转速下降,工作速度变慢,挖掘无力以及一些常见问题。

一、发动机转速下降

首先要测试发动机本身输出功率,如果发动机输出功率低于额定功率,则产生故障的原因可能是燃油品质差、燃油压力低、气门间隙不对、发动机的某缸不工作、喷油定时有错、燃油量的调定值不对、进气系统漏气、制动器及其操纵杆有毛病和涡轮增压器积炭。如果发动机输出动力正常,就需要查看是否因为液压泵的流量和发动机的输出功率不匹配。

液压挖掘机在作业中速度与负载是成反比的,就是流量和泵的输出压力乘积是一个不变量,泵的输出功率恒定或近似恒定。如果泵控制系统出现了故障,就不能实现发动机、泵及阀在不同工况区域负荷优化匹配状态,挖掘机从而将不能正常工作。此类故障要先从电器系统入手,再检查液压系统,最后检查机械传动系统。

二、工作速度变慢

挖掘机工作速度变慢主要原因是整机各部磨损造成发动机功率下降与液压系统内泄。挖掘机的液压泵为柱塞变量泵,工作一定时间后,泵内部液压元件(缸体、柱塞、配流盘、九孔板、龟背等)不可避免的产生过度磨损,会造成内漏,各参数据不协调,从而导致流量不足油温过高,工作速度缓慢。这时就需要整机大修,对磨损超限的零部件进行修复更换。

全文阅读