开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
[摘要]数学教学设计应基于数学问题解决。数学问题解决设计具有程式性、有效性、研究性和策略性等优良特征。问题解决教学设计的类型主要包括:知识接受型、规律发现型、课题研究型。问题解决的程式主要包括:情境激活程式、方案构想程式、假定施行程式、系统改良程式。
[关键词]教学教学;问题解决;教学设计
数学课堂教学实质上是基于问题解决的教学,问题解决设计的有效性则是课堂教学设计有效性的真实体现。在数学课堂教学质量观上,长期存在着为解题而解题、为练习而练习、为应用而应用的认识误区;在数学课堂教学实践中,存在着为了一味追求解题而盲目设计更多的问题,为了一味追求知识记忆与机械应用而盲目高难度、高速度解题的诸多现实问题,即重视解题的数量,轻视解题的质量。因此,数学教学有效设计的核心在于基于数学问题解决有效质量的设计。
一、问题解决设计的特征
问题解决过程是一种学生基本技能掌握与学习的创造性活动过程,它贯穿于教学过程的始终。因此,数学教学设计应当是“基于问题解决学习”的教学设计。
在数学教学中,教师应当为学生创造更有利于问题解决的条件,在为学生构建好课堂问题系统的同时,尽量为学生的创造性思维提供良好的问题解决的环境或空间。
(一)问题解决的教学信度——程式性
问题解决的教学信度意指学生对问题解决时序上的稳定性。也即学生在问题解决过程中所产生的信服感和定势性。问题解决的程式性是问题解决教学信度的明显表现。教学中,体现程式性的问题解决,学生能够从中得到思维模式的培养与强化,以此产生记忆的功能固着现象,这样问题解决的教学信度便得以提升。
摘要:新课改给我们每一位教师带来了严峻的挑战。在新课标人教实验版教材的教学中,教师只有解决了这两方面的问题,才能更好地开展教学。一是课堂教学中探究学习实施的疑虑:学生探究中的错误、探究前的知识基础、探究能力,教师的教学进度、探究学习的尺度、探究学习的资源开发、考试与评价制度的改革。二是课堂教学中老师存在的问题:流于形式、过于追求教学的情境化、手段的现代化、不敢开口讲话、不能驾驭课堂。
关键词:新课改疑虑问题
新一轮基础教育改革给我们每一位教师带来了严峻的挑战和不可多得的机遇。本次课程改革,不仅改变了教师的教育观念,而且还改变了老师们每天都在进行着的习以为常的教学方式、教学行为。因此,对我们每一位教师提出了更高的要求,教师只有在教学中解决了这几方面的问题,才能更好地开展教学。
一、课堂教学中探究学习实施的疑虑
疑虑一:关于探究中的错误
传统教育是"永远正确"的教育,是消灭错误、鄙视错误的教育,这种教育让学生在错误面前得到的是紧张、羞愧,而不是理性的分析与反思。科学的历程正是在无数的失败与对成功的批判中发展的。教育背景中学生的失败是让他们掌握得到真理方法的重要途径,美国教育家杜威说过:"失败是有教导性的。真正懂得思考的人,从失败和成功中学得一样多。"所以,教师要善待学生在探究中的错误,要指导学生去发现错误,并以此引导他们掌握验证的方法与对错误的坦诚态度。
疑虑二:关于学生探究前的知识基础
探究学习不仅需要一定的知识为基础,而且要求学习者具备应用知识的能力。但是,我们不能因为学生缺乏知识基础,就放弃探究学习本身,实际上,科学家在进行某项科学探究活动前,也不一定就完全具备了进行探究的知识基础,他必须在探究中不断学习,才能弥补知识上的缺陷。所以,在学生进行探究活动前,教师要做充分的准备,特别需要了解:
数学建模优秀论文数学建模优秀论文数学建模优秀论文数学建模优秀论文数学建模优秀论文
数学建模优秀论文心得体会:
阅读1篇论文对我主要有以下4个方面的启发与指导:
(1)大致了解数学建模论文写作时应包含哪些内容
(2)每部分内容都应写些什么
(3)汲取他写作与处理问题的成功之处,以便将这些优点运用于我以后的论文写作中
(4)总结这篇论文写作与处理问题过程中的败笔,提醒我注意在写作论文时不要犯类似错误
所以,在下面的学习心得中将主要涉及以上4个方面的内容。
1980年4月,以美国数学教师全国联合会(NCTM)的名义,公布了一份名曰《行动纲领-80年代数学教育的议程》的文件,首次提出必须把问题解决(problemsolving)作为80年代中学数学的核心。在1980年8月的第四届国际数学会议上,美国数学教师协会提出了80年代中学数学教育行动计划的八点建议,指出80年代中学数学教育改革焦点是培养学生问题解决的能力,这种力量衡量个人和国家数学水平的标志。到1988年召开的第六届国际数学教育会议上,则将问题解决列为大会的七个主要研究课题之一,在课题报告中,几次明确提出问题解决?模拟化和应用必须成为从中学到大学的所有数学课程的一部份。这样,在美国和国际数学教育会议的推动下,问题解决受到了世界各国数学界普遍重视,不仅成为国际数学教育界研究的重要课题,而且是继「新数运动和「回到基础之后兴起的80年代和90年代国际数学教育发展的潮流。
一、对「问题的理解
对「问题的理解与关于甚么是「问题解决的分析直接相关,讨论和研究「问题解决的一个主要困难就在于对甚么是真正的「问题缺少明晰的一致意见。
当代美国著名数学家哈尔莫斯(P.R.Halmos)曾说:「问题是数学的心脏。美籍匈牙利著名数学教育家波利亚(G.Polya)在《数学的发现》一书中曾给出问题明确含义,并从数学角度对问题作了分类。他指出,所谓「问题就是意味着要去寻找适当的行动,以达到一个可见而不立即可及的目标。《牛顿大词典》对「问题的解释是:指那些并非可以立即求解或较困难的问题(question),那种需要探索、思考和讨论的问题,那种需要积极思维活动的问题。
在1988年的第六屇国际数学教育大会上,「问题解决、模型化及应用课题组提交的课题报告中,对「问题给出了更为明确而富有启发意义的界定,指出一个问题是对人具有智力挑战特征的、没有现成的直接方法、程序或算法的待解问题情境。该课题组主席奈斯(M.Niss)还进一步把「数学问题解决中的「问题具体分为两类:一类是非常规的数学问题;另一类是数学应用问题。这种界定现已经逐渐为人们所接受。
我国的张奠宙、刘鸿坤教授在他们的《数学教育学》里的"数学教育中的问题解决"中,对甚么是问题及问题与习题的区别作了很好的探讨,根据他们的思想观点,我们可对「问题作以下几个方面的理解和认识。
*问题是一种情境状态。这种状态会与学生已有的认知结构之间产生内部矛盾冲突,在当前状态下还没有易于理解的、没有完全确定的解答方法或法则。换句话说,所谓有问题的状态,即这个人面临着他们不认识的东西,对于这种东西又不能仅仅应用某种典范的解法去解答,因为一个问题一旦可以使使用以前的算法轻易地解答出来,那么它就不是一个问题了。
*问题解决中的「问题,并不包括常规数学问题,而是指非常规数学问题和数学的应用问题。这里的常规数学问题,就是指课本中既已唯一确定的方法或可以遵循的一般规则、原理,而解法程序和每一步骤也都是完全确定的数学问题。
新课程要求教师从“教”走向学生的“学”,倡导“对话”式教学,强调教学是师生之间的一种互动过程,课堂答问便成了必然。事实上,由于教师不了解学生的认知水平和思维发展水平,预设的问题不是太难就是太简单;不研究教材内容,不分析知识与问题之间的关联,预设的问题不能环环相扣、逐步推进,不能揭示知识发生过程;再加上教师不考虑提问的方式方法等等;学生对提出的问题根本不知道怎样思考或怎样回答,严重阻碍了师生之间的“对话”和互动。这样的问题,不但起不了好的效果,有时还误导学生,甚至打击学生的学习积极性。因此,数学课堂教学中必须预设有效问题。
一、预设问题要有“障碍”,防止“滑过现象”产生
“滑过现象”源自于英国学者EdardBeBono关于思维训练中“注意滑过”的一个形象比喻。他说:当我们驱车从A地到B地欣赏美景时,往往由于车速太快,忽略了途中更美的风景C;由A地到B地的路越顺畅,C地被忽略的可能性就越大。课堂教学也是如此,如果教师将教学任务设计得面面俱到、自然流畅,问题坡度太小,没有给学生留下跨越“障碍”的空间,学生无需要多少时间即可一蹴而就,就会使许多有价值的内容在不经意间滑过。在浙教版数学八年级(下)《三角形中位线》合作学习中有一个问题:将一张三角形纸片剪成一个三角形和梯形,如果要求剪得的三角形和梯形拼成平行四边形,应当怎样剪?对于这个问题,一教师预设了三个小问题来引导学生:
(1)、像图1那样剪,可以拼成平行四边形吗?
(2)、像图2那样剪,可以拼成平行四边形吗?
(3)、怎样剪才能拼成平行四边形呢?
SHAPE\*MERGEFORMAT
教师预设的前两个问题,的确能很好地为第(3)问做好铺垫,是不错的引导;但是由于教师问题设计过于详尽、顺畅,没有给学生留下“障碍”,学生轻而易举地回答出第(1)、(2)问,第(3)学生短暂思考就回答出来,这个问题便显得没有挑战性,探究价值就“一滑而过”,这对提升学生的思维层次没有益处。笔者认为,这个问题先不给出任何预设的小问题,就让学生先动脑动手画,再让学生动手剪。在大部分学生没有结果的情况下给出预设第(1)问。这样整个问题的处理上坡度不会太小,学生能经历一个相对完整的思考过程,也把握了时机,在知识的关键处、疑难处预设有效问题引导学生思考。
有一些数学问题,例如操作问题、逻辑推理问题等,不能用通常的数学方法来解;还有一些实际问题,研究的是事物的某种状态或性质,其本身与数量无关,也不能用通常的数学方法来解。人们习惯上将上述的这类问题称为非常规数学问题。非常规数学问题近年来在各种数学竞赛、数学建模竞赛及数学知识应用竞赛等赛题中频频出现,特别是它与实际问题密切联系,因此受到广泛关注。
非常规数学问题需要非常规的特殊解法,本文就最常用的图解法、赋值法、抽屉原理及逻辑推理等四种方法,结合实际例子作一探讨。
1图解法
例1(柳卡问题)假设每天中午有一艘轮船由哈佛开往纽约,同时也有一艘轮船由纽约开往哈佛,航行时间都为七昼夜,且均沿同一航线航行。问今天中午从哈佛开出的一艘轮船将会遇到几艘从纽约开来的同一公司的轮船?
这是十九世纪在一次世界科学会议期间,法国数学家柳卡向在场的数学家们提出的一个问题,它难倒了在场的所有数学家,连柳卡本人也没有彻底解决。后来有一位数学家通过下面的图解法,才使问题最终得到解决。
这种方法是:用两条横线分别表示纽约港和哈佛港,某天中午(记作第0天)从哈佛出发的轮船在第7天中午到达纽约,用从下到上的一条斜线表示。用从上到下的斜线依次表示每天中午由纽约开出的轮船经7昼夜到达哈佛。显然两种斜线的交点总数就是相遇的轮船数,共15艘。
值得注意的是,上述图解法,不但给出这一问题的一种简单、美妙、不用数字计算的非常规解法,更有意义的是它可作为一种模型,来解决这一类型的问题,请看下例:
例2某路电车,由A站开往B站,每5分钟发一辆车,全程为20分钟。有一人骑车从B站到A站,在他出发时恰有一辆电车进站,当他到达A站时又恰有一辆电车出站,问:
问题解决(problem-solving)在国际数学教育界受到普遍的重视,并被引入一些国家的数学课程中。全美数学教师理事会在《行动的议程》中明确提出应以“问题解决作为学校数学教育的中心”;在《美国学校数学课程与评价标准》中,“作为问题解决的数学”是各个年段数学课程的首要标准;全美数学督导委员会从职业教育和继续教育的要求出发,提出21世纪学生应具备的12种“基幢的数学能力,问题解决是其中的首要能力。英国SMP高中数学教科书中,有一册就是《问题解决》。在近几届国际数学教育会议上,问题解决始终是重要的议题。今年7月在西班牙举行的第八届国际数学教育会议上,第10个专题小组就是“贯穿于课程中的问题解决”。我国许多学者认为,问题解决将对数学教育的各个方面产生影响。
问题解决产生的背景是什么?它的意义是什么?它对我国中学数学课程建设有何重要性?怎样在中学数学课程中体现问题解决的思想?本文拟对此作初步探讨。
一、背景和意义
19世纪末,20世纪初,一些心理学家首先对问题解决进行了研究,并对“问题解决”作了诸多的阐释。在国际数学教育界,从美国的波利亚首先对怎样解题作了详尽的探讨开始,逐渐对这个问题展开了研究。尤其是在美国,从60年代“新数运动”过分强调数学的抽象结构,忽视数学与实际的联系,脱离教学实际,到70年代“回到基幢走向另一个极端,片面强调掌握低标准的基础知识,数学教学水平普遍下降。在对于数学教育发展方向作了长期探索以后,“问题解决”和“大众数学(mathematicsforal)”已经成为美国数学教育的响亮口号,并产生国际影响。
什么是问题解决,由于观察的角度不同,至今仍然没有完全统一的认识。
有的认为,问题解决指的是人们在日常生活和社会实践中,面临新情景、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理问题办法的一种心理活动。有的把学习分成八种类型:信号学习、……概念学习、法则学习和问题解决。问题解决是其中最高级和复杂的一种类型,意味着以独特的方式选择多组法则,并且把它们综合起来运用,它将导致建立起学习者先前不知道的更高级的一组法则。英国学校数学教育调查委员会报告《数学算数》则认为:把数学应用于各种情形的能力就是“问题解决”。全美数学教师理事会《行动的议程》对问题解决的意义作了如下说明:第一,问题解决包括将数学应用于现实世界,包括为现时和将来出现的科学理论与实际服务,也包括解决拓广数学科学本身前沿的问题;第二,问题解决从本质上说是一种创造性的活动;第三,问题解决能力的发展,其基础是虚心、好奇和探索的态度,是进行试验和猜测的意向;等等。
从上述对问题解决意义的阐述中,我们可以看到一些共性和相通之处。从数学教育的角度来看,问题解决中所指的问题来自两个方面:现实社会生活和生产实际,数学学科本身。问题的一个重要特征是其对于解决问题者的新颖性,使得问题解决者没有现成的对策,因而需要进行创造性的工作。要顺利地进行问题解决,其前提是已经了解、掌握所需要的基础知识、基本技能和能力,在问题解决中要综合地运用这些基础知识、基本技能和能力。在问题解决中,问题解决者的态度是积极的。此外,在学校数学教学中,所谓创造性地解决问题,有别于数学家的创造性工作,主要指学习中的再创造。因而,笔者认为,从数学教育的角度看,问题解决的意义是:以积极探索的态度,综合运用已具有的数学基础知识、基本技能和能力,创造性地解决来自数学课或实际生活和生产实际中的新问题的学习活动。
简言之,就数学教育而言,问题解决就是创造性地应用数学以解决问题的学习活动。
问题解决(problem-solving)在国际数学教育界受到普遍的重视,并被引入一些国家的数学课程中。全美数学教师理事会在《行动的议程》中明确提出应以“问题解决作为学校数学教育的中心”;在《美国学校数学课程与评价标准》中,“作为问题解决的数学”是各个年段数学课程的首要标准;全美数学督导委员会从职业教育和继续教育的要求出发,提出21世纪学生应具备的12种“基幢的数学能力,问题解决是其中的首要能力。英国SMP高中数学教科书中,有一册就是《问题解决》。在近几届国际数学教育会议上,问题解决始终是重要的议题。今年7月在西班牙举行的第八届国际数学教育会议上,第10个专题小组就是“贯穿于课程中的问题解决”。我国许多学者认为,问题解决将对数学教育的各个方面产生影响。
问题解决产生的背景是什么?它的意义是什么?它对我国中学数学课程建设有何重要性?怎样在中学数学课程中体现问题解决的思想?本文拟对此作初步探讨。
一、背景和意义
19世纪末,20世纪初,一些心理学家首先对问题解决进行了研究,并对“问题解决”作了诸多的阐释。在国际数学教育界,从美国的波利亚首先对怎样解题作了详尽的探讨开始,逐渐对这个问题展开了研究。尤其是在美国,从60年代“新数运动”过分强调数学的抽象结构,忽视数学与实际的联系,脱离教学实际,到70年代“回到基幢走向另一个极端,片面强调掌握低标准的基础知识,数学教学水平普遍下降。在对于数学教育发展方向作了长期探索以后,“问题解决”和“大众数学(mathematicsforal)”已经成为美国数学教育的响亮口号,并产生国际影响。
什么是问题解决,由于观察的角度不同,至今仍然没有完全统一的认识。
有的认为,问题解决指的是人们在日常生活和社会实践中,面临新情景、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理问题办法的一种心理活动。有的把学习分成八种类型:信号学习、……概念学习、法则学习和问题解决。问题解决是其中最高级和复杂的一种类型,意味着以独特的方式选择多组法则,并且把它们综合起来运用,它将导致建立起学习者先前不知道的更高级的一组法则。英国学校数学教育调查委员会报告《数学算数》则认为:把数学应用于各种情形的能力就是“问题解决”。全美数学教师理事会《行动的议程》对问题解决的意义作了如下说明:第一,问题解决包括将数学应用于现实世界,包括为现时和将来出现的科学理论与实际服务,也包括解决拓广数学科学本身前沿的问题;第二,问题解决从本质上说是一种创造性的活动;第三,问题解决能力的发展,其基础是虚心、好奇和探索的态度,是进行试验和猜测的意向;等等。
从上述对问题解决意义的阐述中,我们可以看到一些共性和相通之处。从数学教育的角度来看,问题解决中所指的问题来自两个方面:现实社会生活和生产实际,数学学科本身。问题的一个重要特征是其对于解决问题者的新颖性,使得问题解决者没有现成的对策,因而需要进行创造性的工作。要顺利地进行问题解决,其前提是已经了解、掌握所需要的基础知识、基本技能和能力,在问题解决中要综合地运用这些基础知识、基本技能和能力。在问题解决中,问题解决者的态度是积极的。此外,在学校数学教学中,所谓创造性地解决问题,有别于数学家的创造性工作,主要指学习中的再创造。因而,笔者认为,从数学教育的角度看,问题解决的意义是:以积极探索的态度,综合运用已具有的数学基础知识、基本技能和能力,创造性地解决来自数学课或实际生活和生产实际中的新问题的学习活动。
简言之,就数学教育而言,问题解决就是创造性地应用数学以解决问题的学习活动。
俗话说“兴趣是最好的老师”,一门课程的学习,除了包括老师高质量的教学之外,还需要学生自己对这门学科感兴趣,关注这门学科能够引起他们的重视的程度,这也是相当重要的,但是培养学生对数学的学习兴趣跟培养其它学科的措施存在着差异,不仅是一些贴近实际的小道理的开导就能够让他们的思想有所改观,而且还需要对学生传授一些正面的大道理,这些牵引和开导的环环相扣,才能够保证学生的观念在一定程度上发生转变,并且在数学教学上面,不是只听老师在讲台上面讲课,学生做一点练习题就算学会、学精,而是要培养学生发现问题以及分析问题的能力,这才是学习数学的关键之策,现在的数学教学中,不仅仅是小学数学,甚至有些大学数学老师都在研究怎样才能够让学生正确回答会提,但是在回答的问题的前提下,是有问题的发现,正如爱因斯坦的至理名言“发现问题比解决问题更为重要”,发现问题说明了学生在思考、研究,而解决问题有可能会遵循某一思路去找到答案。所以从小学阶段开始培养学生发现问题的能力就显得尤为重要。
一、培养学生发现问题的重要性
(一)、有利于小学生进行思考。小学生的年龄尚小,各方面都不成熟,并且上课时也比较喜欢东张西望、说话、吃东西、打扰其他人等,往往出现学习的注意力不集中的情况,当老师讲过一些重点难点的时候,他们也就不知不觉的错过了这段重要的时间,学生发现问题的培养不仅能够让学生的注意力跟随着老师的思维走,还能够培养学生进行思考的能力,只有进行思考才能够发现问题、解决问题,并且学生的思维能力提高的同时,学生的数学成绩也就随之提高。学生在课堂上进行发现问题的习惯培养,对学生的生活以及学习都有着一定的益处,在学习中积极的发现问题
(二)、有利于增强学生对数学的兴趣。在学习的过程中,常常因为遇到问题之后解决的不及时以及考试的分数不好等而让学生失去对学习的兴趣与积极程度,在发现问题的过程中,学生能够亲自接触生活实际,并从生活中发现问题,对于好奇心重的小学生而言,能够大大的提高他们的兴趣,从生活中发现和解决数学问题,解决数学学习中的一些障碍,将会让学生对数学的兴趣大增。
(三)、有利于学生口才的提高
当学生发现问题之际,势必会向老师提出,以获得老师正确的答案,在学生讲述问题的过程中,不仅能够提高学生的发现能力,还能够提高学生的口才以及他们敢于发言的胆量,对他们的综合素质都将会有一定的益处。
二、低年级学生”发现问题”的措施
(一)、创设问题情境,是发现问题的前提
一、问题意识的含义
问题意识,是指学生通过对所学内容进行理解、思考和掌握之后,比照自身已学知识和已有常识产生一定的困惑和不解,并针对这些不解提出自己的问题,以弥补自身知识上的漏洞或是理论上的不足.现代教育理论表明,有问题意识的学生在学习时更加有针对性,不再将大量时间无谓地浪费在已经掌握的知识上,也不再采取贫乏的学习方法单调重复所学内容,而是能够找到自身知识体系架构上的漏洞和经过第一次学习所未能掌握的知识上的盲点和难点,有的放矢,有针对性地开展学习,学习效率得到提高.
二、数学教学的现状
虽然培养问题意识的先进教育理念已经得到推广和普及,但在部分学校特别是偏远地区的乡村学校中仍然未能成为广大教育工作者的共识.有些教师在教学中仍然局限于传统的教师灌输、学生死记硬背的教学方式,具体到数学学科上仍然只是片面强调要多做题,指望采取题海战术通过大量的机械性的训练让学生掌握数学学科的知识和理论.与强调培养问题意识的新式教学方法相比,传统的以教师为主体、以讲解为主要方式、以课后大量习题求得对知识的理解和巩固的传统教育方法忽视了学生的主观能动性的作用,也忽视了培养学生问题意识的责任和义务,更在教学效率上有所欠缺,不符合当前的时代精神和时代节奏.同时,必须指出的是,哪怕是在培养问题意识已经成为共识和共同目标的地区,在课堂教学中培养问题意识仍然存在大量问题.例如,当学生在课堂上提出问题时,就会打乱教师原定的教学步骤;当学生提出过于容易或是过于基础的问题时,教师容易感到挫败感和厌烦情绪,也容易对提出问题的学生产生不良观感;等等.这些问题都在教学实践中广泛存在,值得广大教育工作者重视.
三、培养问题意识的途径
1.将培养问题意识列入教学目标
在教学实践之中可以发现,部分教师虽然明了问题意识的重要性,但在实际操作之中并没有将培养问题意识列入教学目标之中,也缺少针对性培养问题意识的步骤和计划,最终导致培养问题意识只留于表面和口头,实在是叶公好龙、缺乏实际行动.一旦将培养问题意识列入教学目标之中,教师可以在教学实践之中实时观察和关注计划的完成情况,同时也能够对课堂教学进行设计和规划.例如,教师可以在教学实践中通过设置专门的提问环节和提问时间来避免学生提问打断教师教学或是打乱教师已有的教学计划和课堂节奏,也可以在每周专门设置解答课来集中回答学生所提出的问题或是进行启发式教学.教师也可以将提问环节和培养学生问题意识的目标放到课后完成,合理利用课余时间解答学生提问,以避免学生提问挤占宝贵的课堂时间.
2.组织学生自己结成学习小组