开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘要以Ti(OC4H9)4、Ba(NO3)2、Sr(NO3)2、Zr(NO3)4为原料,采用微波水热合成技术在较低的温度下合成出多层陶瓷电容器用Ba0.75Sr0.25Zr0.1Ti0.9O3纳米粉体。本文研究了反应温度、反应时间、pH值等因素对BSZT纳米粉体制备的影响机制,通过XRD、TEM、SEM等对粉体结构及形貌进行了表征。结果表明:在反应温度70℃、反应时间10min、pH≥14的条件下便可获得粒径只有60nm,分散良好且高结晶度的Ba0.75Sr0.25Zr0.1Ti0.9O3粉体,并初步探讨了微波水热合成纳米钛酸钡基陶瓷粉
1引言
多层片式陶瓷电容器(MLCC)广泛应用于电子信息产品的各种表面贴装电路中。陶瓷介质材料是影响MLCC诸多性能的关键因素,即需要制备亚微米/纳米级钛酸钡基瓷料。因此,控制陶瓷介质材料的粒度、组成、结构,获得细晶、高性能的MLCC瓷料以满足大容量、超薄层的多层陶瓷电容器的要求是目前国内外广泛关注的问题。
制备钛酸钡基陶瓷粉体的传统方法是固相法,所制粉体纯度低、杂质含量高、组成不均匀、粒径大,不能满足高精密电子元件的需要。相对于固相法,水热法制备的粉体具有颗粒尺寸小、团聚少、粉体无须煅烧等优点。S・Wada[1]在120℃水热反应5h,制备了平均粒径为100nm的BaTiO3粉体,可见其反应条件非常高。微波加热法具有快速、均质与选择性的特点,其高穿透性与特定材料作用性,使原不易制作的材料,如良好结晶与分散性的纳米粉体粒子可经由材料合成设计与微波场作用来获得。
本文结合微波加热法升温速度快且分布均匀等特点,在较低的温度下水热合成得到了Ba0.75Sr0.25Zr0.1Ti0.9O3粉体,研究了粉体的结构、组成及微观形貌特征,并且探讨了微波水热法制备纳米BSZT粉体的影响因素以及微波液相下晶粒的形成机理。
2实 验
2.1 BSZT纳米粉体制备
本实验采用分析纯的钛酸四丁酯、硝酸钡、硝酸锶、硝酸锆、氢氧化钠为实验原料,以OP-10为表面活性剂。准确配制一定浓度的NaOH溶液,加热至80℃除去其中溶解的CO2。量取一定量的NaOH溶液于反应容器中,在磁力搅拌下滴加钛酸四丁酯,然后加入确定比例的Ba(NO3)2溶液、Sr(NO3)2溶液以及Zr(NO3)4溶液;接着加入一定量表面活性剂,调节反应溶液的pH值。充分搅拌后,移入上海新仪微波化学科技有限公司的MAS-3普及型微波炉中进行加热。到设置的温度点开始计时,反应完成后,静置、酸洗、水洗、醇洗后过滤,干燥得到BaTiO3粉体。
摘 要: 针对压电陶瓷定位系统中电容传感器故障对定位精度的影响,对使用扩展卡尔曼滤波(EKF)进行容错控制的方法进行了研究。以传感器采样电路故障和掉电故障为对象,对三阶轨迹规划算法下电容传感器的EKF滤波公式进行了分析,提出以离散化迭代计算的EKF代替传统的将非线性系统线性化的方法。在压电陶瓷定位系统实验平台上,使用激光干涉仪作为测量基准,在传感器采样电路故障和掉电故障的情况下,实现了500 μm行程,绝对精度小于3.5 μm,误差小于0.7%的定位控制。结果表明,基于EKF的电容传感器容错控制可以有效减小传感器故障引起的控制误差,增加压电陶瓷定位系统的鲁棒性。
关键词: 压电陶瓷; 电容传感器; 扩展卡尔曼滤波(EKF); 容错控制
中图分类号: TN820.3?34 ;TP273+.5 文献标识码: A 文章编号: 1004?373X(2014)21?0152?04
Fault tolerance control of capacitance transducer in
piezoelectric ceramic positioning system
GUO Jia?liang, LI Peng?zhi, LI Pei?yue
(State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun 130033, China)
Abstract: As the failure of capacitance transducer has a big impact on tracking accuracy of the piezoelectric ceramic positioning system, the methodology of using extended Kalman filter (EKF) to implement the fault tolerance control is investigated in this paper. Aiming at the sampling circuit failure and the power failure of the transducer, an EKF filtering formula of capacitance transducer under three?order trajectory planning algorithm is analysed. The method that the discrete iterative EKF algorithm is taken to replace the traditional method is introduced. Positioning control experiment is performed with the benchmark of the laser interferometer. The results indicate that the proposed method can achieve 0.7% maximum tracking errors, with the deviation of ±3.5 μm, in a stroke of 500 μm. The experimental results indicate that the fault tolerance control method based on EKF can the control error caused by transducer fault and increase the robustness of the piezoelectric ceramic positioning system.
1多孔陶瓷电容器失效特性仿真模拟计算
为了验证上节设计的多孔陶瓷电容器有限元仿真模型的有效性和可靠性,本节使用ABAQUS软件建立了多孔陶瓷电容器的数值仿真模型,并对利用温度和散热边界条件对其最大应力进行了数值仿真模拟。
1.1多孔陶瓷电容器仿真模型
ABAQUS是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。ABAQUS/CAE是ABAQUS进行操作的完整环境,在这个环境中,可提供简明,一致的界面来生成计算模型,可交互式地提交和监控ABAQUS作业,并可评估计算结果.本文建立的多孔陶瓷电容器的ABAQUS软件仿真模型,在模型中施加了温度边界条件,并设置了材料参数,为了分析更能真实的反映器件的结构,在模型中使用了粘聚力单元。
1.2失效特性计算结果
通过数值仿真模拟计算得到了应力和应变结果云图,通过对最大应力的分析可以实现电容器失效特性的仿真设计。表示通过ABAQUS有限元仿真模拟计算得到的应力变形图,由图可以看出,在热源作用下,在电容器的应力集中位置产生了明显的变形,为了直观显示最大应力,本文通过仿真计算得到了的应力云图。表示在电容器发热过程中的应力分布图,图中区域1(红色部分)表示应力最大位置,从区域1(红色)到区域5(蓝色)应力逐渐降低,由图可以看出,在电容器发热的位置应力比较大,但是还没有出现撕裂现象。随着电容器的持续发热,电容器变形逐渐增大,此时最大应力也逐渐增大,最终导致电容器撕裂。其撕开过程是由电极端部单元达到其强度而发生撕裂,并迅速扩展,直至整个路径完全撕开而使器件失效。表示开裂距离和最大应力的计算结果表,由表可以看出,在开裂距离为112μm时,最大应力出现了比较大的变化,当最大应力达到305.3MPa时开始急剧下降,其变换趋势图如图所示。表示开裂距离和最大应力的变化趋势,由图可以看出,在初始开裂距离为112μm之前应力没有发生变化,112μm之后应力发生了明显的变化,应力逐渐增大后又急剧降低,说明电容器发生了失效破坏。因此,在多孔陶瓷电容器的设计过程中需要充分考虑温度对电容器的影响,可以依据最大开裂距离来对电容器进行保护,避免电容器失效。
2结论
本文将数值仿真模拟方法引入到了电容器散热失效的仿真计算过程中,提出了一种新的电容器失效特性设计方案。依据有限元思想本文建立了二维多孔陶瓷电容器应力和传热数学模型,并将ABAQUS软件引入到了多孔陶瓷电容器的失效仿真计算过程中,通过计算得到了多孔陶瓷电容器的最大应力和应变的分布云图。为了得到多孔陶瓷电容器的临界应力点,本文对持续发热的电容器进行了仿真计算,得到了最大应力随开裂距离的变化趋势,为多孔陶瓷电容器的设计提供了技术参考。
【摘要】多层陶瓷电容器因其具有体积小、比电容高、绝缘电阻高及漏电流小、寿命长、可靠性高等优点,被广泛应用到信息、移动通讯、电子电器等领域。文章结合潮州三环集团在开发大容量产品过程遇到的问题,重点阐述了大容量多层片式陶瓷电容器及其高介瓷粉的制备方法,对电子信息产业研究具有非常重要的科学意义和实用价值。
【关键词】多层陶瓷电容器;高介瓷粉;制备方法
1.前言
多层片式陶瓷电容器(Multi-Layer Ceramic Capacitor英文缩写MLCC)是一种适合SMT表面贴装的片式电容器,几乎所有的电子整机都必须配套应用。特别是移动通信产品、计算机、数码相机、新一代数字化家电产品,对MLCC产品的需求量与日俱增,而且随着电子整机产品趋向于轻、薄、短、小和表面贴装技术的日益普及,MLCC的发展更具潜力。随着中国日益成为全球主要的电子信息产品制造基地,国内MLCC市场需求总量呈现快速增长态势,为国内MLCC企业的发展提供良好机遇。国内的企业,自主开发并制备高介瓷粉是实现大容量BME-MLCC的唯一途径,也是实现自身不断发展、满足客户需求、与提高与日韩产商竞争力的必经之路。
2.高介瓷粉制配方法、工艺
2.1 高介瓷粉配方的研发
为了满足大容量BME-MLCC产品的需求,本公司开发了介电常数约为4200的高介瓷粉配方,并且确保产品的低损耗、绝缘性、可靠性、耐久性等等性能。
2.2 高介瓷粉制备的工艺路线
现代电源技术中,无论是线性电源还是开关电源,铝电解电容都是必不可少的关键器件。然而,在行业内常规的AC DC电源设计中,铝电解电容会给电源带来高低温条件下可靠性差、寿命短等问题。那么,有没有一种既能替代传统铝电解电容,又能提高电源可靠性和寿命的器件呢?本文着重从高压陶瓷电容与传统铝电解电容的优劣势对比进行探讨与分析。
铝电解电容的设计缺陷
AC-DC电源转换器,要实现交流到直流的变换,首先需要将交流电压经过整流滤波后形成一个稳定、平滑的直流电压给自身及外部器件供电。而电解电容由于具有单位体积内电容量大、额定容量大(可实现法拉级)、价格低廉等优点,常成为常规开关电源中整流滤波的关键器件。电解电容是由铝圆筒做负极,里面装有液体电解质,插入一片弯曲的铝带做正极制成,电解液在高温和低温等极端条件下,非常容易漏液和干涸,从而使其电气属性发生变化,最终导致电容失效。一旦铝电解电容失效,因其剧烈反应形成压力,就会释放出易燃、腐蚀性气体,导致AC DC模块电源失效。
根据铝电解电容的物理结构,可以用图1中所示的电路等效,其中CAK代表两电极问的理想电容量;Rp是并联电阻,代表了电容的漏电流成分;Rl代表了电容引出端及电极部分的串联电阻成分;L代表了引出线和连接处的等效串联电感成分。
铝电解电容的性能主要依赖其中介质部分,即阳极金属氧化膜部分。除受初始工艺的影响外,在工作过程中,电解液也会不断修补并增厚该氧化膜,随着阳极金属氧化膜的不断增厚,铝电解电容等效电路模型中的电容值C会不断下降,等效串联电NESR会不断增大,同时阴极反应产生的氢气又加速了电解液的挥发,这些便是引起铝电解电容退化的主要因素。
因而,虽然电解电容有着其他类型的电容无法替代的优势,但还是具有内部损耗大、静电容量误差大、漏电流大、高低温特性差等缺陷。故采用电解电容设计的常规AC DC电源模块在高低温特性、可靠性、使用寿命等方面具有明显的劣势。
那么,如果AC-DC电源设计中不使用电解电容,电源产品将会怎样呢?无电解电容的AC-DC电源模块是否可避免上述致命缺陷?
无电解电容产品的优势
摘要: 综述了近年来国内外对多层陶瓷电容器介质材料的研究进展及发展趋势,主要介绍了符合人类社会可持续发展和陶瓷电容器的发展趋势的无铅高温化体系,包括(Bi0.5Na0.5)TiO3,BiScO3-BaTiO3及(K0.5Na0.5)NbO3体系。
Abstract: Research progress and development trend of the dielectric materials of multilayer ceramic capacitor at home and abroad in recent years has been summed up, and lead-free high temperature system, including(Bi0.5Na0.5)TiO3, BiScO3-BaTiO3, and(K0.5Na0.5)NbO3 system, which accords with sustainable development of human society and the development trend of the ceramic capacitor is introduced.
关键词: 多层陶瓷电容器;介质材料;无铅高温化;研究现状
Key words: multilayer ceramic capacitor;dielectric materials;lead-free high temperature;research status
中图分类号:TM53 文献标识码:A 文章编号:1006-4311(2012)29-0318-03
0 引言
多层陶瓷电容器(Multi-Layer Ceramic Capacitor,MLCC)又称为独石电容器(Mono Lithic Capacitor,MLC),是由电介质陶瓷薄膜和内电极相互交替重叠而成的一种新型片式元件。实际上,通常使用的MLCC是由很多单层陶瓷电容器并联组成的。其结构如图1所示[1]。由于具有高的电容量、低的介电损耗、高的抗击穿强度、优良的抗热震性和耐腐蚀性,目前,多层陶瓷电容器(MLCC)已经被广泛应用于广播电视、移动通信、测量仪器等电子设备中[2]。而随着科技的发展,越来越多的应用要求MLCC能够在极端的环境下正常工作[3-5]。比如在石油钻井、汽车工业和航天航空等领域,MLCC必须在极高的温度下工作。另外,这些MLCC还必须能够承受在这些极端环境下的剧烈冲击和震动。因此,MLCC面临着超微型化、超大容量、超薄型化和高可靠、低成本、环保化(无铅化)、宽温高稳定性等方面的技术竞争和挑战。为满足MLCC的竞争要求对其介质材料也提出了相应的要求,即高介电常数、低介质损耗、低的容温变化率、耐高温性和无铅性。
关于MLCC的研究进展综述报道已经比较多[6-8],而对其介质材料研究进展及发展趋势的报道还比较少,本文对MLCC介质材料的研究进展进行综述,重点介绍高温MLCC介质材料并对MLCC介质材料的发展做出展望。
摘 要:面向应用的元器件检测方法是电子系统可靠性保证的重要方法。文中针对多层陶瓷电容器(MLCC)最主要的失效机理――热应力损伤,结合常用的热应力损伤检测方法的归纳总结,重点论述了基于噪声的应力损伤检测方法。
关键词:MLCC;热应力;检测方法
1 引言
多层陶瓷电容器(Multi-layer Ceramic Capacitors,MLCC)又被称为片式叠层电容器、独石电容器等,被广泛用于家电、电脑、手机、军工、航天等电子信息类领域,已经成为世界上用量最大、发展最快的一种片式元件[1]。近年来,国内MLCC的年市场需求量几乎都超过5000亿只。
MLCC起源于20世纪60年代,随着表面贴装技术的广泛应用,采用Ni贱金属内电极(Base Metal Electrode,BME)制备MLCC的工艺在90年代得到飞速发展,于21世纪初形成比较完善的贱金属内电极工艺,使MLCC制作成本下降了70%以上[2]。在小型化方面每两三年就出现一个新的规格,在容量方面则不断追求更薄介质和更高介质层数,使MLCC在近十年来不断推出更大容量的产品。我国MLCC起步较晚,MLCC生产技术和工艺相对落后,国产MLCC多数为低端产品[3]。由于国际上对我国进行知识产权技术封锁,国内自主研发技术还处于相对弱势,而商用MLCC特别是低成本MLCC的市场竞争越来越激烈,利用检测技术来提高MLCC产品的质量已成为一种必要的手段。
典型的MLCC多层介质结构由几百层陶瓷介质和金属电极交互叠加,高容量MLCC甚至可达上千层,由于陶瓷和金属电极的热膨胀系数不同,在热冲击、热循环等作用下,电极-介质接触界面很容易产生热应力,由此造成的损伤称为“热应力损伤”[4]。研究表明仅热冲击这一种热应力造成的失效就占总失效产品的25%左右[5,6]。由此可见,MLCC热应力损伤是一种重要的损伤模式。
因此,通过灵敏热应力损伤检测技术对存在热应力隐性失效的产品进行评估,可以保证MLCC的可靠性,具有重要的实用价值。本文对常见的热应力损伤检测方法进行总结和归纳,重点介绍课题组研究的基于噪声的元器件热应力损伤检测方法。
2 热应力损伤检测方法
压电陶瓷变压器是用铁电陶瓷材料经烧结、高压极化等工艺制造而成的一种新型电子变压器,其变压原理和结构完全不同于传统的电磁式变压器。
关于压电陶瓷变压器的研究始于20世纪50年代。美国G.E.Motorola Zenith公司的Rosen在1956年阐述了压电陶瓷变压器的基本工作原理,并成功地制备出长条形单片压电陶瓷变压器。但由于这种单片变压器使用的是压电性能较差的BaTiO3陶瓷材料,加上工艺不完善,升压比很低,成本又很高,故当时没有引起人们的重视。后来,随着PZT系、三元系和四元系等压电陶瓷材料的陆续出现,在20世纪70年代末和80年代初,压电陶瓷变压器开始进入实用化。从20世纪90年代末期开始,压电陶瓷变压器得到了蓬勃发展和比较广泛的应用。
1 压电陶瓷变压器的基本结构及工作原理
压电蜂鸣器和压电点火棒是人们较熟悉的两种压电陶瓷产品。压电蜂鸣器是利用压电陶瓷的逆压电效应工作的,给其加上电信号,压电陶瓷将产生振动而发出声音;压电点火棒是利用压电陶瓷的正压电效应工作的,给其加上机械压力,在点火棒两端即有高压产生。这两种器件的能量转换形式是电能与机械能之间的单向转换,而压电陶瓷变压器则是在同一压电陶瓷上同时利用正和逆的压电效应来进行工作的,即经过电能机械能和机械能电能的两次能量变换。压电陶瓷变压器输入端和输出端的振动模式是不同的,因此压电陶瓷变压器实际上是一种特殊的压电陶瓷换能振子。
压电陶瓷变压器按其形状、电极和极化方向不同而有各种结构,其中最简单和最为常用的是Rosen型单层长条形结构,如图1所示。
由该图可知,压电陶瓷变压器由两部分组成,其中左半部分的上下两面都有烧渗的银电极,沿厚度(即从上到下)方向极化,作为输入端,这部分称为驱动部分;右半部分的端头烧渗了银电极,沿长度方向(即从左到右)极化,作为输出端,这部分称为发电部分。当交变电压Uin加到压电陶瓷变压器的输入端时,只要交变电压频率与压电陶瓷的谐振频率一致,就会通过逆压电效应使变压器产生沿长度方向上的伸缩振动,使输入的电能转化为机械能;而发电部分通过正压电效应使机械能转换为电能,产生电压输出。实际上,压电陶瓷的左半部分相当于蜂鸣器,右半部分则类似于点火棒。图1所示的压电变压器的长度大于厚度,如果输入端为低阻抗,输出端为高阻抗,则为升压型变压器。这种变压器在几伏或几十伏的输入电压下,可以产生数千伏的输出。在空载状态时,压电变压器的开路升压比N为
当材料一定时,Qm、k31和k33均为常数,压电变压器的变压比N仅由L和t之比决定。由于QmL/t可以很大,因此可以制作升压比足够大的压电陶瓷变压器。
利用与图1所示的Rosen变压器相似的结构,可以制备如图2所示的压电陶瓷降压变压器。这种降压变压器是将图1中所示的发电部分作为驱动部分,将驱动部分作为发电部分。通过这种变换,发电部分的输入阻抗大于驱动部分的输出阻抗,致使输出电压降低,电流增加。
一种碳化硅泡沫陶瓷太阳能空气吸热器,以碳化硅泡沫陶瓷材料作为太阳能吸收体。碳化硅泡沫陶瓷吸收体外部包覆有保温层,辐射热流投射到碳化硅泡沫陶瓷吸收体表面或投入人工黑体空腔,由碳化硅泡沫陶瓷接收体接收,冷空气直接从碳化硅泡沫陶瓷接收体正对辐射热流侧流入,经换热后获得热空气;或辐射热流透过石英玻璃窗,冷空气从碳化硅泡沫陶瓷接收体正对辐射热流侧或背对辐射热流侧流入,经换热后获得700℃~ 1300℃的热空气,碳化硅泡沫陶瓷接收体预埋空气导流通道。本发明可高效接收辐射热和高效地向空气传热,同时利用自身的显热进行储热。
专利号:200710099039.3
陶瓷金属制品
本实用新型涉及一种具有金属质感的陶瓷金属制品,属于工艺日用品技术领域。本实用新型的陶瓷金属制品包括陶瓷基体,所述陶瓷基体的外表面制有间隔分布的金属层,所述金属层按预定图案有规律地间隔分布。这样制成的陶瓷金属制品既保持原有陶瓷制品多变的工艺品质,又具有金属质感,从而形成一种全新的表面装饰效果,不仅提高传统陶瓷制品的外表装饰档次,又带来了新的欣赏点,而且对陶瓷制品的外表还具有一定的保护作用。
专利号:200720036965.1
新型自密封节水洁具陶瓷开关
本实用新型公开一种新型自密封节水洁具陶瓷开关装置,包括开关本体,设于开关本体内,用于封堵水流孔的阀座组件。所述的阀座组件包括阀杆、上瓷片、中瓷片、密封硅胶,中瓷片固定在开关本体内,阀杆一端固定连接控制水流开关的手柄,另一端固定连接上瓷片,中瓷片下面还垫有一密封硅胶,中瓷片、密封硅胶设有进水口及出水口。使用本实用新型节水洁具开关可长时间保持可靠的自密封。
专利号:200720119159.0
陶瓷基复合材料及成形技术
本发明涉及一种陶瓷基复合材料成形技术,综合了压注、注凝、浸渗的原理,用以制备形状复杂、结构组分密度均匀、高强度的陶瓷基复合材料坯体,再进行烧结即可获得高韧性陶瓷基复合材料制品。本发明提出的技术是一种创新的、制备高性能复杂形状纤维增强陶瓷基复合材料的低成本、近净尺寸的成形技术,与现有纤维增强陶瓷基复合材料成形制备技术相比,具有明显的优越性,成形时间短、生产效率高。
专利号:200810228400.2
氮化铝陶瓷材料及其制备方法
本发明公开了一种氮化铝陶瓷材料及其制备方法。该方法是在现有常用制备方法的原料中添加纳米氧化铝,再按照常规制备工艺进行制备。可通过直接添加纳米氧化铝或添加有机铝,如仲丁醇铝、异丙醇铝或乙酰丙酮铝,并借助有机铝的低温分解间接获得原位生长的纳米氧化铝。该方法可应用于干压成形和流延成形,采用常压或热压烧结等陶瓷制备工艺,可获得分散特性好、均匀混合的氮化铝和纳米氧化铝浆料,有利于提高物料的烧结活性、降低烧结温度,以及提高陶瓷基板的色泽一致性、平整度和粗糙度,降低生产成本,在氮化铝陶瓷生产领域具有广泛的应用。
专利号:200810224311.0
一种碳化硅陶瓷的制备方法
本发明公开了一种碳化硅陶瓷的制备方法,具体为:采用固相烧结法,将竹炭粉碎研磨后,与硅粉按质量比1:3混合,将硅碳混合物与酚醛树脂按质量体积比为1:1混合均匀;将混合物在140℃下预加热成形;在真空或者Ar气氛状态下,将温度升高到设定的最终烧结温度进行高温烧结;保持温度30min,冷却制得SiC陶瓷材料。本发明利用竹材生物结构通过高温烧结而得到的碳化物材料,竹材在绝氧条件下进行炭化得到具有竹材孔隙结构的炭骨架,以此作为陶瓷相渗入和反应的生物模板,通过金属或者无机非金属物质渗入、烧结反应,使得到的陶瓷不仅具有竹材的精细结构,而且增加了反应面积,提高了合成速度,具有一般陶瓷制备方法无法比拟的优点。