首页 > 文章中心 > 数学分析论文

数学分析论文范文精选

数学分析论文范文第1篇

在过去常规的数学分析教学课程只要以公式推导、定理证明为主要教学内容,却对数学分析的应用思想以及融合贯通少有讲授。这就导致学生们虽熟练掌握这门课程的理论知识,但是学生们将掌握的知识应用于实际问题的解决过程中却存在效果不满意,或无法学以致用。因此学生会形成数学的掌握仅仅是为了考试而学习,无现实意义等错误思想。若在数学分析的教学过程中融合数学建模方式进行教学,利用数学建模思想来熏陶学生,通过通过将数学的意义思想完整的进行介绍,将数学概念与公式的实际源头与应用情况进行宣教,使学生充分了解数学与实际生活之间存在的密切关系。首先,通过利用数学建模思想融入数学分析的教学课程中可有效促进学生数学的行使效果。适当配合数学模型方式糅合数学分析的理论知识与实际方法,可帮助学生迅速理解数学分析的内容概念,全面掌握理论知识与实践能力。其次,利用数学建模思想促进学生的数学学习兴趣,以改善在教学过程中因理论性复杂、定义生涩难懂导致学生学习积极性不高以及枯燥乏味等数学教学问题。因此,在数学分析的教学中融合数学建模教学方式具有巨大的应用价值。

2数学建模思想在概念教学中的渗透

按照大范围来讲,数学分析的内容中包含了函数、导数、积分等数学概念,这类概念均属于实际事物数量表现或空间形式概括而来的数学模型。在数学教学过程我们可以根据概念的具体事物原型或平时生活中易见到的事物进行引用,让学生了解到理论上的概念性知识不仅仅存在与课本中,更与日常生活中具有紧密的关系。对此,老师在教学相关概念知识时,最好联系实际,创造合适的学习环境,为学生在学习过程中通过适当的观察、想象、研究、验证等方式来主导学生的教学活动。例如微积分教学中,刚开始感觉其较为抽象笼统,不过仔细观察其形成过程会发现其实具有较多的基础原型,通过旋转体体积、曲边梯形面积等具体问题紧密联系,应用微元法求解即可得出积分这个较为抽象的概念。通过适当的取材,建立概念模型,引导学生对教学的积极兴趣,可比简单的利用数学符号来描述抽象概念要具体生动得多。

3数学建模思想在定理证明中的渗透

在数学分析课程中存在较多的定理,而怎样在教学过程中让学生熟练掌握带来并应用则成为目前数学分析教学中较为困难的。其实在书本中大部分定理是有着具体的意义,不过在通过笼统的刻印组书本中后导致定理创造者实际想法无法清晰表现在其中,致使学生在接受定理教学中感到茫然。对此,在定理教学过程老师应结合该定理知识的源指出处以及历史渊源,从而促进学生的求知欲取进一步了解该定理的意义与作用。同时应用建模思想将定理作为模型的一类,利用前期设计的特定问题引导学生逐步发现定理定论,通过这种方式让学生在吸收定理知识的过程中体验到研究探索发现的重要性,为学生树立的创新观念。

4数学建模思想在课题中的渗透

数学分析教学中需要讲解大量课题,通过对具有代表性的课题进行讲解以达到促进应用知识解题的能力并巩固。但是在过去传统的课题讲解中,与应用相关的问题教学较少,仅有的少部分也是条件满足解答肯定的情况,这不利于学生创新性思维培养。因此,在课题讲解中尽量选取以具体应用的问题作为例题,设置相应的问题来引导学生发现其中存在的错误,并结合自身知识来解决其错误,通过建立模型的方式来进一步巩固自身知识。

5数学建模思想在考试命题中的渗透

目前数学分析的教学考试中试题的设置普遍以书本课题为主,又或者直接将某些例题设置成选择或填空的答题方式,却缺少开放型的试题或全面考察学生是否掌握数学知识应用解决实际问题的试题。可能目前这种考试设题方式对老师的阅卷提供了便利,但是往往也造成部分学生在课本考试中分数较高,但在解决实际具体问题往往存在不足,对学生思维中形成了为考试而学习,忽略了对数学概念的理解,导致具体问题解决能力不足。对此,可利用数学建模思维去设置一部分开放型试题,利于学生在解题过程中将所学的数学建模方式应用与具体中,以此来观察学生的数学素质以及知识水平并适当修改教学方案。又或者通过命题论文的方式来了解学生综合水平,学生通过将自身所学知识进行适当的总结,探讨自身学习体会,来加强学生对相关知识的进一步理解,深化了数学建模思想的渗透。

6结语

数学分析论文范文第2篇

一、对中学数学思想的基本认识

“数学思想”作为数学课程论的一个重要概念,我们完全有必要对它的内涵与外延形成较为明确的认识。关于这个概念的内涵,我们认为:数学思想是人们对数学科学研究的本质及规律的理性认识。这种认识的主体是人类历史上过去、现在以及将来有名与无名的数学家;而认识的客体,则包括数学科学的对象及其特性,研究途径与方法的特点,研究成就的精神文化价值及对物质世界的实际作用,内部各种成果或结论之间的互相关联和相互支持的关系等。可见,这些思想是历代与当代数学家研究成果的结晶,它们蕴涵于数学材料之中,有着丰富的内容。

通常认为数学思想包括方程思想、函数思想、数形结合思想、转化思想、分类讨论思想和公理化思想等。这些都是对数学活动经验通过概括而获得的认识成果。既然是认识就会有不同的见解,不同的看法。实际上也确实如此,例如,有人认为中学数学教材可以用集合思想作主线来编写,有人认为以函数思想贯穿中学数学内容更有利于提高数学教学效果,还有人认为中学数学内容应运用数学结构思想来处理等等。尽管看法各异,但笔者认为,只要是在充分分析、归纳概括数学材料的基础上来论述数学思想,那么所得的结论总是可能做到并行不悖、互为补充的,总是能在中学数学教材中起到积极的促进作用的。

关于这个概念的外延,从量的方面讲有宏观、中观和微观之分。

属于宏观的,有数学观(数学的起源与发展、数学的本能和特征、数学与现实世界的关系),数学在科学中的文化地位,数学方法的认识论、方法论价值等;属于中观的,有关于数学内部各个部门之间的分流的原因与结果,各个分支发展过程中积淀下来的内容上的对立与统一的相克相生的关系等;属于微观结构的,则包含着对各个分支及各种体系结构定内容和方法的认识,包括对所创立的新概念、新模型、新方法和新理论的认识。

从质的方面说,还可分成表层认识与深层认识、片面认识与完全认识、局部认识与全面认识、孤立认识与整体认识、静态认识与动态认识、唯心认识与唯物认识、谬误认识和正确认识等。

二、数学思想的特性和作用

数学思想是在数学的发展史上形成和发展的,它是人类对数学及其研究对象,对数学知识(主要指概念、定理、法则和范例)以及数学方法的本质性的认识。它表现在对数学对象的开拓之中,表现在对数学概念、命题和数学模型的分析与概括之中,还表现在新的数学方法的产生过程中。它具有如下的突出特性和作用。

(一)数学思想凝聚成数学概念和命题,原则和方法

我们知道,不同层次的思想,凝聚成不同层次的数学模型和数学结构,从而构成数学的知识系统与结构。在这个系统与结构中,数学思想起着统帅的作用。

(二)数学思想深刻而概括,富有哲理性

各种各样的具体的数学思想,是从众多的具体的个性中抽取出来且对个性具有普遍指导意义的共性。它比某个具体的数学问题(定理法则等)更具有一般性,其概括程度相对较高。现实生活中普遍存在的运动和变化、相辅相成、对立统一等“事实”,都可作为数学思想进行哲学概括的材料,这样的概括能促使人们形成科学的世界观和方法论。

(三)数学思想富有创造性

借助于分析与归纳、类比与联想、猜想与验证等手段,可以使本来较抽象的结构获得相对直观的形象的解释,能使一些看似无处着手的问题转化成极具规律的数学模型。从而将一种关系结构变成或映射成另一种关系结构,又可反演回来,于是复杂问题被简单化了,不能解的问题的解找到了。如将著名的哥尼斯堡七桥问题转化成一笔画问题,便是典型的一例。当时,数学家们在作这些探讨时是很难的,是零零碎碎的,有时为了一个模型的建立,一种思想的概括,要付出毕生精力才能得到,这使后人能从中得到真知灼见,体会到创造的艰辛,发展顽强奋战的个性,培养创造的精神。

三、数学思想的教学功能

我国《九年义务教育全日制初级中学数学教学大纲(试用修订版)》明确指出:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法”。根据这一要求,在中学数学教学中必须大力加强对数学思想和方法的教学与研究。

(一)数学思想是教材体系的灵魂

从教材的构成体系来看,整个初中数学教材所涉及的数学知识点汇成了数学结构系统的两条“河流”。一条是由具体的知识点构成的易于被发现的“明河流”,它是构成数学教材的“骨架”;另一条是由数学思想方法构成的具有潜在价值的“暗河流”,它是构成数学教材的“血脉”灵魂。有了这样的数学思想作灵魂,各种具体的数学知识点才不再成为孤立的、零散的东西。因为数学思想能将“游离”状态的知识点(块)凝结成优化的知识结构,有了它,数学概念和命题才能活起来,做到相互紧扣,相互支持,以组成一个有机的整体。可见,数学思想是数学的内在形式,是学生获得数学知识、发展思维能力的动力和工具。教师在教学中如能抓住数学思想这一主线,便能高屋建瓴,提挈教材进行再创造,才能使教学见效快,收益大。

(二)数学思想是我们进行教学设计的指导思想

笔者认为,数学课堂教学设计应分三个层次进行,这便是宏观设计、微观设计和情境设计。无论哪个层次上的设计,其目的都在于为了让学生“参与”到获得和发展真理性认识的数学活动过程中去。这种设计不能只是数学认识过程中的“还原”,一定要有数学思想的飞跃和创造。这就是说,一个好的教学设计,应当是历史上数学思想发生、发展过程的模拟和简缩。例如初中阶段的函数概念,便是概括了变量之间关系的简缩,也应当是渗透现代数学思想、使用现代手段实现的新的认识过程。又如高中阶段的函数概念,便渗透了集合关系的思想,还可以是在现实数学基础上的概括和延伸,这就需要搞清楚应概括怎样的共性,如何准确地提出新问题,需要怎样的新工具和新方法等等。对于这些问题,都需要进行预测和创造,而要顺利地完成这一任务,必须依靠数学思想作为指导。有了深刻的数学思想作指导,才能做出智慧熠烁的创新设计来,才能引发起学生的创造性的思维活动来。这样的教学设计,才能适应瞬息万变的技术革命的要求。靠一贯如此设计的课堂教学培养出来的人才,方能在21世纪的激烈竞争中立于不败之地。

中学数学教学过程,实质上是运用各种教学理论进行数学知识教学的过程。在这个过程中,必然要涉及数学思想的问

本篇论文是由3COME文档频道的网友为您在网络上收集整理饼投稿至本站的,论文版权属原作者,请不要用于商业用途或者抄袭,仅供参考学习之用,否者后果自负,如果此文侵犯您的合法权益,请联系我们。

(三)数学思想是课堂教学质量的重要保证

数学思想性高的教学设计,是高质量进行教学的基本保证。在数学课堂教学中,教师面对的是几十个学生,这几十个智慧的头脑会提出各种各样的问题。随着新技术手段的现代化,学生知识面的拓宽,他们提出的许多问题是教师难以解答的。面对这些活泼肯钻研的学生所提的问题,教师只有达到一定的思想深度,才能保证准确辨别各种各样问题的症结,给出中肯的分析;才能恰当适时地运用类比联想,给出生动的陈述,把抽象的问题形象化,复杂的问题简单化;才能敏锐地发现学生的思想火花,找到闪光点并及时加以提炼升华,鼓励学生大胆地进行创造,把众多学生牢牢地吸引住,并能积极主动地参与到教学活动中来,真正成为教学过程的主体;也才能使有一定思想的教学设计,真正变成高质量的数学教学活动过程。

有人把数学课堂教学质量理解为学生思维活动的质和量,就是学生知识结构,思维方法形成的清晰程度和他们参与思维活动的深度和广度。我们可以从“新、高、深”三个方面来衡量一堂数学课的教学效果。“新”指学生的思维活动要有新意,“高”指学生通过学习能形成一定高度的数学思想,“深”则指学生参与到教学活动的程度。

数学分析论文范文第3篇

一、端正渗透思想更新教育观念

纵观数学教学的现状,应该看到,应试教育向素质教育转轨的过程中,确实有很多弄潮儿站到了波峰浪尖,但也仍有一些数学课基本上还是在应试教育的惯性下运行,对素质教育只是形式上的“摇旗呐喊”,而行动上却留恋应试教育“按兵不动”,缺乏战略眼光,因而至今仍被困惑在无边的题海之中。

究竟如何走出题海,摆脱那种劳民伤财的大运动量的机械训练呢?我们认为:坚持渗透数学思想和方法,更新教育观念是根本。要充分发掘教材中的知识点和典型例题中所蕴含的数学思想和方法,依靠数学思想指导数学思维,尽量暴露思维的全过程,展示数学方法的运用,大胆探索,会一题明一路,以少胜多,这才是走出题海误区,真正实现教育转轨的新途径。

二、明确数学思想和方法的丰富内涵

所谓数学思想就是对数学知识和方法的本质及规律的理性认识,它是数学思维的结晶和概括,是解决数学问题的灵魂和根本策略。而数学方法则是数学思想的具体表现形式,是实现数学思想的手段和重要工具。数学思想和数学方法之间历来就没有严格的界限,只是在操作和运用过程中根据其特征和倾向性,分为数学思想和数学方法。一般说来,数学思想带有理论特征,如符号化思想,集合对应思想,转化思想等。而数学方法则具有实践倾向,如消元法、换元法、配方法、待定系数法等。因此数学思想具有抽象性,数学方法具有操作性。数学思想和数学方法合在一起,称为数学思想方法。

不同的数学思想和方法并不是彼此孤立,互不联系的,较低层次的数学思想和方法经过抽象、概括便可以上升为较高层次的数学思想和方法,而较高层次的数学思想和方法则对较低层次的数学思想和方法有着指导意义,其往往是通过较低层次的思想方法来实现自身的运用价值。低层次是高层次的基础,高层次是低层次的升级。

三、强化渗透意识

在教学过程中,数学的思想和方法应该占有中心的地位,“占有把数学大纲中所有的、为数很多的概念,所有的题目和章节联结成一个统一的学科的核心地位。”这就是要突出数学思想和方法的渗透,强化渗透意识。这既是数学教学改革的需要,也是新时期素质教育对每一位数学教师提出的新要求。素质教育要求:“不仅要使学生掌握一定的知识技能,而且还要达到领悟数学思想,掌握数学方法,提高数学素养的目的。”而数学思想和方法又常常蕴含于教材之中,这就要求教师在吃透教材的基础上去领悟隐含于教材的字里行间的数学思想和方法。一方面要明确数学思想和方法是数学素养的重要组成部分,另一方面又需要有一个全新而强烈地渗透数学思想方法的意识。

四、制定渗透目标

依据现行教材内容和教学大纲的要求,制订不同层次的渗透目标,是保证数学思想和方法渗透的前提。现行教材中数学思想和方法,寓于知识的发生,发展和运用过程之中,而且不是每一种数学思想和方法都能象消元法、换元法、配方法那样,达到在某一阶段就能掌握运用的程度。有的数学思想方法贯穿初等数学的始终,必须分级分层制定目标。以在方程(组)的教学中渗透化归思想和方法为例,在初一年级时,可让学生知道在一定条件下把未知转化为已知,把新知识转化为已掌握的旧知识来解决的思想和方法;到了初二年级,可根据化归思想的导向功能,鼓励学生按一定的模式去探索运用;初三年级,已基本掌握了化归的思想和方法,并有了一定的运用基础和经验,可鼓励学生大胆开拓,创造运用。实际教学中也确实有一些学生能够把多种数学思想和方法综合运用于解决数学问题之中,这种水平正是我们走出题海所迫切需要的,它既是素质教育的要求,也本文的最终目的。

五、遵循渗透原则

我们所讲的渗透是把教材中的本身数学思想和方法与数学对象有机地联系起来,在新旧知识的学习运用中渗透,而不是有意去添加思想方法的内容,更不是片面强调数学思想和方法的概念,其目的是让学生在潜移默化中去领悟。运用并逐步内化为思维品质。因而渗透中勿必遵循由感性到理性、由抽象到具体、由特殊到一般的渗透原则,使认识过程返朴归真。让学生以探索者的姿态出现,在自觉的状态下,参与知识的形成和规律的揭示过程。那么学生所获取的就不仅仅是知识,更重要的是在思维探索的过程中领悟、运用、内化了数学的思想和方法。

六、探索并掌握渗透的途径

数学的思想和方法是数学中最本质、最惊彩、最具有数学价值的东西,在教材中除一些基本的思想和方法外,其它的数学思想和方法都呈隐蔽式,需要教师在数学教学中,乃至数学课外活动中探索选择适当的途径进行渗透。

1.在知识的形成过程中渗透

对数学而言,知识的形成过程实际上也是数学思想和方法的发生过程。大纲明确提出:“数学教学,不仅需要教给学生数学知识,而且还要揭示获取知识的思维过程。”这一思维过程就是思想方法。传授学生以数学思想,教给学生以数学方法,既是大纲的要求,也是走出题海的需要。因此必须把握教学过程中进行数学思想和方法渗透的契机。如概念的形成过程,结论的推导过程等,都是向学生渗透数学思想和方法,训练思维,培养能力的极好机会。

2.在问题的解决过程中渗透

数学的思想和方法存在于问题的解决过程中,数学问题的步步转化无不遵循着数学思想方法的指导。数学的思想和方法在解决数学问题的过程中占有举足轻重的地位。教学大纲明确指出:“要加强对解题的正确指导,要引导学生从解题的思想和方法上作必要的概括”,这就是新教材的新思想。其实数学问题的解决过程就是用“不变”的数学思想和方法去解决不断“变换”的数学命题,这既是渗透的目的,也是实现走出题海的重要环节。渗透数学思想和方法,不仅可以加快和优化问题解决的过程,而且还可以达到,会一题而明一路,通一类的效果,打破那种一把钥匙开一把锁的呆板模式,摆脱了应试教育下题海战的束缚。通过渗透,尽量让学生达到对数学思想和方法内化的境界,提高独立获取知识的能力和独立解决问题的能力,此时的思维无疑具有创造性的品质。如化归的数学思想是解决问题的一种基本思路,在整个初等方程及其它知识点的教学中,可以反复渗透和运用。

3.在复习小结中渗透

小结和复习是数学教学的重要环节,而应试教育下的数学小结和复习课常常是陷入无边的题海,使得师生在枯燥的题海中进行着过量而机械的习题训练,其结果是精疲力尽,茫然四顾,收获甚少。如何提高小结、复习课的效果呢?我们的做法是:遵循数学大纲的要求。紧扣教材的知识结构,及时渗透相关的数学思想和数学方法。在数学思想的科学指导下,灵活运用数学方法,突破题海战的模式,优化小结、复习课的教学。在章节小结、复习的数学教学中,我们注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。

4.在数学讲座等教学活动中渗透

数学分析论文范文第4篇

大学数学教学大纲

课程代码318.009.1编写时间

课程名称数理统计

英文名称Statistics

学分数3周学时3+1

任课教师*徐先进开课院系**数学学院

预修课程

课程性质:

本课程为数学学院本科生开设,是概率论基础的继续,介绍数理统计学的基础知识。

基本要求和教学目的:

课程基本内容简介:

数理统计是一门理论研究与数学实践相结合的学科,它区别于概率论基础部分,不从概率空间出发,而是考虑如何给随机现象装配一个概率空间。

数理统计学研究数据资料的收集、整理、分析和推断,广泛地应用于社会科学、工程技术和自然科学中。

教学方式:

教材和教学参考资料:

作者教材名称出版社出版年月

教材概率论,第二册,数理统计(两分册)人民教育出版社1979

参考资料陈希孺数理统计引论科学出版社1981

峁诗松,王静龙,濮晓龙高等数理统计高等教育出版社,施普林格出版社1998,2003

J.O.BergerStatisticaldecisiontheoryandBayesionanalysis,2ndedition

中译本:贾乃光译,统计决策理论和贝叶斯分析Springer-Verlag,NewYork

中国统计出版社1985

1988

教学内容安排:

第一章引论

本章的教学目的是阐述数理统计学的基本问题,介绍数理统计学的基本概念。指出了现阶段的教学内容是研究如何利用一定的资料对所关心的问题作出尽可能精确可靠的结论,而不是考虑如何设计获得数据的试验。

统计量是从数据中提取信息的工具。本章介绍了两种常用求估计量的方法,介绍了刻画统计量性能的一致最小方差的概念。

§1统计学的基本问题

§2数理统计学的基本概念

§3求估计量的两种常用方法

§4一致最小方差无偏估计

第二章抽样分布

本章假定待研究的母体服从最常见的正态分布,导出了常用统计量,,的分布。本章的结论是对小样本讨论的,由于正态分布的特殊性,它们也可作为大样本情形的极限分布。

本章还介绍了与正态母体相联系的柯赫伦定理与费歇定理。

§1正态母体子样的线性函数的分布

§2分布

§3分布和分布

§4正态母体子样均值和方差的分布

第三章假设检验(I)

本章的教学目的是让学生认识到参数估计、假设检验和区间估计是针对问题的不同性质而作的三种统计推断,掌握并正确理解显著性检验问题的处理步骤。在本章的执行过程中,给出了一些典型的假设检验问题的分析和理解,以帮助学生掌握和运用这一统计思想。

本章介绍了具有一般意义的广义似然比检验。

§1引言

§2正态母体参数的检验

§3正态母体参数的置信区间

§4多项分布的检验

§5广义似然比检验

第四章线性统计推断

本章主要讨论数理统计学中两类重要的问题,线性模型和回归分析,介绍了处理另一类问题的方差分析。在数学过程中,解释了在复杂问题中使用线性模型的合理性,也分析了统计假设在实际问题中的意义。

在本章的执行过程中,比较了回归分析与线性模型的异同点。

§1最小二乘法

§2回归分析

§3方差分析

第五章点估计

本章从理论的角度讨论了一致最小方差无偏估计的性质。介绍了一些寻找一致最小方差无偏估计的方法。

§1最小方差无偏估计

数学分析论文范文第5篇

新的课程教材主要特点:联系社会生活、小学数学教学实际,又联系学生的学习实际让学生感受到生活中、社会上处处有数学知识,数学就在身边。因此,在教学中要根据不同的内容来确定有效的教学目标。以学生原有的知识和生活经验为基础,突出方法性、体验性、综合性和发展并结合学科主要知识,精心策划练习和精心设计自主、探究、合作的学习活动,同时要介绍自主学习的方式方法,帮助学生巩固和拓展学科知识,转变学习方式,有效促进学生学科学习效果的提升,逐步学会学习,努力实现培养学生终身学习的愿望和终身学习的能力;我们农村学校,地处偏僻,特别要注意这些山村学生的生理、心理状况和知识发展水平,加强多学科知识综合运用和综合能力的培养,引导学生通过多样化的练习、观察、实验、讨论、制作、评议、调查、研究创作等学习活动,强化学科知识的应用既关注学生数学学习的过程和结果,也关注学生科学态度、科学精神、科学方法的养成,努力实现新课标三维目标的落实。

2.在教学中培养学生的探索性思维

新的课程改革倡导学生主动观察、动手操作、大胆猜测、合作与交流等数学学习活动,而且有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的主要方式。在全新的教育理念下,教师的角色、教学方式、学生的学习方式发生了根本性的变化。特别是数学的探索性思维在教学中的最高点,它不依常规,寻求变化,从多层次、多角度、多方位考虑问题,我认为在农村进行数学教学中培养学生探索性思维需要抓好几个方面:1.培养学生学习数学的兴趣。假如学生对数学学习有兴趣,整个心理活动都处于主动的状态,就会聚精会神地去学习并真正掌握数学概念、性质及基本规律。2、培养学生良好的思维能力。因为具有良好的思维能力,能让学生从“知识型”转化为“智力型”,让学生学会全面地综合地思考问题。比如小学高年级的应用题里的一题多解,它需要思维的广泛性,所以教者必须多让学生多动脑筋,多去想想,才能形成良好思维能力的习惯。

转贴于中国论文下载中心www.studa

3.加强学法指导,提高学生数学能力

过去,应用数学意识的教学是我们数学教学中的一个失落,课堂教学不讲数学的实际来源和具体应用,只让学生死记硬套。随着市场经济的迅猛发展,生活中的数学问题,已日渐成为人们的必需常识,如果数学教学仍旧视而不见,只满足于“本本思维”,不管实际应用,那就太不合时了。要让学生通过数学学习,体会到数学与现实生活有着千丝万缕的联系,并且能应用于现实生活,解决各种实际问题。因此,进行素质教育既要研究教师的教,又要研究学生的学。让学生在数学知识形成中掌握其规律、方法,逐步培养学生由“学会”向“会学”发展。布鲁纳提出:“获得的知识,如果没有完满的结构把它联在一起,那是一种多半回被遗忘的知识。所以,数学教学中的学法指导十分重要的一项任务就是如何引导学生通过知识的联系,怎样归纳、怎样系统的整理,使学生所获得的知识在头脑中形成完整的认知结构。同时引导学生理解和掌握获取的数学知识的方法运用到实际中去。比如,现在最流行的尝试学习方法及操作法、迁移类推学习法等,还学生学会分析、比较、综合、逆向、假设解题方法,以指导分析方法为例,比如,(1)甲车每小时行a千米,乙每小时行b千米,两车相向而行,经过5小时相遇,两个一共行驶多少千米的路程?(2)甲乙两车从中点向相反方向行驶,甲车每小时行a千米,乙车每小时行b千米,经过5小时,两车相距多少?(3)甲乙两工程队合修一条路,甲每天修米,乙每天修b米,经过5天修完,这条路有多长?(4)甲医两人从大桥两端相向走来,甲每小时走a米,乙每小时b米.经过5小时两人相遇,大桥有多长?(5)小红买了a本语文练习本和b本数学练习本,每本5角钱,一共用多少钱?引导学生观察分析,可发现上面三个问题中的数量关系都可概括为同一个数学表达式5a十5b,使学生认识到一个数学表达式可以概括无数实际问题的数量关系,揭示出它们之间的本质联系,从而为以后应用题教学作好准备。这样在引导学生分析过程中,挖掘了数学知识的内在智力因素,学生能借助学法很好的消化、汲收、应用数学知识,培养了能力。

4.联系现实生活实际,整合和充实教材内容

小学数学知识源于生活,在生活中大多能找其原型,所以,在小学数学教学中,教师应紧密联系学生的生活。新课标指出“学生的数学学习内容应是现实的有意义的富有挑战性的”,“强调从学生已有的生活经念出发,让学生亲自经历并将实际问题抽象成数学模型并进行解释与应用的过程。”比如,九义教材第九册的20页例4,“估一条短裤要用布0.67米,56.28米可做多少条短裤?”,像这样的题目没有多大的现时意义,更不具有挑战性.它也很难激发学生的学习兴趣,于是,我就从学生的实际出发,就地取材,选择贴近少年儿童生活的题材充实到教材中去,从而增进小学生学习数学的乐趣,激发他们的求知欲,让他们更多地享受到学习数学的快乐.因此我将上面的例题稍微改变了一下:“学校小卖部有一批数学作业,每本0.50元,五(2)班卖废纸得61.30元,顺便拿去买数学作业,可以买回多少本?这样一改换了文字例题,学生就感到与现实生活息息相关,又便于学生理解和思考。同时作为一个数学教师,在现有教材内容中,可以因地制宜的充实实际生活的内容,这必须要时刻留心学生的生活内容简介,关注他们的生活范围,经常做好记录他们的生活资料,特别要案收集他们的一些生活中的数学问题,让他们用数学的眼光去重新审视,使数学与生活密切地联系在一起,。这样,正如一位美国课程专家所说的那样:“课堂不是教师表演的舞台,而是师生之间交往、互动的舞台;课堂不是对学生进行训练的场所,而是引导学生发展的场所,课堂不只是传授知识的场所,而是更应该是探究知识的场所;课堂不是教师教学行为模式化运作的场所,而是教师教育智慧充分展现的场所。”所以,根据国际数学课程改革和我国当前基础教育新课程改革的理念,有效的课堂教学,除了把握教材特点、培养学生的探索性思维、加强学法指导以外,还要把教材与现实生活进行有效地结合,使出学生在一个充满探索的过程中,感受数学发现的乐趣,增进学好数学的信心,使他们形成应用意识、创新意识,使理智和情感世界获得实质性的发展和提升。

数学分析论文范文第6篇

他致力于小学教育管理和教学研究30余年。治学严谨、教书育人,善于探索教学规律,具有“教风正、教法巧、抓得实、效果好”的特色,常把激发兴趣、注重“双基”、教给方法、培养习惯、发展能力融于一体,以提高学生的整体素质。曾培养多位青年教师在省级以上小学数学课堂教学竞赛和论文评选中获一、二等奖。在全国30多家省级以上报刊发表教育、教学论文200余篇,教研成果《学生学习主动性的培养与发展》入选《世纪文典》一书。由他撰稿、主讲的电视教育评论《注重学生“参与”,着眼素质提高》等在中央教育电视台和福建电视台播放。他的事迹被收入《中国特级教师辞典》一书。主要著述有:《概念教学与能力培养》、《把思维的方法教给学生》、《基础·能力·素质》、《研究学法改进教法》等。

长期以来,数学教学一直停留在知识型的教学模式上。教学中,过于强调对数学概念、法则、性质、公式的灌输与记忆,忽视了对这些知识的产生、发展、形成和应用过程的揭示和探究,不善于将这一过程中丰富的思维训练因素挖掘出来,也不善于将知识中蕴藏的丰富的思想方法加以暴露,学生学到的是无本之木,无源之水的知识。随着教学改革的不断深入,已有不少教师认识到数学教学的本质应是“数学思维活动过程”的教学。在这一“活动过程”的教学中,应暴露数学概念的形成过程、规律的探索过程、结论的推导过程及方法的思考过程等。要让学生在原有知识和经验的基础上,在主动参与中,通过操作和实践,由外部活动逐渐内化,完成知识的发展过程和“获取”过程,使学生既长知识,又长智慧。下面谈谈我的做法和体会。

一、概念形成过程的教学

数学概念是人们对数学现象和过程的认识在一定阶段上的总结,是以精辟的思维形式表现大量知识的一种手段。在概念教学中,我首先暴露概念提出的背景,暴露其抽象、概括的过程,将浓缩了的知识充分稀释,便于学生吸收。

例如,“体积”概念的教学,就应紧扣概念的产生、发展、形成和应用的有序思维过程来精心设计。

1.首先让学生观察一块橡皮擦和一块黑板擦,问学生哪个大,哪个小?又出示两个棱长分别是5厘米和3厘米的方木块,问学生哪个大,哪个小?通过比较,学生初步获得物体有大小之分的感性认识。

2.拿出两个相同的烧杯,盛有同样多的水,分别向烧杯里放入石子和石块,结果水位明显上升。然后引导学生讨论烧杯里的水位为什么会上升?学生又从这一具体事例中获得了物体占有空间的表象。

3.引导学生分析、比较,为什么烧杯里的水位会随着石块的增大而升高。在这一思维过程中,学生就能比较自然地导出:“物体所占空间的大小叫作体积”这一概念。

4.接着我又让学生举出其它有关体积的例子,或用体积概念解释有关现象,使体积概念在应用中得到巩固。如先在烧杯里盛满水,然后放入石块,问学生从杯里溢出的水的多少与石块有什么关系?经过观察、分析,学生便能准确地回答:从杯里溢出的水的体积与石块的体积相等。接着再把石块从水中取出,杯里的水位下降,学生立即说出,水位下降的部分,就是石块所占空间的体积。这样,既提高了学生的学习兴趣,又加深了对新学概念的理解。因而,“体积”概念的建立过程,是通过观察、比较、分析、抽象概括的过程,体现了学生在教师的引导下,环环相扣、步步递进、主动参与了这个“从感知经表象达到认识”的思维过程,学生在知识的形成过程中认识并掌握了数学概念,学到知识的同时又学到了获取知识的方法。

二、规律探索过程的教学

课堂教学是师生的双边活动,教师的“教”是为了诱导学生的“学”。在教学过程中,我常根据教材的内在联系,利用学生已有的基础知识,引导学生主动参与探索新知识,发现新规律。这对学生加深理解旧知识,掌握新知识、培养学习能力是十分有效的。

例如,教学“能化成有限小数的分数的特征”时,课始,我就很神秘地请学生考老师,让学生随意说出一些分数,如1/2、5/6、7/25、7/15……我很快判断出能否化成有限小数,并让两个学生用计算器当场验证,结果全对。正当学生又高兴又惊奇时,我说:“这不是老师的本领特别大,而是老师掌握了其中的规律,你们想不想知道其中的奥秘呢?”学生异口同声地说:“想”。从而创设了展开教学的最佳情境。我紧接着问:“这个规律是存在于分数的分子中呢?还是存在于分数的分母中?”当学生观察到7/25与7/15,分子相同,但7/25能化成有限小数,而7/15却不能时,学生首先发现规律存在于分母中。我追问:“能化成有限小数的分数的分母有什么特征呢?”学生兴趣盎然地议论开了:有的同学说分母是合数的分数,但7/15不能化成有限小数,而1/2却又能化成有限小数;有的同学又说分母应是偶数的分数,但5/6不能化成有限小数,7/25却可以化成有限小数……这时,我不再让学生争论了,而是启发学生试着把分数的分母分解质因数,从而发现了能化成有限小数的分数特征。正当学生颇有大功告成之态时,我又不失时机地指出8/24与6/24,为什么分母同是24,化成小数却有两种不同的结果?学生的认识又激起了新的冲突,从而再次引导学生通过实践、思考,自己发现了必须是“一个最简分数”这一重要前提条件。学生在知识内在魅力的激发下,克服了一个又一个的认知冲突,主动地投入到知识的发生、发展、形成的过程中,尝到了自己探索数学规律的乐趣。

三、结论推导过程的教学

数学是一门逻辑性很强的学科,它的逻辑性强,首先反映在系统严密、前后连贯上,每个知识都不是孤立的,它既是旧知识的发展,又是新知识的基础。遵循小学生的认识规律,引导学生运用已有知识去推导新的结论,才能发展学生的学习能力。例如,教学《面积单位间的进率》时,启发学生:我们已学过长度单位,知道每相邻两个单位间的进率是10,就是1米=10分米、1分米=10厘米等。那么,现在学习面积单位,它们每相邻的两个面积单位间的进率是多少呢?这一数学结论我并没有直接告诉学生。凡新旧知识间有联系的,我都要让学生运用已有的结论,通过自己的思考,推导出新的数学结论。如,可以让学生拿出边长1分米的正方形,先用分米作单位量一量边长,说出它的面积是多少平方分米。然后再想想用厘米作单位,边长应是多少厘米,它的面积是多少平方厘米。从而推导出1平方分米=100平方厘米。紧接着再让学生用左手拿着1平方分米的方块,右手拿着1平方厘米的方块,看看1平方分米含有多少个(10×10)平方厘米,以便牢固地记住1平方分米与1平方厘米间的进率是100的结论。用同样的方法也可以推导出1平方米=100平方分米。最后得出结论:每相邻两个面积单位间的进率是100。

四、方法思考过程的教学

过去我讲课时,急于代替学生思考,把一些计算或解题的方法和盘地教给学生,这种教学,学生吃的是现成饭,学得快,忘得也快,更谈不上自己去寻找方法。为了改变这种状况,我只在教学重点的地方设问,在关键处启发,然后让学生动脑、动手寻找方法解决问题。思考过程是一种艰苦的脑力劳动过程,我不仅要求学生勤于思考,而且还要善于思考。

例如,教学《分数除以整数》时,当讲完分数除法的意义后,出示例题“把4/5米铁丝平均分成2段,每段长多少米?”引导学生理解题意后,列出算式:4/5÷2。这是一道分数除以整数的算式,怎么计算呢?我并没有把分数除以整数的方法告诉学生,而让学生分组进行讨论。小组通过集体讨论后,选派代表上讲台介绍各组解决问题的方法:

第一种方法:先把“4/5”化成小数,4/5÷2=0.8÷2=0.4(米);

第二种方法:按照分数和分数单位的意义解决问题,把4/5米平均分成2段,就是把4个1/5平均分成2份,每份是2个1/5米,所以,4/5÷2=4÷2/5=2/5(米);

第三种方法:按照分数乘法的意义来解决,把4/5米平均分成2段,求每段长多少米,就是求4/5米的1/

2是多少,用乘法计算,也就是4/5÷2=4/5×1/2=2/5(米)。

数学分析论文范文第7篇

数学建模优秀论文心得体会:

阅读1篇论文对我主要有以下4个方面的启发与指导:

(1)大致了解数学建模论文写作时应包含哪些内容

(2)每部分内容都应写些什么

(3)汲取他写作与处理问题的成功之处,以便将这些优点运用于我以后的论文写作中

(4)总结这篇论文写作与处理问题过程中的败笔,提醒我注意在写作论文时不要犯类似错误

所以,在下面的学习心得中将主要涉及以上4个方面的内容。

摘要:简明扼要地指出了处理问题的方法途径并给出作答,起到了较好的总结全文,理清条理的作用。让读者对以下论述有1个总体印象,而且对于本题的答案用图表形式给出,清晰明了

问题重述:

问题背景:

交待问题背景,说明处理此问题的意义和必要性。

优点:叙述详尽,条理清楚,论证充分

缺点:前两段过于冗长,可作适当删节

问题分析:

进1步阐述解决此问题的意义所在,分析了问题,简述要解决此问题需要哪些条件和大体的解决途径

优点:条理比较清晰,论述符合逻辑,表达清楚

缺点:似乎不够详细,尤其是第3段有些过于概括。

模型的假设与约定:

共有8条比较合理的假设

优点:假设有依据,合情合理。比如第3条对上座率的假设,参考了上届奥运会的情况并充分考虑了我国国情,客观真实。第8条假设用了分块规划和割补的方法,估计面积形状比较合理,而且达到了充分花剑问题的作用。

缺点:有些假设阐述不太清楚也存在不合理之处,第4条假设中面积在50-100之间,下面的假设应该是介于50-100之间的数,假设为最小的50平方米,有失1般性。第6条假设中,假设MS最大营业额为20万,没有说明是多长时间内的,而且此处没有对下文提到的LMS作以说明。

符号说明及名词定义

优点:比较详细清楚,考虑周全,而且较合理地将定性指标数量化。

缺点:有些地方没有标注量纲,比如A和B的量纲不明确。

模型建立与求解

6.1问题1:

对所给数据惊醒处理和统计,得出规律,找到联系。

优点:统计方法合理,所统计数据对解决问题确实必不可少,而且用图表和条形图的方式反映不同量的变化趋势,图文并茂,叙述清楚而且简明扼要,除了对数据统计情况进行报告以外,还就他们之间相关量之间的关系进行了详细阐述,使数据统计更具实效性。

6.2问题2:

6.2.1最短路的确定

为确定最短路径又提出了1系列假设并阐述了理由,在这些假设下规定了最短路径

优点:假设有根据,理由合情合理

缺点:第4条中假设观众消费是单向的,虽然简化了问题但有失1般性,事实上观众往返经过商业区消费的概率是相差比较大的,我认为应改为假设观众在往返过程中消费且仅消费1次。

6.2.2计算人流量的追踪模型

给出计算人流量的方法,并计算了各区人流量,并对计算结果进行了分析。

优点:分情况讨论,并且取了两个典型的具有代表性的例子进行了具体阐述,没有全部罗列所有数据的计算过程,使文章清晰简明,不至于繁冗拖沓,这在以后我们写论文是极其值得借鉴。对结果的分析有针对性,合情合理而且用条形图直观地反映了人流量的数值和各地区间的差异。

缺点:分析还不够详细,考虑因素还不够周到。

6.3问题3

进1步对问题作以简化,将问题的解决最终归结为1个焦点,并对解决这个问题所需确定的因素进行了讨论,最后得出结论。

6.3.1商区消费额的确定

阐述了为什么要计算这个量,计算这个量对解决问题有什么至关重要的作用并且采用了Huff模型并且结合本问题的具体情况来求解数据。

优点:论证充分合理且模型和经济学知识应用恰当,所得数据有效可信,考虑周到而不繁杂,抓住了事物的主要矛盾,而且对Huff模型的解释较为充分。

缺点:对于各商业区的总消费额我们更看重数量而文中用条形图的方式却着重体现了各地区之间的数量差异,有喧宾夺主之嫌,改称图表形式可以更好地反映数据量的值

6.3.2各个商区MS数量的概略确定

确定了确定MS个数的方案,在不失1般性的前提下对问题进行进1步简化,缩小解决问题的范围并对问题进行了求解

优点:简洁明了,论述合理。

6.3.3

引入了1个重要的确定数量的参数,且对解决问题方法的合理性及此数据对问题的解的影响及行了数值分析和理论论证,提出了改进方案,得出结果,并对结果进行分析。

优点:条理清晰,逻辑严谨,论证充分,详尽而不冗长,使本篇论文的精华部分。分析合理且充分考虑到了实际情况使结果更具可信性。

6.3.4LMS和MS的分配情况讨论

对2者关系提出了几条假设。

优点:论述充分,假设合理而且用图表反映结果,简单明了,情况考虑全面周到。

6.4问题4

分析了方法的科学性和结果的贴近实际性

优点:条理清晰,分析有依据,措辞严谨,逻辑严密而且对前面所述方法进行了分别阐述。这使得对方法科学性的论述更加充分可信。对贴近事实性的论述,理论和事实相结合,叙述数据来源,并采用举例论证法论证结果的贴近实际性。

缺点:结果的贴近实际性的论证中,应详细罗列1下数据的来源,也许更加可信。

模型的进1步讨论

为简化抽象现实1边建构模型而忽略掉的1些因素进行了考虑,对于1些可能影响讨论结果的因素给出了算法和解决方案

优点:考虑全面,善于抓住主要矛盾,表述简明客观。

模型检验

与某些近似且已妥善解决的问题进行了比较,用事实说明处理方案的正确性。

优点:采用了较好的参照对象,采用图像对比的方法,使问题清晰明了。

缺点:应该简述1下雅典奥运会采用的方案是成功的,否则比照就失去了意义,还有由于举办地点不同,地区上的差异使这种单纯与雅典奥运会进行得比较稍显单薄。

模型优缺点

总结模型建立并解决问题的过程中的优点和缺点

优点:简明扼要,客观实在

数学分析论文范文第8篇

随着社会、经济、科技的高速发展,数学的应用越来越广,地位越来越高,作用越来越大。不仅如此,数学教育的实践和历史还表明,数学作为一种文化,对人的全面素质的提高具有巨大的影响。因此,提高基础教育中的数学教学质量,就显得尤为重要。可目前由于受“应试教育”的影响,数学教学中违背教育规律的现象和做法时有发生,为此更新数学教学思想、完善数学教学方法就显得更加迫切。在数学教学中,开展学法指导,正是改革数学教学的一个突破口。

对数学教学如何实施数学学习方法的指导,人们进行了许多有益的探索和实验。首先是通过观察、调查,归纳总结了中学生数学学习中存在的问题,如“学习懒散,不肯动脑;不订计划,惯性运转;忽视预习,坐等上课;不会听课,事倍功半;死记硬背,机械模仿;不懂不问,一知半解;不重基础,好高骛远;赶做作业,不会自学;不重总结,轻视复习”[1]等等。针对这些问题,提出了相应的数学学法指导的途径和方法,如数学全程渗透式(将学法指导渗透于制订计划、课前预习、课堂学习、课后复习、独立作业、学结、课外学习等各个学习环节之中)[2];建立数学学习常规(课堂常规———情境美,参与高,求卓越,求效率;课后常规———认真读书,整理笔记,深思熟虑,勇于质疑;作业常规———先复习,后作业,字迹清楚,表述规范,计算正确,填好《作业检测表》,重做错题)[3]等等。诚然,这对于端正学习态度、养成学习习惯、提高学业成绩、优化学习品质,采劝对症下药”的策略,开展对学习常规的指导,无疑会收到较好的效果。但是,数学学习方法的指导,决不能忽视数学所特有的学习方法的指导。可以说,这才是数学学法指导之内核和要害。也就是说,数学学法指导应该着重指导学生学会理解数学知识、学会解决数学问题、学会数学地思维、学会数学交流、学会用数学解决实际问题等。有鉴于此,笔者主要从“数学”、“数学学习”出发,来阐释数学学习方法,论述数学学法指导。

从数学的角度出发,就是要考察数学的特点。关于数学的特点,虽仍有争议,但传统或者说比较科学的提法仍是3条:高度的抽象性、逻辑的严谨性和应用的广泛性。

1.数学研究的对象本来是现实的,但由于数学仅从空间形式与数量关系方面来反映客观现实,所以数学是逐级抽象的产物。比如三角形形状的实物模型随处可见,多种多样,名目繁多,但数学中的“三角形”却是一种抽象的思维形式(概念),撇开了人们常见的各种三角形形状实物的诸多性质(如天然属性、物理性质等)。因此,学习数学首当其冲的是要学习抽象。而抽象又离不开概括,也离不开比较和分类,可以说比较、分类、概括是抽象的基础和前提。比如,要从已经过抽象得出的物体运动速度v=v0+at、产品的成本m=m0+at、金属加热引起的长度变化l=l0+at中再次抽象出一次函数f(x)=ax+b,显然要经过比较(它们的异同)和概括(它们的共同特征)。根据数学高度抽象性的特点,数学学法指导要强调比较、分类、概括、抽象等思维方法的指导。

2.数学结论的可靠性有其严格的要求,观察和实验不能作为论证的依据和方法,而是要经过逻辑推理(表现为证明或计算),方能得以承认。比如,“三角形内角和为180°”这个结论,通过测量的方法是不能确立的,唯有在欧氏几何体系中经过数学证明才能肯定其正确性(确定性)。在数学中,只有通过逻辑证明和符合逻辑的计算而得到的结论,才是可靠的。事实上,任何数学研究都离不开证明和计算,证明和计算是极其主要的数学活动,而通常所说的“数学思想方法往往是数学中证明和计算的方法。探求数学问题的解法也就是寻找相应的证明或计算的具体方法。从这一点上来说,证明或计算是任何一种数学思想方法的组成部分,又是任何一种数学思想方法的目标和表述形式”[4]。又由于证明和计算主要依靠的是归纳与演绎、分析与综合,所以根据数学逻辑的严谨性特点,数学学法指导要重视归纳法、演绎法、分析法、综合法的指导。

3.由于任何客观对象都有其空间形式和数量关系,因而从理论上说以空间形式与数量关系为研究对象的数学可以应用于客观世界的一切领域,即可谓宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学。应用数学解决问题,不但首先要提出问题,并用明确的语言加以表述,而且要建立数学模型,还要对数学模型进行数学推导和论证,对数学结果进行检验和评价。也就是说,数学之应用,它不仅表现为一种工具,一种语言,而且是一种方法,是一种思维模式。根据数学应用的广泛性特点,数学学法指导还要指导学生建立和操作数学模型,以及进行检验和评价。

从数学学习的角度出发,就是要通过对数学学习过程的考察,引申出数学学法指导的内容和策略。关于数学学习的过程,比较新颖的观点是:“在原有行为结构与认知结构的基础上,或是将环境对象纳入其间(同化),或是因环境作用而引起原有结构的改变(顺应),于是形成新的行为结构与认知结构,如此不断往复,直到达成相对的适应性平衡”[5]。通过对这一认识的分析和理解,就数学学法指导而言,可概括出以下3点:

1.行为结构既是学习新知的目的和结果,又是学习新知的基础,因而在数学教学中亦需注重外部行为结构形成的指导。由于这种外部行为主要包括外部实物操作和外部符号(主要是语言)活动,所以在数学学法指导中,一要重视学具的操作(可要求学生尽可能多地制作学具,操作学具);二要重视学生的言语表达(给学生尽可能多地提供言语交流的机会,可以是教师与学生间的交流,也可以是学生与学生之间的交流)。

2.认知结构同样既是学习新知的目的和结果,也是学习新知的基础,故而数学教学要加强数学认知结构形成的指导。所谓数学认知结构,是指学生头脑中的知识结构按自己的理解深度、广度,结合自己的感觉、知觉、记忆、思维等认知特点,组合成的一个具有内部规律的整体结构。因此,对于学生形成数学认知结构的指导,关键在于不断地提高所呈现的数学知识和经验的结构化程度。在数学学法指导中,须注意如下几点:①加强数学知识间联系的教学。无论是新知识的引入和理解,还是巩固和应用,尤其是知识的复习和整理,都要从知识间的联系出发。②重视数学思想的挖掘和渗透。由于数学思想是对数学的本质的认识,因而数学思想是数学知识结构建立的基础。常见的数学思想有:符号思想、对应思想、数形结合思想、归纳思想、公理化思想、模型化思想等等。③注重数学方法的明晰教学。数学方法作为解决问题的手段,是建立数学知识结构的桥梁。常见的数学方法有:化归法、构造法、参数法、变换法、换元法、配方法、反证法、数学归纳法等。

3.在原有行为结构与认知结构的基础上,无论是通过同化,还是通过顺应来获得新知,必须是在一种学习机制的作用下方能实现。而这种学习机

制主要就是对学习新知过程的监控和调节,即所谓的元学习。实质上,能否会学,关键就在于这种学习是否建立起来。于是,元学习的指导又成为数学方法指导的重要内容。为此,在数学学法指导中,需要注意:①要传授程序性知识和情境性知识。程序性知识即是对数学活动方式的概括,如遇到一个数学证明题该先干什么,后干什么,再干什么,就是所谓的程序性知识。情境性知识即是对具体数学理论或技能的应用背景和条件的概括,如掌握换元法的具体步骤,获得换元技能,懂得在什么条件下应用换元法更有效,就是一种情境性知识。②尽可能让学生了解影响数学学习(数学认知)的各种因素。比如,学习材料的呈现方式是文字的、字母的,还是图形的;学习任务是计算、证明,还是解决问题,等等。这些学习材料和学习任务方面的因素,都对数学学习产生影响。③要充分揭示数学思维的过程。比如,揭示知识的形成过程、思路的产生过程、尝试探索过程和偏差纠正过程。④帮助学生进行自我诊断,明确其自身数学学习的特征。比如:有的学生擅长代数,而认知几何较差;有的学生记忆力较强而理解力较弱;还有的学生口头表达不如书面表达等。⑤指导学生对学习活动进行评价。如评价问题理解的正确性、学习计划的可行性、解题程序的简捷性、解题方法的有效性等诸多方面。⑥帮助学生形成自我监控的意识。如监控认知方向意识、认知过程意识和调节认知策略意识等等。

根据数学内容的性质,数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等5类。相应地,数学学法指导的实施亦需分别落实到这5类教学之中。这里仅就例题教学中如何实施数学学法指导谈谈自己的认识。

1.根据学生的学情安排例题。如前所述,学习新知必须建立在已有的基础之上,从内容上讲,这个基础既包括知识基础,又包括认知水平和认知能力,还包括学习兴趣、认知意识,乃至学习态度等有关学习动力系统方面的准备。因此,无论是选配例题,还是安排例题,都要考虑到学生的学习情况,尤其是要考虑激发学生认知兴趣和认知需求的原则(称之为动机原则)。在例题选配和安排中,可采取增、删、调的策略,力求既突出重点,又符合学生的学情。所谓增,即根据学生的认知缺陷增补铺垫性例题,或者为突破某个难点增加过渡性例题。所谓删,即根据学生情况,删去比较简单的例题或要求过高的难题。所谓调,即根据学生的实际水平,将后面的例题调至前面先教,或者将前面的例题调到后面后教。

2.根据学习目标和任务精选例题。例题的作用是多方面的,最基本的莫过于理解知识,应用知识,巩固知识;莫过于训练数学技能,培养数学能力,发展数学观念。为发挥例题的这些基本作用,就要根据学习目标和任务选配例题。具体的策略是:增、删、并。这里的增,即为突出某个知识点、某项数学技能、某种数学能力等重点内容而增补强化性例题,或者根据联系社会发展的需要,增加补充性例题。这里的删,即指删去那些作用不大或者过时的例题。所谓并,即为突出某项内容把单元内前后的几个例题合并为一个例题,或者为突出知识间的联系打破单元界限而把不同内容的例题综合在一起。

3.根据解题的心理过程设计例题教学程序。按照波利亚的解题理论,一般把解题过程分为弄清问题、拟定计划、实现计划、回顾等4个阶段。这是针对解题过程本身而言的。但就解题教学来说,还应当增加一个步骤,也是首要环节,即要使学生“进入问题情境”,让学生产生一种认知的需要。对于“进入问题情境”环节,要求教师用简短的语言,在承上启下中,提出学习目标,明确学习任务,激起认知冲突。而对其余4个环节,教师的行为可按波利亚的“怎样解题表”中的要求去构思。一般教师和学生都能够注意做到做好前3个环节,却容易忽视“回顾”环节。

严格说来,回顾环节对解题能力的提高,对例题教学目的的实现起着不可替代的作用。对回顾环节来讲,除波利亚提出的几条以外,更为主要的是对解题方法的概括和反思,并使其能迁移到其它问题的解决之中。

4.根据数学方法指导的目的和内容适度调整例题。通常,人们根据问题的条件(A)、解决的过程(B)及问题的结论(C)的情况把数学题划分为标准题和非标准题两大类:如果条件和结论都明确,学生也熟知解题过程(即A、B、C三要素全已知),这种题为标准题(记为ABC);A、B、C三要素中缺少一个或两个要素的题则为非标准题。如果分别用X、Y、Z表示对应于A、B、C的未知成分,则非标准题的题型(计6种)可表示为:ABZ,AYC,XBC,AYZ,XBZ,XYC。数学教材中的例题大多数是ABC型和ABZ型,有部分的AYC型和极少数的AYZ型。由于数学学法指导的一项重要任务是教学生会抽象、概括、归纳、演绎,会数学地思考和交流,会分析问题和解决问题,因而例题教学要特别注重教材中缺少的几种类型题的教学。其中最为重要的是“开放性题”(ABZ型和AYZ型例题中,Z不唯一)和“数学问题解决”中所指出的“数学应用题”(AYC型及AYZ型中所涉及的主题是数学以外的内容)。对于“开放性题”,由于它的结论不唯一,对培养学生数学思维有着至关重要的作用。对于“数学应用题”,则由于它的解决要用数学模型法,因而对培养学生运用分析问题和解决问题的方法是十分重要的。从数学学法指导的角度来说,适度调整例题很有必要。调整的策略有二:一是改,即将已有的题型变换为别的题型;二是增,即增加与知识点有关的“开放性题”和“数学应用题”。

数学分析论文范文第9篇

一、以教为中心转变为以学生发展为中心

什么是教育?“把所学的东西都忘了,剩下的就是教育。”剩下的是什么呢?就是教育的积淀、精华、永远不会忘记和长期起作用的东西。数学教育的最深沉的积淀是什么呢?是数学的思想、方法、思维策略和个性化的学习方式。这是学生在学习数学的过程中,深度地亲身经历、体验和感悟方可获得的东西,这是数学的灵魂和精髓。数学也正是通过这种方式去影响人们的思维方式,进而影响人们的生活方式直至生存方式,以此来体现数学教育的文化价值。多年来,主导和控制我国中小学的课堂教学是唯一学业评价手段的教育教学方式,几乎成了教学管理和教师们教学的定势的评价行为,极大地束缚了学生个性化学习的发展和创新意识的形成。

经济、社会和科技的发展对人的素质要求是变化和发展的,在青少年阶段接受的知识不是终身够用的。因此,教师应由过去单纯以教为中心转变为以学生发展为本的观念,即以学生的今后甚至终身发展为本的教育观念。在数学教学中应谋求学生的发展为本的教学策略和方式,教学过程不仅要使学生习得基本知识和形成基本能力,更重要的是在这些过程中感悟和体验数学思想方法和数学思维的策略,形成个性化的学习方式和学习方法,使学生终身能受用。如在新教材中,第二章的函数应用举例与实习作业,采用函数与方程的思想、数形结合的思想、分类讨论的思想和不完全归纳得出目标函数的方法以及利用二次函数处理人口增长和生产发展等有关的增长率的实际问题。这些思想方法是在教师引导下,学生对实际问题的分析、解决过程中琢磨和体验出来的。又如在第三章中关于数列的研究性学习课题,学生通过对几种分期付款的问题的社会调查实践和研究活动:确定课题、拟定计划方案、分工协作、收集筛选资料与数据、选择数学模型、处理数据、验证结果和得出实际问题的答案等,不仅能用数学知识解决实际问题,而且还初步形成了一种自主探究、合作交流和开拓创新的学习方式,这种学习方式对学生今后的学习和工作都具有远迁移的积极作用。又如在第十章中通过对随机现象和概率的研究,为应用数学解决实际问题提供了新的思想、方法:面对要解决的问题,调查研究、设计方案、制定策略、收集信息、处理数据、分析推断这一整套的思想方法。对学生今后的发展会有更大的作用,就能实现教学以学生发展为本的目标。

二、课堂教学以演算题目为重点转变为培养学生能力和创新意识为重点

目前数学课堂教学的状况是:多数教师给学生布置成套的题目进行模式化训练,数学应用的意识不强,即使由某些应用似乎是被迫的,培养数学实践能力和创新意识,也还停留在口头上。新教学大纲中的教学目的反映了社会发展和时代要求,反映了实施素质教育的重点,数学课堂教学应把重点放到培养学生能力和创新意识上来。数学能力一般由认知数学事实的能力、解决数学问题的能力和建构数学模型的应用能力等组成。其中认知数学事实的能力,包括了对数、式、数学符号、数量关系、对数与式变换的认知;对空间图形、形状、大小、位置关系、实物与图形的互相转化、图形中元素的认知;对命题结构、论证的一般方法的认知等。解决数学问题的能力包括提出问题,问题的识别、分解、转化能力、解题的探究和监控能力等。建构数学模型的应用能力包括掌握已知的数学模型、应用数学模型来理解与解释客观事物等。新大纲中的思维能力、运算能力、空间想象能力和解决实际问题的能力都隐含在以上的数学能力之中。夯实“双基”固然重要,但要与培养学生能力和创新意识同时进行,不能认为必须有了前者才能进行后者,否则导致二者割裂,不能互相促进不利于二者的共同提高。从数学教育的整体上来说,教学过程中应突出培养学生能力和创新意识这一重点。

三、由教师的讲解灌输的教学转变为通过创设情景、问题探究、合作协商和意义建构的学生自主学习过程

建构主义认为,教学应当用情节、背景真实的问题引导出所学的内容,通过营造解决问题的环境,启发学生积极思考和自主探究,教师帮助学生在解决问题的过程中活化知识,变事实性知识为解决问题的工具。教学过程要以学生的互动学习和知识的意义建构为中心,教师起组织者、指导者、帮助者和促进者的作用,通过创设情景、问题探究、合作协商和意义建构等活动,使之成为学生自主学习的过程。学生是知识的主动建构者,教材中的知识不再是教师传授的内容,而是学生主动建构知识的对象,媒体也不再是教师讲解知识的手段,而是教师创设情景、学生合作学习和共同探究的认知工具。在这样的教学过程中,教师、学生、教材和媒体等教学要素都被赋予了新的涵义,成为新的角色。

四、教学媒体要从教师讲解的演示工具转变为学生的认知工具

目前多媒体辅助教学的使用存在不少弊端:⑴运用目的不明;大多数数学教师在平时教学中很少运用多媒体,甚至根本就没有运用多媒体,但在各类教学技能比赛或观摩评优教学中才运用多媒体,以为这样才能体现现代信息技术与数学课程的整合,究其目的是为了获取喝彩和好的评价。

如果一堂课没有用现代教育技术,纵使教师用“新”的教学方法讲授的再精彩、发人深省,也是难以得到认可,获不了奖的。这是值得我们深思的。其次,有的教师不是从学生的角度去考虑,也不从实际需要出发,仅仅是为了运用多媒体而运用多媒体,只是形式地表演,而不是致力于改变学生的数学学习方式。⑵用多媒体剥夺了学生思维的权力;多媒体可以让抽象的知识形象化、具体化,能够帮助学生理解所学知识。但应当给学生留下足够的思考时间和空间,让学生自己去思索、去想象,让学生自己提出问题,并能试图利用计算机去解决问题,这也是培养学生创新思维能力的一个好办法。

该文章转自《中华论文协会》:/lixue/mathematics/200808/lixue_30019.html⑶多媒体被误用为教师讲解的演示工具;多媒体辅助教学虽不排斥辅助教师的讲解,但其终极目的应指向学生的数学学习,即它应向学生提供更为丰富的学习资源,促使学生乐意并有更多的精力投入到现实的探索性的数学活动中,应成为学生学习数学和解决问题的认知工具。从这个意义上讲,多媒体辅助的主要对象是学生,而不是教师的教学。⑷花哨的课件代替了教师的讲解和教学艺术;现在许多课件是越做越好,画面内容丰富多彩,甚至于声图并茂,动静结合,像演电影一样,美其名是吸引学生的注意力,更有甚者出现与教学内容无关的卡通动画画面。

结果片面追求课件的视听效果,没有注重教学的实际效果,甚至忽视多媒体辅助教学的真正目的——为了促进学生有效地学习数学。这样的课件不但分散了学生的注意,冲淡了教学主题,而且导致学生的注意力迟迟不能集中到需要关注的蕴涵着潜在数学内容和关系的对象上。加上学生平时没有或很少上过多媒体辅助教学课,而当花哨热闹的课件突然呈现在他们面前时,学生更多的是充满新鲜感,好奇感,只注重热闹的画面,而将数学学习任务抛于脑后。其次,多媒体的运用大大减少了教师的板书,教师只要轻轻叩击鼠标,图形、定义、公式、定理便可一一呈现,甚至连例题的细致分析,具体解答,作业布置也直接显示,大有书本搬家之嫌。⑸用屏幕代替黑板;就目前来讲,黑板是不能丢弃的,它的功能是多媒体所不能代替的。黑板具有灵活性,它能随时反映出学生的思维情况,多方面地去探索问题,并能展现出失败的一面,使学生更好地理解知识。多媒体课件由于受条件的限制,不可能把学生的所有思维都反映出来,如果教师仍然严格按照课件实施教学,一旦学生的思路出乎意料,不是你事先预好的,就会显得非常被动。

从而死板的课件排斥了课堂教学的灵活性,不可预知性和动态生成性。⑹功能开发不全;现代多媒体技术具有强大的功能,如图文色彩处理功能、闪烁运动功能、绘制功能、交互功能、数据分析功能、模拟工具功能、符号运算功能、观察规律功能、快速运作功能、直观显示功能。目前数学多媒体运用最多的是直观显示功能,其最大的缺点是没有把问题的背景、产生、发展、变化、过程、结构和本质特征等多形式多角度多层面地表现出来。更谈不上综合地、和谐地、交互地运用多媒体技术来创造积极和谐的数学学习情景,谈不上提供合作、交流、发现、实践的学习机会,构建师生互动的学习平台。

数学分析论文范文第10篇

管网水力分析的基础是管段的水力学模型。常用的数学模型是采用Darcy-Weisbach公式和Hazen-Williams公式。这两个公式原用于管道沿程水力损失的计算,公式来源于理论研究和实验得到的结果。这两个公式的应用基础是大量实验统计得出的参数。Darcy-Weisbach公式一般采用Colebrook-White、Swamee-Jain实验公式和Moody图表来求出沿程损失系数f[2]。文献[1]论述了水力模型的基本形式和管网中管件的定理,该理论统一了局部损失和沿程损失的数学模型。这里进一步讨论在复杂管网中,基于该定理并利用节点分析方法给出Kirchhoff第一定律和第二定律的表示方法及其应用。

1.管网模型

1.1.管道模型

按文献[1]介绍的:

定理1:任何管件的组合,其组合后的管件,以管件断面的流量和压力水头表示的数学模型具有幂函数的形式。

(1)

式中:a,b为不会等于零的实系数;hf为管段的水头损失;q是管段内的流量。

换言之,对于管段两端,记上游端水头为H2,下游端水头为H1,即:

(2)

1.2.复杂管网模型

对于复杂管网,这里所说的复杂是指有多环、多水源、多出流口的管网,对于这种管网可以用与一般管道同样形式的矩阵公式来表示。

记:

式中:H为管段的节点水头矢量;q为管网的管段流量;n为管网中的管段数量。

为了有利于统一表达式,记管段两端的水头为H1,H2。

对于简单管段有:

(4)

容易看出这种变形为采用线性方程组提供了方便。当第t次计算时,令:

(5)

式中:管段在第t-1时的流量,在第t-1次计算时它是已知量;是管段在第t时的假定流量。

q是有方向的矢量,其方向是由管段端点2指向端点1。换言之,端点2水头大于端点1的水头,这样水才能从端点2流到端点1,流量的值才可能是正值。从数学的角度理解,假定H1,H2,q为不为零的实数,H1,H2前面的正负号可以表示为管段的端点i在流量指向的方向。

对于如图1所示的管网,可以用管网邻接矩阵A表示。

图1.一个简单复杂管网图

对于图1按节点及管段编号来关联,行是管段,列是节点。

①节点与1管段、2管段相连接,因假定管段的水流方向是由节点编号大端流向节点编号小端。①节点的邻接向量是。同理:②节点的邻接向量是,易知:

容易得到矩阵:

通常将以上矩阵称为管网的邻接矩阵,

2.节点分析法

如令:

图1中与矩阵等式

(6)

对应的是以下矩阵:

(7)

对①节点有:

对②节点有:

表明矩阵等式可以表示节点流量守恒定律。

根据流量守恒定律和能量守恒定律,有的学科也称为Kirchhoff第一定律和第二定律。管网系统的两个定律可表达为:

(8)

这也是节点分析法的关键方程组。

其中:

(9)

式中:Ac节点与管段的邻接矩阵;Af节点与已知水头的邻接矩阵;Hc管段的节点水头矢量;Hf已知节点水头矢量。

而且,

是式(4)在管网中的矩阵表达。

以图1的管网为例有:

而且,

采用计算机程序自动搜索分析,容易得到以上矩阵。同时,用矩阵表示的是:

=(10)

矩阵运算后可表示成以下方程:

(11)

其中H6是已知水塔的水头。式(10)表明矩阵方法可以表示节点能量守恒定律。

以上分析虽然是针对图1的实例进行,但没有设立管网联接及出流的特殊性条件,故所介绍的分析结果具有一般性。显然,这种结果也可以通过采用“图论法”和有限元法进行分析得到。

3.方程的解法

矩阵方程(8)是复杂管网的数学模型,对此模型的求解可以得到管网的水力学参数。如将Y(q)看作一个常数,该方程就是一个线性方程组,可将此线性方程组称为非线性方程(8)的伴随方程。注意到管网在第t-1时的流量为q(t-1),在第t-1次计算时Y(q(t-1))是已知量;q(t)是管网在第t时的流量。

实际上是在迭代运算中令:

Y(q(t))=Y(q(t-1))

因大多数管网它们的管段内流速v都在1~3m/s之内。经验证明这样种情况下,令流速v=1作为t=0的初值比较合理。这时,矩阵方程(8)实际迭代时t为:

式中:Ai为i管段的断面面积;n为管网的管段数。

当在te时,迭代中,当时,认为方程解为:i=1,…,n;k=1,…,m;m为管网的节点数。

其中,为一相对小的数,工程上,一般取就行了。的值越小计算机的运算时间就越长。

由方程(8)变形得到方程:

(12)

式中,Hc管段的节点水头矢量,是待求的未知量;Hf为已知节点水头矢量。q=是管段内的流量矢量,是待求的未知量;d是管网的出水量矢量,是已知量。

用线性方程组的解法容易经3~4次迭代得到方程(12)的解。

4.结论

复杂管网可以用矩阵的形式表示,并可用节点法建立其矩阵方程。其方程为:

(12)

此方程是一个非线性方程,解此方程可用迭代法进行计算。迭代的初始参数及计算方法如下:

当时,认为方程解为:i=1,…,n;k=1,…,m;n为管网的管段数,m为管网的节点数。

[1]李鸣,管网基本定理及其数学模型[J],节水灌溉,2001(1)8-11

[2]HaestadMethods,ThomasM.Walski,AdvancedWaterDistributionModelingandManagement[M],HaestadPress,2003