首页 > 文章中心 > 土壤检测

土壤检测范文精选

土壤检测范文第1篇

关键词:土壤检测;方法

中图分类号:S151.9+5 文献标识码:A 文章编号:1674-0432(2012)-04-0085-2

土壤检测就是对土壤中各成分的含量进行快速准确的测算,为测土配方施肥等提供数据参考,从而对土壤的用途给出更清晰明确的建议,因土施肥。根据土壤的养分状况,了解种植方式,耕作水平等。

1 关于土壤的普查化验

样品室内分析和化验土作是土壤普查化验中一个很重要的环节。提高土壤化验工作效率,确保数据准确,直接关系整个土壤普查工作的进程以及质量。例如,我们要对全县91.7万亩耕地进行普查,那我们总共需要采集559个剖面样,48个地下水样,833个农化样,这样才能达到一个样品/一千亩地的要求。对于采集来的土壤样品,具体要测定的项目有:水分、有机质、碱解氮、全氮、速效钾和速效磷;重点剖面有机械组成、碳酸钙、全磷和交换量,同时我们还需将部分样品做盐分、全钾和酸碱度的测试。要保证化验数据的准确性和化验进度,就必须加强组织管理。

1.1 土壤样品在接收、处理和保存方面需要有成熟的制度

1.2 完成化验任务的保证需要有一定的组织性

比如先组成一个几人的化验团队,分为7小组,每组1-2人,包1-3个项目。另外再分配1个组负责后勤。当任务分配到组以后,化验人员就可以按照各自的任务,制定任务定额,保证化验分析进度。为保证数据准确度,我们可采取以下措施:

第一,设置标准样品:检验化验人员的操作水平,减少手工统计误差。

第二,专人分析专项:熟练掌握操作,提高数据的准确性。

第三,分析化验初期,所有样品都要进行重复的测算,按照允许的误差范围进行衡量(见下表)。在分析近300个样品后,通过熟练的操作将重复样品减少到30%。整批样品不被返工,要三分之二的重复合乎要求,这样测算结果才可以被通过。除此以外,在各项目进行数据汇总时,要重复的审核数据是否合理、准确。

如:上表所示:各指标允许的相对误差和绝对误差均是5%,只需两者中一项符合要求。

第四,在样品化验时,邀请专家和技术人员一起探讨解决技术疑难点;为确保数据的真实公正性,要把一些标准样品送到相关科研单位再次化验检测。

第五,试剂配制、标准曲线绘制和溶液标定等方面必须符合特定要求,而且要严格记录,在进行原始数据分析时不能做任意涂抹修改。

2 土壤检测的方法

土壤检测主要是测定土壤中的水分、有效氮、磷、钾以及有机质。水分的测定是采用燃烧失重法,通过高温蒸发土壤中的水分,以失水量计算土壤中的水分。有效氮、磷、钾养分的测定是先用联合浸提剂提取,接下来氮用靛酚蓝比色法,磷用钼锑抗比色,钾用四苯硼钾比浊法测定。有机质的测定是通过重铬酸钾与土壤中的有机质发生氧化还原反应,再用滴定法或比色法测定的。

2.1 操作方法(针对YN型土壤肥料测定仪)

2.1.1 水分测定

燃烧前铝盒质量为W1;样品(约5g)+铝盒总质量为W2;加5~10 ml酒精灼烧,熄灭后再加5 ml酒精灼烧,熄灭后样品+铝盒质量为W3;采用计算公式:水分(%)=(W2-W3)÷(W3-W1)×100%

2.1.2 pH测定

25g样品+25ml水,搅拌、静放半小时后用pH试纸测定。

2.1.3 有机质测定

第一步,制备空白液。吸水3ml,重铬酸钾溶液10ml,浓硫酸10 ml至100 ml三角瓶中,摇晃半分钟,25℃以上静置20分钟,加水25ml,吸取10ml到另一个三角瓶,加入缓氧化剂2.5ml,摇匀备用。

第二步,制备标准液。吸取0.5%的碳标准溶液3 ml,其他和空白液一起制备。

第三步,制备待测液。称土壤1 g加入三角瓶后加水3 ml,其他同空白液制备后过滤。

第四步,比色。选取滤光片数值:4,放空白液与光路中,按“比色”键,功能切换至1,调整显示至100%。按“比色”键,功能切换至3,把标准液放到光路中,按调整键使液晶显示为26。放待测液于光路中,这时显示的读数就是有机质含量(‰)

2.1.4 速效养分的测定

第一步,速效养分待测液的制备。称土壤2.5 g至100 ml三角瓶中,加土壤浸提剂25ml,摇晃5分钟,过滤于三角瓶中。

第二步,速效钾测定。分别吸取标准液2ml、浸提剂2ml、待测液2ml在3个小玻璃瓶中,按顺序加入土壤速效钾掩蔽剂2滴,土壤速效钾助掩蔽剂6滴,土壤速效钾浊度剂4滴,摇匀,立刻转移到比色皿中测定。

第三步,速效磷测定。分别吸取土壤标准液1ml、浸提剂1 m1、土壤待测液1ml在三个小玻璃瓶中,再分别加入2ml水,最后依次加入土壤速效磷掩蔽剂5滴、土壤速效磷显色剂5滴、土壤速效磷还原剂1滴,摇匀10分钟后转移到比色皿中测定。

2.2 M3测定法

2.2.1 基本原理

有效磷、钾、钙、镁、铁、锰、铜、锌、硼:联合浸提剂中的0.2 mol/L HOAc-0.25mo1/LNH4N03形成了pH2.5的强缓冲体系,并可浸提出交换性K、Ca、Mg、Na、Mn、Zn等阳离子;0.015 mol/L NH4F-0.013mol/L HN03可调控P从Ca、Al、Fe无机磷源中的解吸;0.001mol/LEDTA可浸出螯合态Cu、Zn、Mn、Fe等。因此M3法一次浸提,可提取土壤中的有效磷、钾、钙、镁、铁、锰、铜、锌、硼等多种养分。

2.2.2 操作方法

2.2.2.1 有效磷和有效钾的测定 第一步,浸提。在25±1℃恒温条件下,用量具量取2.50ml风干土壤,同时过2mm尼龙筛到塑料杯中,再加25.Oml Mehlich3浸提剂,搅拌5分钟,干过滤后将滤液放到50.0ml塑料瓶中。

第二步,定量。检测有效磷时,由于土壤肥力水平不同,我们要根据需求吸取2.0~10.0ml土壤浸出液,放入到50ml容量瓶里,然后加水到大概30ml的地方,再加5ml钼锑抗试剂显色,定容摇匀。显色30分钟以后,在880nm处比色。如果是气温比较低,比如在冬天做此测定时,要注意显色时的温度要保持在15℃以上。如果想加快显色的速度,那地点要选择在恒温室内。测定时做空白校正。测定钾时,直接用M3浸出液在原子吸收分光光度计测量。

2.2.2.2 有效氮的测定 第一步,浸提。在塑料杯里,加50ml 2mol/lKCl的浸提剂,搅拌5分钟以后干过滤,再把滤液放到50ml的塑料瓶子里。

第二步,定量。测定硝态氮是,首先吸取10mL。然后将滤液分别在21Onm和275nm处测读吸光度。把A275校正为有机质在210 nm处应有的吸光度。再从A210中减掉,这样得出了N03在210nm处的吸光度(A)。因为地区R值不同,所以一般情况下取3.6。

3 提高土壤检测的方法

3.1 土样采集与处理

土样采集的原则是:沿一定路线随机、等量、多点混合。而且要选择具有代表性的土壤,这是土壤测试的一个重要环节。样品采集需标准。每个采样点大概需要10~15个取样点,要求:分布不能太集中,要均匀;沟渠边、肥堆旁和田埂等地不可采集;采样深度一样;上层和下层的比例也要注意相同。土样处理要规范。一定要自然的风干。且风干时要不断重复翻动,防止酸、碱和灰尘的污染,要剔除土壤以外的侵入体。之后样品要以不同的要求通过相应目数的孔径筛,再充分混合均匀,不易磨碎的大颗粒不能扔掉。

3.2 配置溶液

第一,称量时要注意易引发误差。采用增量法称量供试品。打开电子分析天平,显示器归零时,把称量瓶放在天平盘上,记录称重数据为W1;如果需要减去称量瓶重,按一下控制板“TAR”。再把要称量的供试品放到称量的瓶中,记录二者的并重的数据为 W2,得出W2-W1数值为供试品的重量;如果用消除称量瓶重量后再称得的数据,则得到的数值就是称供试品时的重量。

第二,分析实验用到的溶液要用干净的水配制,容器要用纯净的水清洗3次以上,确保将容器清洗干净。配制完成的试剂要尽快放进带塞的瓶里,瓶上应标记溶液的浓度、名称、复核人名称、复核日期;有些也可以根据需要加上有效日期。

第三,要谨慎移动溶液,避免溅出,造成溶液浓度偏低。

3.3 添加质控样

质控样就是标准参考物,用来评价测量方法和测量结果的准确度,它是经过正式批准后作为标准使用的。有着高稳定度物理和化学以及计量学特性。

3.4 参加能力检验

对实验室的人员进行检测能力和检测水平的考核,不仅可以提高实验室整体的检测水平,更是保证检测结果准确度的不可缺少的条件之一。具体通过比对验证,主要包括仪器、人员、实验室间比对验证,加上不一样验证方法间、对保留样品的重复测试和样品不同特性间相互关系验证共6种。

3.5 方式方法、标准依据、实验设备的选择

标准是检测的依据,应及时采用最新标准。此外,要及时对实验设备、仪器更新检测。

3.6 做好原始的数字记录

每一个原始数字都要真实完整、清晰明了,一定要随时翻阅都能看明白。

4 确保土壤检测的数据准确

4.1 科学规范的抽采样,保证样品的代表性

为保证检验结果的准确,一个重要的环节就是:准确的抽取样品,而且要有代表性,要均匀。有效的抽样及样品的处理技术既是土壤检测工作的第一步,也是最为重要和关键的。

4.2 严格标准,正确、准确选择依据

土壤检测的测试方法、检测标准在整个检测过程中是非常重要的,因为它要指导整个过程,要规范检测的工作,保证数据的准确,甚至还有统一和再现的功能。所以,我们一般都选择检测标准的第一法为检测依据。

4.3 实验室的质量保证和控制

为保证数据的准确,满足测量指数要求,要有符合标准的环境,基础工作要完善,人员素质要高,这些都是基础中的基础。实验配备的仪器量程、精度以及承检的产品都要与规定相符相宜,并且要按照周期进行计量检定,在管理与维护上也要强化。在试验用水和试剂上要实行专人责任制。

4.4 通过一系列措施,确保数据真实公正

在整个检测过程中,除了刚才提到的3点外,测试人员要具备良好的素质,测试过程中还应当规范操作,如实记录,严格要求,按照CB8170-87处理数据。从而保证检测数据结果真实、有效、公正。

参考文献

[1] 韦素妮.兴安县测土配方施肥数据库的建立与应用[J].中国农技推广,2009,25(9):39-40.

[2] 王仁如.如何使测土配方施肥数据真实、准确[J].科学种养,2009,(11):61.

[3] 陶永香.测土施肥土样采集与制备技术[J].吉林蔬菜,2009,(2):35-36.

土壤检测范文第2篇

摘要:

目的为了做好土壤基体标准样品的协作定值,在拟参加协作定值实验室间开展土壤中有机氯农药检测能力评价。方法16家实验室共同测定土壤有证标准样品,通过Z比分数统计分析测定结果来评价实验室检测土壤中有机氯农药的能力。结果土壤中17种有机氯农药测定结果满意率为75%~100%,16家实验室检测17种有机氯农药结果满意率平均值为88.5%。结论16家实验室具备土壤中有机氯农药的检测能力,能够满足标准样品的协作定值的要求。

关键词:

协作实验室;土壤;有机氯农药;检测能力;Z比分数;稳健统计

有机氯农药作为一类重要的持久性有机污染物造成的污染和危害已引起普遍关注。在2001年通过的《关于持久性有机污染物的斯德哥尔摩公约》所列的12种持久性有机污染物中,有9种为有机氯农药(ganicchlinepesticides,OCPs)。OCPs性质稳定、难以降解、容易在环境中积累,对生态环境和人体健康的潜在风险一直是人们关注的焦点[1]。由于其在环境中长期停留,且容易在动物和人体脂肪中积累,我国从1983年开始逐步禁用OCPs[2]。然而近年的研究成果显示,OCPs在土壤环境中仍存在非常广泛的残留[3-7]。土壤中OCPs污染已成为我国污染范围最广、危害最大的一种有机污染[8]。因此开展土壤中OCPs标准样品的研制成为当务之急。在土壤OCPs标准样品的定值过程中,按照技术规范实施协作定值时,要求协作实验室数量为8~15个[ISO导则35[9]要求至少15个,《标准样品工作导则(3)标准样品定值的一般原则和统计方法》(GB/T15000.3-2008)[10]、《标准物质定值的通用原则及统计学原理》(JJG1343-2012)[11]要求6~8个],他们在测量待定值标准样品的特性值时具有同等的技术能力,确保每个实验室提供的测量结果具有可以接受的准确度水平。所以在进行协作定值之前,必须对参与标准样品定值的实验室技术能力进行分析评定,只有通过了分析评定的实验室才有资格参加标准样品的协作测定。

1材料与方法

1.1检测样品壤土有证标准样品,购自美国Sigma-AldrichRTC。

1.2均匀性和稳定性标准样品是具有一种或多种足够均匀且稳定规定特性值的材料,已被确定其符合测量过程的预期用途[10]。因此均匀并且稳定是标准样品所具有的两个最基本属性。由于检测样品为土壤中有机氯有证标准样品,且在有证标准样品有效期内,因此检测样品也具有良好的均匀性和稳定性。

1.3测试要求测试方法:优先选用美国EPAMethod8081A(气相色谱/电子捕获检测器测定土壤中有机氯农药)、美国EPAMethod8270D(气相色谱/质谱法测定半挥发有机化合物)、ISO10382:2002(E)(气相色谱/电子捕获检测器测定土壤中有机氯农药和多氯联苯),再考虑使用《气相色谱/电子捕获检测器测定土壤中六六六和滴滴涕》(GB/T14550-2003)[12]。目标化合物:α-六六六、β-六六六、γ-六六六、δ-六六六、七氯、艾氏剂、环氧七氯、硫丹I、狄氏剂、异狄氏剂、p,p’-DDE、硫丹II、p,p’-DDD、异狄氏剂醛、硫丹硫酸盐、p,p’-DDT、甲氧滴滴涕。测试次数:各协作实验室需平行称取3份试样,进行前处理和分析检测,至少做1个全程序空白和1个加标回收率实验。

1.4结果的统计处理与评价开展检测能力评价和评判常用的稳健统计方法为Z比分数[13-14],Z比分数计算公式如下。对每个检测项目主要计算下列统计量:结果数、中位值、标准化四分位间距(NIQR)、相对标准差(CV)。

2结果与讨论

本次协作实验室检测能力评价活动共有16家实验室参加,全部在规定的时限内报告17种有机氯农药的测试结果。组织者对参加共同检测活动的16家实验室进行随机编码,并对其检测结果按照检测组分进行汇总,计算各检测组分的稳健统计量,并用Z比分数评价协作实验室的检测能力。

2.1稳健统计量分析土壤中17种有机氯农药检测结果主要稳健统计数据见表1。由于检测样品为有证标准样品,其标准值列于表1中。除了七氯、硫丹I、硫丹II和硫丹硫酸盐4个检测组分之外,其它13个组分的检测结果的中位值与检测样品的标准值基本吻合或差别较小,即他们的中位值/标准值的比值在0.87~1.19之间。在稳健统计中,NIQR相当于标准偏差。在单倍NIQR范围内,有9个化合物的中位值与检测样品的标准值具有一致性,占化合物总数的53%;在两倍NIQR范围内,有14个化合物的中位值与检测样品的标准值具有一致性,占化合物总数的83%。相对标准偏差(RSD)反应检测数据波动性。本研究17种化合物的相对标准差在6.4%~62.6%之间,而大部检测组分的相对标准差集中在6.4%~17.4%之间。除了狄氏剂、异狄氏剂和异狄氏剂醛3个组分外,其它14个组分的最大值/最小值的比值均在1.5~2.4范围内,与陈其勇等的研究结果[15]相似。七氯、硫丹I、硫丹II和硫丹硫酸盐的检测结果的中位值均显著低于检测样品相应的标准值,其中位值/标准值的比值在0.35~0.74之间,而其最大值/最小值的比值均在1.7~2.4正常范围内,说明是系统原因导致结果偏低,或许是溶液标准样品出现了问题,或许检测样品存在问题,需要进一步研究确认。

2.2检测项目评价分析16家协作实验室对土壤中六六六、滴滴涕等17种有机氯农药进行了分析检测,每个检测项目Z比分数评价结果见表2。在17个检测项目中,除了β-六六六、p,p’-滴滴涕2个检测项目的结果满意率为75%外,其余15个检测项目的结果满意率均在81.3%以上。与陈其勇等的研究结果[15]比较相似。

2.3实验室检测能力评价16家协作实验室检测土壤中17种有机氯农药的Z比分数统计结果见表3。在16家协作实验室中,有14家协作实验室结果满意率达到76%以上,有13家实验室的结果满意率为82%以上,有5家实验室的结果满意率为100%,全部协作实验室的结果满意率平均值为88.5%。因此大部分实验室检测土壤中17种有机氯农药的能力是令人满意的;个别实验室(2家)结果满意率较低,其自查结果为:分析过程中质控措施不严谨,分析人员未及时清洗色谱进样系统导致部分样品组分产生降解作用。

3结论

本次协作实验室检测能力评价研究结果表明,协作实验室具备土壤中有机氯农药检测能力,实验室使用的不同检测方法总体有效性和可比,可以满足土壤中有机氯农药标准样品定值的要求,可为土壤中有机氯农药标准样品定值提供技术服务。

参考文献

[1]JonesKC,DeVoogtP.Persistentganicpollutants(POPs):stateofthescience[J].EnvironPollut,1999,(100):209-221.

[2]王茜,荣素英,李君,等.唐山市土壤中六六六(HCHs)和滴滴涕(DDTs)的分布特征[J].环境卫生学杂志,2011,1(6):4-10.

[3]崔健,王晓光,都基众,等.沈阳郊区表层土壤有机氯农药残留特征及风险评价[J].中国地质,2014,41(5):1705-1715.

[4]冯雪,李剑,滕彦国,等.吉林松花江沿岸土壤中有机氯农药残留特征及健康风险评价[J].环境化学,2011,30(09):1604-1610.

[5]廖小平,张彩香,赵旭,等.太原市污灌区地表土中有机氯农药分布特征[J].环境化学,2012,31(02):1321-1327.

[6]谢婷,张淑娟,杨瑞强.青藏高原湖泊流域土壤与牧草中多环芳烃和有机氯农药的污染特征与来源解析[J].环境科学,2014,34(07):2680-2690.

[7]黄焕芳,祁士华,瞿程凯,等.福建鹫峰山脉土壤有机氯农药分布特征及健康风险评价[J].环境科学,2014,34(07):2691-2697.

[8]沙净,王建中.农药污染土壤的植物修复技术研究进展[J].安徽农业科学,2008,36(6):2509-2511,2523.

[9]ISOGUIDE35:2006(E).Referencematerials-Generalandsta-tisticalprinciplesfcertification[S].Switzerlang:InternationalganizationfStandardization,2006.

[10]国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T15000.3-2008标准样品工作导则(3)标准样品定值的一般原则和统计方法[S].北京:中国标准出版社,2008.

[11]国家质量监督检验检疫总局.JJF1343-2012标准物质定值的通用原则及统计学原理[S].北京:中国质检出版社,2012.

[12]中华人民共和国国家质量监督检验检疫总局.GB/T14550-2003土壤中六六六和滴滴涕测定的气相色谱法[S].北京:中国标准出版社,2004.

[13]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T28043-2011利用实验室间比对进行能力验证的统计方法[S].北京:中国标准出版社,2012.

[14]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T27043-2012合格评定能力验证的通用要求[S].北京:中国标准出版社,2013.

土壤检测范文第3篇

关键词:检测;土壤;种苗场

中图分类号:S151.9文献标识码:A文章编号:16749944(2014)02020302

1引言

乌鲁木齐市种苗场于1960年建场,占地面积3434亩,年均育苗量可达50万株,年均出圃绿化苗木30万株,为乌鲁木齐及全疆各城市绿化美化做出了积极的贡献。长期以来,种苗场的苗木生产均采用城市生活污水浇灌,从不施肥。此次检测的目的是为了了解土壤的养分含量和重金属污染情况。

2土壤采样

2.1林地土壤采样

种苗场共36个条田,每个条田长300m,宽200m,大约100亩。每个条田用蛇形取样法随机选取样点20个,在确定的采样点上,先用小土铲去掉表层3cm左右的土壤,然后倾斜向下取一片片的土壤,取土深度为30cm,将各采样点土壤集中在一起混合均匀。36个条田土壤采集完成后混合样品。

2.2菜地土壤采样

2009年种苗场将405条田中的10亩地作为职工蔬菜种植基地,采用井水浇灌,每年施有机肥一次。菜地也采用蛇形取样法,选取样点10个,取土深度为30cm,混合样品。

2.3灌溉支渠采样

种苗场的污水灌溉模式分为干渠、支渠、斗渠。干渠、支渠采用混凝土预制板防渗,斗渠渠底采集土壤。种苗场36条斗渠每条选取样点3个,样点间距离60m,取土深度30cm,混合样品。该样品因常年受水冲蚀,呈沙粒状。

3土壤测定

3.1土样的制备

将全部样品倒在塑料薄膜上或瓷盘内进行风干,当达半干状态时把土块压碎,除去石块、残根等杂物后铺成薄层,经常翻动,在阴凉处使其慢慢风干。

取风干样品100~200g,放在木板上用圆木棍辗碎,经反复处理使土样全部通过2mm孔径的筛子,将土样混均储于广口瓶内。全氮项目,取一部分已过2mm筛的土,用玛瑙或有机玻璃研钵继续研细,使其全部通过60号筛(0.25mm)。用原子吸收光度法测Cd、Cu等重金属时,土样必须全部通过100号筛(尼龙筛)。研磨过筛后的样品混匀、装瓶、贴标签、编号、储存。

3.2土壤测定方法

种苗场土壤采用的测定方法见表1。

参考文献:

[1] 黄益宗.镉与磷、锌、铁、钙等元素的交互作用及其生态学效应[J]. 生态学杂志,2004,23(2):92~97.

[2]肖智,刘志伟,毕华.土壤重金属污染研究述评[J]. 安徽农业科学,2010,38(33):18812~18815.

土壤检测范文第4篇

关键词:稀土元素;微波消解;土壤;检测

中图分类号 S15 文献标识码 A 文章编号 1007-7731(2015)03-04-122-03

稀土元素的农业利用经过几十年的推广发展,其应用越来越广泛,涉及粮食作物、蔬菜水果等方面的生产,使得进入土壤的稀土总量显著增加,从而影响了生态环境[1]。研究发现,土壤中可溶态稀土元素一般只占全量的10%以下[2],稀土微肥使用后在土壤中呈富集趋势。土壤既是农业生产的基础,又是生态环境的重要组成部分,稀土在土壤中的迁移、转化,通过食物链传递,最终进入人体,影响人类健康[3]。目前的研究证实:(1)植物试验表明,过量稀土可抑制作物生长,如含La70mg/L的培养液会对作物产生毒害作用,喷施稀土超过80g/667m2时,会灼伤大白菜的叶片[3,7];(2)动物亚慢性毒性研究表明,口食的稀土毒性较低,但是稀土的核素可诱发骨髓细胞突变,稀土粉尘可引起上呼吸道及皮肤疾病,同时稀土可诱发原生动物四膜虫产生微核,并影响其生殖过程;(3)流行病学调查表明,长期摄入低剂量稀土可导致儿童智商下降,成人中枢神经生物电传导速度的下降及某些生化指标(如胆固醇)等显著增高。随着自然和人为因素造成的环境中稀土元素的增加,进而产生对生态环境和人类健康的影响,已引起全社会的关注[4-8]。

然而,要减少农用稀土肥料对水体和土壤的污染,不能简单的依靠不用或少用稀土肥料。长期大量的农业生产实践表明,农作物的生长往往被土壤中短缺的一种主要元素所制约,如不能及时地得到补充,势必会造成减产。通常情况下,良好的土壤耕作层的微量元素全含量可能会远远地超过农作物生长需要的数值,但是微量元素缺乏症却愈来愈严重,这是因为土壤中大部分微量元素不能被农作物所吸收和利用,仅有少量溶解在土壤溶液中的那部分才能被作物所吸收。所以补充有效微量元素是必要的。大量的研究资料[9-12]显示,稀土元素是植物生长发育的有效元素,植物能否吸收足量的稀土元素直接关系到作物的产量和品质。因此,寻找一种有效又实用的测定土壤稀土元素的方法,可以了解土壤微量元素的含量,从而给作物补充有效微量元素提供有效的参考。

1 材料与方法

1.1 实验仪器与试剂

1.1.1 仪器 美国Leeman的Prodigy XP型全谱直读电感耦合等离子体原子发射光谱(ICP-AES):自激式高频发生器,高分辨中阶梯光栅,垂直和水平观测系统,CCD固体检测器;Synergy UV纯水器;Anton Paar公司的Multiwave3000微波消解仪;MettlerToledo的AL204电子天平;国华GB-3型电热板;自动移液器、聚四氟乙烯坩埚、容量瓶(10mL)、吸量管、移液管(2mL、5mL、25mL);

1.1.2 试剂 土壤成分标准物质(GBW-07404);混合标准溶液(GSB04-1789-2004)1μg/g的稀土元素混合标准溶液:用移液管移取5mL10μg/g的混合标液于50mL的容量瓶中,用蒸馏水定容;5μg/g的稀土元素混合标准溶液:用移液管移取25mL10μg/g的混合标液于50mL的容量瓶中,用蒸馏水定容。

1.2 实验方法

1.2.1 微波消解预处理 准确称取0.5g的土壤样品(精确到0.0001g)于XF100反应罐(TFM)中,分别用自动移液器移取5mL硝酸、2mL盐酸、3mL氢氟酸于罐内,将粘在管壁上的样品全部淋洗到底部,并轻轻混匀。将密封盖完全压入到密封器上,立即轻软地将密封盖盖入消解罐内,并旋紧螺盖。将TFM内管放入到压力套管内,将陶瓷套管放入到保护套杯中,将保护盖放到保护杯上。将盖好的消解罐放到转子的指定位置,泄气螺杆朝外。消解罐的数量应为4或8,并且应该均匀对称放置。对称交替旋紧8个螺母。盖上保护套,将转子放到炉腔内的转盘上,轻轻平移至固定位置。关上Multiwave 3000的安全门,进行消解过程,打开电源,进入主程序界面,选择“Library F1”,选择或设定消解程序,选择“Start F1”系统进行自检过程,自检通过按键盘上的绿色Start键,进行微波消解。直至消解完全,放气冷却15min后取出消解液,将之转于聚四氟乙烯坩埚中,在电热板上进行赶酸,少量多次地加水,直至溶液为无色透明即可。

1.2.2 沉淀分离 在上述消解液中加入4~5g的氢氧化钠,冷却后放入盛有10mL(1∶1)三乙醇胺的烧杯中,加入沸水100mL提取。洗净坩埚后,加10mg镁(Ⅱ),并将溶液煮沸,冷却后,用中速滤纸过滤,用2%的氢氧化钠溶液洗涤沉淀,弃去滤液。然后用1∶1盐酸溶解沉淀,并洗净滤纸,用原烧杯承接滤液。在烧杯中加3g氯化铵、去离子水100mL、氨水20mL煮沸进行沉淀。冷却后用中速滤纸过滤,用2%氨-氯化铵溶液洗涤沉淀,弃去滤液,然后用热的2N盐酸将沉淀溶解于10mL容量瓶中,用2N盐酸定容。

1.2.3 ICP-AES测定 (1)打开仪器主机、计算机,点击工作站使主机与计算机连接。(2)等待光室温度达到平衡后,打开高纯氩气吹扫检测器约5min。(3)选择待测元素及谱线,设定相关参数。(4)将检测器温度降至-15℃。(5)点燃等离子体,先吸喷蒸馏水,再依次检测标准溶液和待测溶液。

2 结果与讨论

2.1 微波消解的条件 通过条件实验,试验不同的功率、爬坡时间及功率保持时间,以达到最好的消解结果,确定最佳优化条件。通过3组不同的条件实验,结果如表1;得到优化条件,结果见表2。

2.2 ICP-AES的测定条件 对ICP-AES各参数进行优化,结果见表3。

2.3 谱线的选择 用待测样品进行扫描,对各元素谱线干扰情况分析后选择检测谱线。样品中La在379.478nm的谱线,右边有一小干扰峰,左边扣背景;样品中Ce在413.765nm的谱线,两边扣背景;样品中Nd在378.425nm的谱线,左边有一小干扰峰,右边扣背景;样品中Sm在359.260nm的谱线,两边无干扰峰;样品中Dy在353.170nm的谱线,附近没有光谱干扰;样品中Er在390.631nm的谱线,附近没有光谱干扰;样品中Yb在328.937nm的谱线,右边有一小干扰峰,左边扣背景;样品中Y在377.433nm的谱线,附近没有光谱干扰。

2.4 ICP-AES测定国家标准土壤(GBW-07404)中稀土元素的分析结果 按照实验方法对国家标准土壤(GBW-07404)中稀土元素La、Ce、Nd、Sm、Dy、Er、Yb、Y进行检测,结果见表4。由表4可知,测定值均在标准值允许范围内。

2.5 样品回收率 对国家标准土壤样品进行标准加入法测得其回收率见表5。

2.6 赣南脐橙园土壤稀土元素分析结果 基于不同脐橙种植区域、典型土壤类型的差异,取赣南脐橙园土壤10份,采用该方法检测,结果见表6。

3 结论

本文通过比较前处理中微波消解的条件,确定了微波消解的最优化条件,然后对消解后的试样采用了2次沉淀法进行分离、富集。采用ICP-AES测定国家标准样品中的La、Ce、Nd、Sm、Dy、Er、Yb、Y等稀土元素,同时对实验仪器的工作条件进行优化,采用标准物质验证了方法的可靠性。实验结果与土壤标准物质(GBW-07404)的分析结果相符,并采用该方法测定了赣南脐橙果园土壤中的稀土元素含量,这将为评价土壤肥力提供依据。

参考文献

[1]YANG T,ZHU Z Y,WU Y,et al.Concentrations of rare earth elements in topsoil from East China[J].Environmental Geology,2008,56(2).

[2]邵文军,刘晶晶,王瑞敏,等.江西赣南地区脐橙稀土元素的测试[J].饮料工业,2007,10(11):41-43.

[3]秦俊法,陈祥友,李增禧.稀土的毒理学效应[J].广东微量元素科学,2002,9(6):1-16.

[4]谢振东,方宣忠,郑文.江西信丰县优质脐橙果和叶中稀土元素分布特征研究[J].中国地质,2006,33(6):1418-1423.

[5]吴香尧,童纯菡,李志杨.四川眉山脐橙果树各器官及其土壤中稀土元素分布特征研究[J].成都理工学院学报,2002,29(3):346-349.

[6]余江,黄志勇,陈婷.赣南稀土矿区果园土壤和脐橙中稀土元素含量的测定[J].食品科学,2009(22).

[7]郭伯生.农业中的稀土[M].北京:农业出版社,1995.

[8]方能虎,何友昭,赵贵文.稀土元素的植物生理作用研究进展[J].稀土,1998,19:66-70.

[9]严重玲.稀土元素在贵州典型土壤中的含量分布及对酸雨影响作物的防护效应[D].北京:中国科学院地球化学研究所,1997:129.

[10]庞欣,邢晓艳,王东红,等.农用稀土在土壤中形态变化的研究[J].农业环境保护,2001,20(5):319-321.

[11]王咏梅,赵仕,林赵凡,等.农用稀土肥料对环境影响的研究[J].四川师范大学学报(自然科学版),2004,27(2):201-205.

土壤检测范文第5篇

关键词:IKG-203型测汞仪;土壤污染;快速测定

中图分类号:TQl35 文献标识码:A 文章编号:1009-2374(2011)07-0046-02

一、试验部分

(一) 仪器及材料

(1)JKG-203型测汞仪。

(2)汞标准贮备液(1.00mg/ml):标准贮备溶液由国家标准物质研究所提供。

(3)标准汞使用液(0.1ug/ml):由标准贮备溶液分步稀释而成。

(4)固定液:称取0.25g重铬酸钾,用去离子水溶解,加入25ml硝酸,用去离子水稀释到500ml。

(5)15%氯化亚锡溶液:取15g氯化亚锡溶于10ml浓盐酸中,溶解后用去离子水稀释到100ml。

(6)5%高锰酸钾溶液:取5g高锰酸钾溶于去离子水中,并稀释到100ml。

(7)王水(1+1):1份王水+1份水。

(二) 分析过程

(1)试料。粒径应小于0.097mm,经室温干燥后备用。用不含金属元素污染的铁质合金磨具加工制得。

(2)空白试验。随同试料全过程做双份空白试验。

(3)质量控制。选取和试样同类型的土壤一级标准物质4个随同试料分析(见表1)。

(4)试液的制备。准确称取0.1000g试料(精确到0.0001g)于50ml比色管中,用水润湿后加入20ml(1+1)王水在沸水浴中分解60min,期间摇动3~4次,冷却后用纯净水稀释到刻度,摇匀,静置澄清后待测。

(5)汞的测定。按照仪器工作条件开机调试好后,取上层清液倒入翻泡瓶中至刻度线,插入管芯,在管芯上部加入1%的氯化亚锡还原,迅速接通吸气泵,当仪器显示的信号值开始不断变大时可拔下吸气管,用JKG203型测汞仪测定汞的吸光度。测完一个样品后,继续保持吸气泵为工作状态,让残留在仪器管道内的汞蒸气排除,以免下一个样品受到污染。

(6)工作曲线的绘制。于一组100ml容量瓶中加入50ml去离子水、0.4ml浓硫酸和0.4m15%的高锰酸钾溶液,然后分别加入(0.0ml,3.0ml,6.0ml,9.0ml,12.0ml,15.0ml)汞标准使用液(0.1ug/ml)于上述一系列容量瓶中,稀释至刻度,摇匀。浓度分别为0,0、3.0、6.0、9.0、12.0、15.0 ug/L。使用前配制(参考吸光度值见表2)。

JKG-203型测汞仪对曲线的要求比较严格,要求相关系数达到0.999以上,如果相关系数达不到0.999以上,该曲线不能被保存,接下来的样品测试也不能进行,出现此情况,应该多做几遍曲线,从中选择更合理的点制作曲线,如果没有合适的点,就重新配制标准系列,直到曲线相关系数达到0.999以上。

二、结果讨论与注意事项

(1)JKG-203型测汞仪内置单片机,测试准确,快速。

(2)保持实验室不受汞污染,保持室内空气清洁。

(3)防止测试者的双手、实验服等可能产生的汞污染。

(4)利用冷原子吸收,用特制的翻泡瓶测定,操作中汞几乎没有损失。

(5)在测完含量较高的样品后应打开气泵让汞蒸气充分挥发,以免后面的样品受到管道污染而使测定结果偏高。

(6)所用试剂都必须是优级纯试剂,并且使用前要一一检查,以避免试剂带来的干扰和误差,检查用翻泡瓶测定吸光度,吸光度小于0.00020为合格。检查后如果不合格则应更换厂家再进行检查,直到合格为止。

(7)所用玻璃器具(容量瓶、刻度管、翻泡瓶)都必须检查,先用盐酸清洗后,再用去离子水多次清洗,然后翻泡测定吸光度,吸光度小于0.00020为合格。

(8)往样品中加入硫酸,是利用强氧化剂破坏其中的有机质,因此,加入浓硫酸后要摇匀,放置,促使部分有机质炭化。

(9)加热应从低温缓慢上升,以免突然加热造成样品反应剧烈从比色管中溢出,应准确控制水温98℃~100℃,否则汞会挥发。

(10)一般情况下,每测完十个样品后校对一个标准溶液,用以监控仪器的稳定情况。

土壤检测范文第6篇

关键词:环境污染;土壤环境;检测手段

植物生长离不开土壤,土壤是保证地球绽放生命力的前提条件,从生态学分析土壤,土壤是物质分解的重要场所,也是物质循环的重要组成部分。植物的成长离不开土壤,在耕地面积锐减的情况下,人们不得不采取相应的措施来获取更多的植物果实,但是在获取更多植物的过程中必定会使用化肥、杀虫剂、除草剂等。虽然这些方式提高了作物产量,但是却对耕作的土壤造成了一定程度上污染。所以说为了对土壤进行治理,就必须采取相应的土壤检测措施,来提高土壤检测工作。

1 浅析土壤污染的定义及危害

1.1 土壤污染概念分析

植物的生长离不开土壤,土壤为植物生产提供足够的支撑力,并且将水、营养物质以及所需气体供给植物使其可以健康成长[1]。近些年,人口迅速增长加之生活质量的提高,产生了很多固定废物,由于处理不当导致很多有害物质随着雨水进入土壤,再加上农业化水平提高,大量的化肥和农药被应用到农业生产中。导致土壤质量严重下降,因此影响到土壤正常性能发挥致使农作物产量下降都是土壤污染。

1.2 土壤污染有哪些危害

土壤在受到病原体的感染以后就能够传播各种疾病,这些病原体一般是通过带有病原体的人的粪便或者他们洗涤衣物的污水对土壤造成污染,当植物被种植在被污染土壤上会传染各种疾病;有毒化学物质污染土壤以后,间接的对人们造成影响,主要是通过农作物、地表水以及地下水对人的身体健康产生影响。

2 土壤污染的特点有哪些

2.1 隐藏性和潜伏性

土壤污染是经过长时间积累形成的,土壤污染对人类产生的影响主要是通过人体以及动物长时间食用被污染的植物,导致身体健康指数逐渐下降。因为土壤污染具有隐藏性和潜伏性,人们没办法感知[2]。例如,发生在苏仙区砷污染事件,导致380名农民住院,经过土壤测试中心检测,大部分农作物已经被污染,很多人都是食用了被污染的水稻而发生的砷中毒,据估计这次水污染对水稻的污染长达10年。

2.2 污染周期性长可逆性差

土壤产生污染以后,污染物在土壤中会发生迁移和转化,与此同时还会和土壤结合产生吸附反应,污染物在土壤中产生的化学作用具有不可逆转性,最后污染物会在土壤中产生难以溶解的化合物。土壤一旦被污染,一些化学有机物很难被分解,要想完成分解工作是一个较为漫长的过程。

2.3 治理困难且危害程度较深

大气和水体都被污染,切断污染源以后利用自然净化也会造成污染问题持续逆转的情况发生,而且较难降解的污染物经过长时间累计,用自然净化的手段是很难完成降解工作的[3]。有的时候还需要采取换土的方式解决土壤污染问题,土壤治理问题是一项耗时又费钱的工作,所以说土壤改善技术并未在我国广泛的推广。土壤污染危害程度较深,因为土壤污染潜伏性和污染周期性较长。例如,日本发生的铬中毒事件,从1963年共有130人患病,而且很多人食用含镉稻米而中毒,含镉稻米就是土壤污染的表现形式之一。据专家统计被镉污染的土壤要经过10到30年土壤才能被完全改善。

3 土壤污染检测手段分析

3.1 冲洗法完成检测工作

冲洗法的色谱分离技术是气相色谱法技术,它和分离化工成品较相符,其工作原理是色谱中气相和固定液之间不同成分拥有不同的分配系数,当成分在气化条件下会在整个色谱柱中运转,经过气化处理以后会被多次分配,因为各个分解程度不同,我们可以经过科学分析他们在色谱柱中的运转速度,对各种农药残留进行采集和分析。

3.2 高效液相色谱法

高效液相色谱检测方法是在典型液相色谱的基础上发展而来的,高效液相色谱法是一种创新分离技术。经过多年发展,高效液相色谱在检测环境中已经成为一种普遍的检测方法,而且高效液相色谱法的检测范围较广,它可以对大气、水体、土壤污染进行综合性的分析,而且还可以对药物残留以及杀虫剂等污染物质进行检测。高效液相色谱法,可以针对土壤污染隐藏性和潜伏性等特点进行全面分析,帮助检测人员高效快速的完成土壤污染检测。但是高效液相色谱法也有缺点,那就是其分析成本较高、液相色谱仪价格较高,日常维修费用高,所以说要想完善高效液相色谱技术,就必须克服这几项缺点。

3.3 AFS检测方法

AFS检测方法也就是现在所说的原子荧光光谱法,荧光光谱法和其他技术相比综合了原子吸收以及原子发射光谱的优点,是一项较为优秀的痕量分析技术,它的优点就是仪器结构较为简单,灵敏度较高、对气相干扰很少、分析多元素速度较快,所以说AFS检测方法被广泛的应用在土壤污染检测中。AFS检测方法缺点,某些元素对酸度要求较为苛刻、鉴定元素相对较少以及应用范围较为狭隘等方面,所以说要想使得AFS检测方法得到广泛推广,就必须改进AFS检测方法的缺点。

3.4 TG土壤检测方法

TG土壤检测方法是一种测量物质和温度关系的一种热分析技术,它具有操作简单、准确性高、快速灵感的优点。环境领域检测的研究关系到生态环境的改善程度,在可持续发展过程中起到决定性作用。TG土壤检测方法是通过检测化学转化过程,有利于分析污染性气体的形成,对防止和控制转化具有指导意义。

3.5 其他的土壤检测方法

在土地生态系统处理过程中,不同环境中的氧化还原也会影响各种污染物的存在情况,处理效率会对土地生态系统带来直接影响,所以需要对氧化还原环境积极了解以及科学调控。热重分析法是通过热天平来对温度进行控制,对物质质量以及温度进行有效控制。热分析技术,操作简单、精确度较高以及反应速度较快。因为环境污染越来越严重,所以现代人对土壤检测技术的要求越来越苛刻,要想完善土壤检测技术,就必须针对土壤污染检测技术的缺点进行改进,让土壤污染检测手段可以更广泛的应用到现代农业中,让土壤检测技术成为现代化农业的重要组成部分[4]。

4 结束语

土壤检测技术在国外已经得到了推广,土壤检测技术广泛的应用会改善农业重质土壤,从而提高农产品生产质量。土壤污染具有隐藏性和潜伏性、可逆性差以及难治理的特点,所以说及早的用土壤检测技术发现土壤污染,就可以及时采取相应的措施,避免土壤污染情况的发生。如果要完成土壤污染检测工作,就必须对土壤检测进行分析,才能保证土壤污染检测工作的顺利进行,而最重要的是将现代化技术应用到土壤污染检测中。

参考文献

[1]房豪杰.我国环境中的土壤污染及检测手段的研究进展[J].上海电气技术,2010,2:1-5.

[2]康树静,王春风.环境中土壤污染情况以及检测手段分析[J].中国新技术新产品,2014,13:150.

[3]李叶.环境中的土壤污染及检测手段研究[J].科技创业家,2013,12:188.

土壤检测范文第7篇

关键词:土壤;氮检测技术;废水的利用

中图分类号:S153 文献标识码:A DOI:10.11974/nyyjs.20161132037

前言

要保证农耕质量,就要对农耕土地的养分量予以z测,以对农业施肥工作提供可靠的参考数据,以农田耕作中做到节约使用、适当施肥的目的。

1 对土壤中的氮元素检测的基本方法

1.1 采用开氏法进行氮检测

开氏法是土壤氮元素检测中统一使用的标准检测方法。多年来,这对土壤中氮元素的测定的问题,科学研究者都不断地进行技术改进,包括硒粉-硫酸铜-硫酸消化法、重铬酸钾-硫酸消化法等,都可以获得较为准确的氮元素检测结果,但是,开氏法以其检测数据稳定而且具有较高的检测准确率而被广为利用[1]。但是,这种检测方法的具体操作中,程序繁琐,检测的时间相对较长,大约需要1h的时间。开氏法对土壤样品尽心检测,适合于小批量的样品检测,且土塘中如果含氮量很高,特别是固态氮、硝态氮具有较高的含量,就难以获得准确的测定结果。

1.2 采用双波长法进行氮检测

如果土壤中含有大量的硝态氮,就可以采用双波长法进行氮检测。双波长法在氮元素检测中具有较高的灵敏度,而且可以结合采用反射仪法或者流动分析法进行检测。如果三者对土壤中的氮元素检测结果不存在显著差异,就说明测量结果准确。

1.3 采用ASI法进行氮检测

ASI法被称为“土壤养分状况系统研究法”,是近年来的土壤肥料检测中所使用的方法。这种方法在对土壤中所含有的养分进行检测的时候,不仅快捷高效,而且可以获得较为准确的检测结果,所以,在世界各国都广为使用。使用ASI法对土壤中的氮元素进行检测的时候,对土壤的性质也具有针对性。如果土壤为酸性土壤、碱性土壤、中性土壤或者石灰性土壤,就适合于采用ASI法进行氮检测。

2 近红外技术(NIRS)检测方法的研究

采用近红外技术对土壤的样品进行检测,就可以针对所获得的红外漫反射光谱进行分析。在光谱的3600~7600cm范围内,土壤样品对光谱的吸收能力是比较强的。对近红外光谱检测所获得的数据进行化学计量分析,对所获得的数据处理为数学模型,就可以将土壤样品中所含有的氮元素测量出来。具体应用中,如果对种植小麦的土壤进行检测[1]。检测的内容为土壤施肥之前2h以及施肥之后2h的小麦长势,采用高光谱的遥感航空影像装置进行拍摄获取信息,与相应的土壤样品检测数据进行比对,就可以对土壤中的氮元素累积情况进行检测,而对农田中的肥力状况以及农田的污染情况都有所了解。

对于农耕土地中的氮元素含量采用近红外光谱技术进行分析,还可以对土壤中的氮元素浓度的变化情况进行预测,即根据土壤的形成情况,土壤受到污染后的退化情况等的测定,就可以利用光谱技术对土壤中的氮元素含量的变化趋势进行预测。

针对近红外技术对土壤中的氮元素检测的相关问题研究,徐永明等采用了回归运算方法针对土壤光谱的吸收带所呈现出来的特征以及总体的氮元素含量进行测算研究,得出结论,氮元素与吸收带特征密切相关,而且吸收带的变化,可以通过土壤反射率实现出来。这就意味着,采用近红外技术,可以将土壤所含有的氮元素的含量快速而准确地测算出来[3]。李鑫等对种植水稻的土壤中所含有的氮元素含量采用近红外光谱法进行测试,所使用的仪器为Nicolet公司的傅里叶变换近红外透射光谱仪,对种植水稻的土壤的光谱值采用偏小儿乘回归测算法(PLSR)获得土壤中氮元素含量的测算数据并将相关的模型建立起来,而且模型的运用对于土壤中含氮量的测算结果相对稳定。

3 总结

综上所述,对土壤中的氮进行检测,如果依然采用传统的检测技术,很难获得良好的检测效果,不仅检测难以达到实时性,而且还存在着污染性。采用先进的氮元素检测技术,比如近红外技术(NIRS),不仅操作简便,而且检测成本相对较低,而且不会对土壤中的氮成分造成破坏。

参考文献

[1] 徐燕,徐茜,余鸿燕.Mehlieh 3法、ASI法与常规方法测定土壤养分的相关性[J].江苏农业科学,2012,40(3):296-298.

[2]鲁珊,毛彩云,肖荷霞,等.土壤中氮检测技术研究[J].安徽农业科学,2014,42(18):5789.

土壤检测范文第8篇

【关键词】:准确性; 土壤检测 ;农业经济

农作物的生长离不开土壤的支持,农业经济、社会发展以及保护土壤环境等均需要对土壤进行全面的的调查分析。土壤是在时间、地形、生物、气候以及母质多种因素作用下经过演变而形成的,土壤主要由动植物有机质、矿物质等物质所组成。土壤既是粮食生产的载体也是农业生产的基础,是人类生成与发展必不可少的基本要素,对土壤成分进行深入的研究与分析对我国社会经济的发展有着十分重要的意义。然而,实际值与土壤检测之间会存在一定程度的差异,这就需要在具体的检测操作进行规范与调整,将各种因素对于检测结果的影响控制在最小范围内,提高农民的经济收益。将不同阶段、不同区域的土壤检测结果收集起来,建立土壤数据分析库,农户可以依照数据库资料与分析结果对耕作方式与作物种类进行判断与选择。

1.土壤样品的采集与处理

土壤样品的采集是土壤检测工作首要及重要的环节。为了防止所采集到的样本具有更加充分的代表性,需要在进行土壤采集之前首先制定系统的土壤采集方案,最大程度上提高样品质量。在对土壤样品进行采集的过程中,每一份土壤均要来自于深度一致、分布均匀的土地,依据调查的目的、精度以及调查区域的环境状况选择合适的样品数量,提高土壤样品的真实性与代表性,使土壤样品的检测结果与实际情况尽量保持一致。在样品采集后,检测人员需要根据处理要求对土壤样品进行风干,不可以直接于阳光下暴晒或采用机械风干的方式。在完成对于土壤样本的各项处理后,检测人员需要将土壤样本移送给专业的检测人员,做好保管与登记方面的工作。

2.准确配制试剂溶液

在对试剂溶液进行配制的过程中,需要使用纯水进行配制,在对各种容器进行冲洗的过程中,检测人员需要严格遵循少量多次的原则,使容器在整个实验过程中严格保持干净状态。将所配置的溶液置于试剂瓶中,再用瓶塞塞好。对试剂溶液的有效期、配制人、配制日期、浓度与名称等方面的信息进行明确的标注。在转移溶液的过程中,检测人员需要避免溶液溅出。

3.土壤样品的消解

3.1称取0.5g经100目筛土壤样品于聚四氟乙烯杯中(一批实验做两个空白、两个标样、两个平行);

3.2加入5mL氢氟酸、10mL混酸(浓硝酸:高氯酸=1:1)后加盖冷消解;

3.3打开石墨消化炉,并逐渐升温

3.4赶酸至杯内的溶液不大于0.5ml(不能蒸干)且溶液呈现白色透明或浅黄色便可取出(若溶液的颜色还是很深继续加混酸,根据颜色的深浅加混酸,一般可以以2ml为间隔加入,若杯内还有溶质,则应酌量加入氢氟酸),取出的消解杯放置冷却后加入5ml浓度为5%体积比的硝酸溶液(定容至25ml加5ml,若定容至50ml时加10ml)摇匀、定容,再过滤。

4.合理添加质量控制样

在对土壤样品进行检测的过程中,质控人员需对待测土壤安排一定比例的质控土壤,由检测人员严格按照土壤分析标准进行检测,确保测量结果的准确性。由于质控样具有比较强的准确性,因此对土样与质控样进行同时检测与分析,严格按照分析标准及质控样不确定度,确保各项器具、相关操作与检测结果之间不存在系统误差。

5.严格控制实验室的检测质量

在进行土壤检测的过程中,为了能够提高检测结果的科学性与准确性,需要对各项操作流程进行严格的规范,对实验室检测环境进行严格的管理与控制,检测人员需经过严格的考核才能够参与到检测工作来,将检测人员在实验过程中产生误差的概率控制在最小范围内。检测人员还需要严格依照有关规定对实验室中的容器进行维护与清洗。实验室中的实验用水与化学试剂都需要有专门人员统一进行管理。

6.定期核查仪器设备

为了使土壤检测结果的准确性得到提升,检测人员需要保证所使用的各项仪器设备校准检定合格,合理选择检测技术与检测方法,相关的检测仪器需要保证具备良好的运行状态。因此,实验室检测人员上机分析前需要对仪器设备进行全面核查并开机预热,确保仪器准确度及灵敏度以及稳定性达到规范要求。

7.检验原始记录

以各项原始记录进行检验能蚍奖闶据使用人员对检测结果进行判定,这就需要检测人员在操作过程中对各项原始记录进行核实,所收录的检测记录要做到齐全、完整并且真实。采用规定的记录格式,所记录的内容要一目了然、全面并且清查,将检测结果能够有效应用于各项检测工作中,一旦发现原始记录中存在任何形式的错误,检测人员需要进行及时的核查与纠正。

8.土壤检测方案

8.1检测项目

对土壤样品的来源进行调查研究,对土壤样品本不同物质的含量进行判断。土壤质量监测中,pH值、总铬、铅、总砷、总汞、镉等方面的数据为必测内容,依据检测目的的不同,增加相应的监测指标。

8.2土壤水分测定

风干土壤水分的测定,称取5g过1mm筛孔的样品于恒重后的铝盒中,精确到0.001g,于已105℃的恒温鼓风干燥箱中烘干至恒重。

新鲜样品水分的测定:将盛有新鲜土壤的铝盒在天平上称重,精确至0.01g,105℃烘干至恒重。

8.3可溶性盐分的测定

可溶性盐分是由土壤样品中所提取出来的一种可溶性盐类,对于作物的生长与萌发有着直接的影响,测定可溶性盐的方法主要包含阴阳离子总和计算法、电导率法、比重计法以及重量法等。

若采用重量法测定,则于500ml锥形瓶中加入50g土壤样品,进行提取、抽滤以及烘干等方面的操作。用过氧化氢将土壤中有机物清除干净,再进行称重处理。

8.4土壤金属化合物测定

对土壤金属化合物进行测定可以参与水体金属的测定方法,二者之间的差别主要体现在测定条件与预处理环节中。具体的预定方法包含冷原子吸收法、分光光度法、原子荧光―氢化物法、石墨炉原子吸收法以及火焰原子吸收法等。

结束语:

在对土壤样品进行检测与分析的过程中,检测人员需要对各方面的影响因素与各项操作所产生的误差进行综合性的考虑,采用有效、合理的解决措施,根据实际问题对检测过程中所出现的误差进行严格的控制,提高土壤检测的准确度与精密度,为土壤环境评价、土壤污染调查等奠定基础。

土壤检测范文第9篇

【关键词】 苯并[a]芘 朝阳市 土壤

1 引言

土壤是人类赖以生存的自然环境和农业生产的重要资源。然而随着工农业的迅速发展,土壤污染问题越来越突出。土壤是持久性有机污染物的重要归宿[1]。

多环芳烃(PAHs)是一类具有难降解性、致癌性、环境累积性及非挥发性的有害化学物质。它的广泛性和长效性,可对环境造成长期影响,对人类健康构成极大危害。其中苯并[a]芘(BaP)是美国环保总署(EPA)公布的优先检测的16种多环芳烃中危害最大的一种[2],具有代表性的强致癌物质。因此,苯并[a]芘在环境介质中的存在形式,尤其是土壤环境中的含量的确定一直受到各国环境工作者的重视。

朝阳市位于辽宁省西部,是我国的重要农业基地,本研究在朝阳所属的三个县市区采集了15个土壤样品,测定了苯并(a)芘的弄浓度,以了解朝阳农田土壤中苯并(a)芘的分布状况,为有针对性地开展农业环境保护和土壤污染治理提供数据资料。

2 实验部分

2.1 主要仪器与试剂

仪器:GC-MS(安捷伦),凝胶浓缩色谱仪(北京京科瑞达),加速溶剂萃取仪(戴安)。

试剂:丙酮、正已烷(色谱纯),海砂,无水硫酸钠,玻璃棉,苯并(a)芘标准物。

2.2 样品的采集

实验样品由朝阳市环境监测站于2013年5月份进行了采集,共采集土壤样品15个,其中建平县5个,喀左县5个,北票市5个。

2.3 前处理方法

取20g土壤样品,与海砂充分混合,研磨后装入加速溶剂萃取仪的萃取池中后用加速溶剂萃取仪进行萃取,收集萃取液,萃取液先用无水硫酸钠除水,后经凝胶色谱浓缩仪浓缩,溶剂换为正已烷,定容至1mL,进行气相色谱仪(电子捕获检测器)检测。

2.4 气相色谱质谱联用仪器条件

色谱柱为DB-5石英毛细管色谱柱(30 m×0.25 mm×0.25μm);载气是氦气;流速为1.2 mL/min;不分流进样;进样量2μL;进样口温度:280℃ ;检测器温度:280℃;离子源温度200℃。色谱柱升温程序:80℃保留2min,以20℃/min升至100℃,再以10.0℃/min升至200℃,再以20℃/min升至280℃,保留21min。

3 结果与讨论

3.1 质量保证与质量控制

为了控制提取及分离过程中可能带来的污染,进行了全程空白实验,并以信噪比的3倍作为方法检出限。实验过程中还进行了实验室空白实验,空白加标实验。方法的回收率测定采用基质加标方法确定,回收率为82.5%,平行样品的相似度为0.1%~21.3%,并且结果均能达到质量保证和质量控制的要求。

3.2 土壤中苯并(a)芘的浓度水平

实验中检测了北票市、建平县、喀左县中苯并(a)芘的浓度,结果均未检出。

土壤环境质量标准是评价环境质量优劣的尺度和依据。目前,我国《土壤环境质量标准》(GB15618-2008)中列出苯并(a)芘的指标,根据保护目标,划分三级标准值,土壤环境质量第一级标准值苯并(a)芘

据此,朝阳地区苯并(a)芘的污染程度是未受到污染,土壤质量状况良好。

4 结语

本文首次对朝阳市土壤中的苯并(a)芘进行了检测,从实验结果中我们发现,朝阳市土壤中的苯并(a)芘的均未检出,说明朝阳市土壤质量状况良好。

参考文献:

土壤检测范文第10篇

关键词:土壤;样品采集;样品处理;检测方法

中图分类号 S151.9 文献标识码 A 文章编号 1007-7731(2016)12-0072-02

Collection and Detection Methods of Soil Samples

Liu Yang

(Central Station of Environment Monitoring,Xinjiang Production and Construction Corps,Urumqi 830011,China)

Abstract:Soil composition is very complex,its formation and evolution influenced by parent material,climate,biology,topography,time and other factors. It is necessary to measure the soil index,because human health and social development has been hindered by large area of soil pollution with the rapid development of social economy. Sampling and testing of different pollution in soil need different methods. In order to provide alternative methods for determination of samples under different experimental conditions,the paper introduced the process of soil sample collection and the way of soil treatment,focusing on the determination of organic matter,heavy metals and pesticides in soil ,and the advantages and disadvantages of each method were compared and analyzed in the paper.

Key words:Soil;Sample collection;Sample processing;Detection method

随着城市化、工业化的快速发展,一方面建设用地面积的需求越来越大,另一方面土壤污染也越来越严重[1]。土壤是所有生物赖以生存的基础资源,是农业可持续发展的根本,土壤一旦污染,直接导致农作物的减产,食物链中的动植物受到影响,尤其是人类的生命健康受到威胁[2]。基于上述情况所以需要环境监测部门对土样进行采集并进行检测。

养分、水分、空气、不同分解程度的有机质和不同大小的矿物颗粒等物质构成了一个复杂多相的物质系统-土壤,其组成物质相互作用、相互影响。分析土壤样品对土壤的理化性质、肥力都有着重大意义,为了更好地分析土壤成分基本质量和性质,土壤样品的采集和检测工作尤为重要。

1 土壤样品的采集与处理

1.1 土壤样品的采集 土壤样品的采集是土壤研究分析的关键,采集具有代表性的样品,是反映客观条件、测土配方施肥的先决条件。因研究目的不同样品的采集方式也不同,研究测定内容包括大量和微量养分状况、有机质、pH以及一些土壤物理性质等。土样采集包括采样前的准备工作、现场勘查点位选取工作、样品采集工作及样品的运送、制备与保存工作。

1.1.1 采样前准备工作 因为土壤在时间和空间上存在差异,为保证代表性土样的采取,应该制定一个可行的计划。第一组成一支采样专业队伍,将采样过程中的具体任务进行人头上的分配,责任到人,保证采样过程的质量控制;第二经过采样前的调研工作后,确定好所需采集土样的总数,把采样点的方案细化,点位的布控做到均匀分布避免出现点位过于集中情况;第三在采样出发前,准备好所需的物资,然后组织采样队员对其进行培训,使其熟悉相关的采样程序,并掌握采样技术。

1.1.2 现场勘查及点位选取工作 到达采样区,根据采样点的位置,将队伍分成小组,每个小组负责自己的区域,选择最优的采样路线,合理安排每天的采样点数。如果点位不符合采样要求需做调整,尽量在代表区域做微调,如果能够微调尽量微调,不能微调则需要取消原涉点位,调整到农产品地区并做上相应的记录,换点过程中采样点严禁避让污染区

1.1.3 样品采集工作 利用GPS确定布设点的具置,根据已经确定的采样方法,结合当地实际情况,进行土样的采取。将采集好的土样放入取样袋,并在袋上写明样品名称、采样时间、采样地点、采样深度、采样方法及采样员姓名,并用相机拍摄采样区现状。样品采集结束后,应核对样品名称、采样地点、采样工具等资料,确认无误可撤离采样区。

1.1.4 样品的运送、制备与保存工作 土样应按相应的顺序放置、封装,运送到指定的地点。

1.2 土壤样品的处理 土壤样品的处理一般包括三步:干燥、研磨、筛分。

1.2.1 干燥 因采集后的土样大多是含有水分的,所以需要将采回的土样进行干燥处理,需注意避免暴晒以受到其他因素影响,可选择室内自然风干或者烘箱烘干。

1.2.2 研磨、筛分 晾晒后选取合适的机会对土样进行研磨、筛分,剔除杂体及不符合的颗粒,该过程中注意样品和序号一一对应。样品制备完毕后,将其按编码有序摆放,并建立电子档案。

2 土壤样品的检测

2.1 有机质的测定 土壤有机质是指存在于土壤中所有含碳有机物,它包括各种动植物残体、微生物及其会分解合成的各种有机物质[3],主要成分是C、H、O、N,作为土壤固相的重要组分,对土壤肥力水平高低、土壤的形成、土壤结构及土壤养分都有重要影响。土壤有机质的经典测定方法有灼烧法、重量法、容量法、比色法。

2.1.1 灼烧法 通过在350~400℃进行灼烧土样,通过灼烧前后质量的差值,就是灼烧过程中溶解掉的有机质。该方法最重要的是精确的称量及温度的掌控,精度较低,且此方法仅适用砂性土壤,对于其他细密型土壤测定分析并不可行。

2.1.2 重量法 包括干烧法和湿烧法两种,干烧法是利用高温电炉灼烧,湿烧法利用重铬酸钾氧化,以此释放出土样中的CO2,用苏打石灰或氢氧化钡溶液吸收称重,再用标准酸进行滴定。重量法能够使土壤样品所含有的有机碳全部分解,可以获得较高精度的分析结果,但是该法需要特殊的仪器,时间花费也比较多。

2.1.3 容量法 该方法是分析土壤样品中的有机质比较普遍的方法,利用重铬酸钾在过量的硫酸存在情况下,来氧化土样中的有机碳,用标准硫酸亚铁对剩余的氧化剂进行回滴,氧化剂的消耗量的多少就是有机质的含量。容量法操作简单、没有局限性且分析结果精度高。

2.1.4 比色法 用葡萄糖溶液作为标准物质,利用重铬酸钾溶液氧化土样的有机碳,有机质浓度与溶液颜色的变化成线性关系,最后用光度的比色确定有机质量,该方法准确度不高。

2.2 重金属的测定 重金属元素包括汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)、锌(Zn)、铜(Cu)、镍(Ni)、砷(As)、锑(Sb)和铋(Bi)这十种元素。土样中重金属的测定一般可以采用原子吸收分光光度法、全分解法等,但是对于Cr、Pb的测定并不理想,张飞提出利用硝酸+氢氟酸+高氯酸全分解法消除土壤的重金属元素,分析结果表明该方法操作简单、方便可靠,满足实际土样测定要求[4]。为了实现现场直接测定,还可以选取x-射线荧光法,该装置灵敏度和精度都很高,但是价格也高,测定花费的成本自然高。

2.3 农药的测定 农药的品种不同对土壤造成的污染类型也不同,农药的品种包括有机氯农药、有机磷农药及有机氮农药等,现阶段主要针对有机氯和有机磷测定较多。

有机氯是持久性有机物的主要成分,具有难降解、高毒性等特点[5],通常采用气相色谱法进行测定。首先利用丙酮和石油醚在索氏提取器中提取土样中的六六六和DDT,然后提取液用蒸馏水洗净,用电子捕获检测器气相测谱仪进行检测,外标法测定有机氯含量。该方法高分离性能,高检测性能,分析时间相对较快,但不能定性分析所得结果。

有机磷是一种能够对神经系统造成紊乱的神经毒素,所以有机磷的测定非常重要。有机磷测定分析法也是气相色谱法,能够检测出有机磷的含量已经达到纳克级水平。在进行有机磷测定过程气相色谱法结合一般是专用检测器火焰光度检测器,当然电子捕获检测器也很好。

3 结语

土壤样品的检测能够反映出环境质量的变化趋势,而土壤样品的采集和处理是最基本的工作且是最重要的环节之一。土壤样品的各项物质的测定方法有优点也有缺点,需要根据具体情况进行合适的选择,更好地定量定性分析土壤环境状况,为改善土壤环境提供指标依据。土壤环境保障了,农产品的质量与安全就保证了,人民群众生命健康不担心了,我国农业经济的可持续发展就实现了。

参考文献

[1]齐文启,汪志国,孙宗光.土壤污染分析中样品采集与前处理方法探讨[J].现代科学仪器,2007,04:55-58.

[2]高锦卿.土壤重金属污染及防治措施[J].现代农业科技,2013,01:220+225.

[3]张钧.土壤有机质测定全程质量控制[J].四川环境,2014,02:6-12.