首页 > 文章中心 > 神经网络论文

神经网络论文范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

人工神经网络探讨论文

摘要:根据现代控制技术的人工神经网络理论提出了一种保护原理构成方案,并分析了原理实现的可行性和技术难点。

人工神经网络(AartificialNeuralNetwork,下简称ANN)是模拟生物神经元的结构而提出的一种信息处理方法。早在1943年,已由心理学家WarrenS.Mcculloch和数学家WalthH.Pitts提出神经元数学模型,后被冷落了一段时间,80年代又迅猛兴起[1]。ANN之所以受到人们的普遍关注,是由于它具有本质的非线形特征、并行处理能力、强鲁棒性以及自组织自学习的能力。其中研究得最为成熟的是误差的反传模型算法(BP算法,BackPropagation),它的网络结构及算法直观、简单,在工业领域中应用较多。

经训练的ANN适用于利用分析振动数据对机器进行监控和故障检测,预测某些部件的疲劳寿命[2]。非线形神经网络补偿和鲁棒控制综合方法的应用(其鲁棒控制利用了变结构控制或滑动模控制),在实时工业控制执行程序中较为有效[3]。人工神经网络(ANN)和模糊逻辑(FuzzyLogic)的综合,实现了电动机故障检测的启发式推理。对非线形问题,可通过ANN的BP算法学习正常运行例子调整内部权值来准确求解[4]。

因此,对于电力系统这个存在着大量非线性的复杂大系统来讲,ANN理论在电力系统中的应用具有很大的潜力,目前已涉及到如暂态,动稳分析,负荷预报,机组最优组合,警报处理与故障诊断,配电网线损计算,发电规划,经济运行及电力系统控制等方面[5]。

本文介绍了一种基于人工神经网络(ANN)理论的保护原理。

1、人工神经网络理论概述

BP算法是一种监控学习技巧,它通过比较输出单元的真实输出和希望值之间的差别,调整网络路径的权值,以使下一次在相同的输入下,网络的输出接近于希望值。

在神经网络投运前,就应用大量的数据,包括正常运行的、不正常运行的,作为其训练内容,以一定的输入和期望的输出通过BP算法去不断修改网络的权值。在投运后,还可根据现场的特定情况进行现场学习,以扩充ANN内存知识量。从算法原理看,并行处理能力和非线是BP算法的一大优点。

全文阅读

BP神经网络预测论文

[摘要]为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。

[关键词]MATLABBP神经网络预测模型数据归一化

一、引言

自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。

二、影响因素

刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。

三、模型构建

1.模型选择:BP网络具有理论上能逼近任意非线性函数的能力,将输入模式映射到输出模式,只需用已知的模式训练网络,通过学习,网络就有了这种映射能力。2.样本数据归一化:在训练前,对数据进行归一化处理,把输入向量和输出向量的取值范围都归一到[0,1]。

全文阅读

神经网络农业机械论文

1基于遗传算法的BP神经网络

但当BP神经网络应用于预测模型尤其对于未来增长趋势比较明显的预测模型时,虽然其收敛精度较高,但其值域范围受限导致训练样本拟合函数与预测数据有较大差异,导致其局部搜索能力较强但全局搜索能力较差,易陷入局部最优值。本文通过引入遗传算法,发挥该算法全局搜索能力较强的特点,对BP神经网络权值和阈值进行预优化,赋予各层较佳输出解空间,发挥BP神经网络局部搜索能力强的特点,实现强强联合,提高时间序列预测的精准度。

1.1BP神经网络

BP(BackPropagationnetwork)神经网络是当今预测领域应用最广泛的一种神经网络算法。BP神经网络由3层组成:输入层、隐含层和输出层。每一层中都包含若干节点(神经元),不同层之间节点通过权值进行全连接,同层节点之间无连接。其中,隐含层可为多层,实际应用过程中有一个隐含层的三层神经网络结构即可实现非线性函数拟合。

1.2遗传算法

本文中的优化对象为BP神经网络各层间权值和阈值。因此,在种群初始化时,遗传算法采用常用的二进制编码,并由农业机械数量的历史样本数目确定遗传算法将优化的参数(权值和阈值)个数,从而确定种群的编码长度。因BP神经网络隐含层神经元采用S型传递函数,为减小计算误差,减少或避免计算结果落入局部最小值,权值和阈值应避免选择区间内较小和较大数值,选择在[-0.5,0.5]区间内的随机数。遗传算法计算流程。

2预测结果与分析

本文采用基于遗传算法的BP神经网络,以我国从1997-2013年的农业机械数量为基础数据进行训练和测试和预测。其中,遗传算法群体规模M=50,交叉概率pc=0.6,变异概率pm=0.01,BP神经网络权值阈值取值空间为[-0.5,0.5],训练次数为1000,训练目标为0.01,学习速率为0.1。我国在1997-2013年期间的农机总动力、农用大中型拖拉机数量和小型拖拉机数量的预测值与历史样本数据之间的绝对值平绝误差分别为1.080%、1.352%和1.765%。由此看出,使用基于遗传算法的BP神经网络对于以农业机械数量为预测对象的时间序列预测模型的预测精度较好,预测精度稳定性较佳。从预测误差可以看出,本文所使用的BP神经网络在预测本时间序列模型时,基本避免运算结果落入局部最小值,收敛性能较好,与前文中遗传算法和BP神经网络优势互补、强强联合的理论设想较为一致。2014年我国农机总动力、农用大中型拖拉机数量和小型拖拉机数量的预测结果来看,该预测结果与2013年度数值比较有较大增长,但增长幅度有所下降。预计到2014年,我国农机总动力、大中型拖拉机数量和小型拖拉机数量分别为11.251×108kW、587.012万台和2043.201万台,与1997年相比分别增加了167.86%、751.96%和94.87%,与2013年相比分别增加了4.17%、10.75%和2.16%。其中,2014年农机总动力和小型拖拉机数量增长率分别小于2013年的增长率5.88%和3.3%,农用大中型拖拉机数量增长率大于2013年的增长率9.19%。由于我国在2004年出台了一系列鼓励提高农业机械化的法律、政策、法规,中央财政农机购置补贴资金投入连年大幅增加,极大地调动了农民购机的积极性和企业生产的积极性,促进我国农机装备总量持续增长和农机结构优化。随着跨区作业和农业生产合作社的逐步发展,有效提高了农用大中型拖拉机在农业生产中的的利用率,降低了农民劳动强度,提高生产效率,因而其近几年的保有量有较大增幅。小型拖拉机受农业产业结构调整和农业机械大型化的影响,其近几年的保有量增幅逐年降低。

全文阅读

人工神经网络技术论文

1互联网人工神经网络技术的重要起源以及发展过程

在上世纪九十年代初期,利用数学知识将感知器模型的弊病全面提出,致使社会各界对于人工神经网络的探究非常少。另一方面,针对逻辑运算的人工神经网络研究存在一定的弊端,一直没有被大家发现,因此,致使人工神经网络探究工程进入严重的低谷期。

关于人工神经网络技术飞速发展时期,九十年代初期,对于人工神经网络技术的弊端予以充分解决,尤其是Hopefield的人工神经网络技术模型的提出,致使对于互联网的稳定性以及收敛性的探究有了充分的理论依据。而且将人工神经网络模型全面应用到具体的实践中,并且得到全面推广,同时,将科学技术和人工神经网络进行有机结合,使人工神经网络技术更加具有可研究性。

2关于人工神经技术的构造以及典型模型

互联网人工神经技术的构造的组成包括以神经元件为主,同时,这项包含多种神经元结构的互联网信息处理技术是可以并行存在的。每一个具体的人工神经元件可以单一输出,还可以和其他的神经元件相结合,并且具有非常多的连接输出方法,每一种连接措施都会有相应的权系数。具体的人工神经网络技术的特点有:(1)针对每一个节点i,都会有相应的状态变量Xi存在;(2)节点j到节点i之间,是相应的权系数Wij存在;(3)在每一个节点i的后面,具体存在相应的阈值θi;(4)在每一个节点i的后面,存在变换函数fi(Xi,Wijθi),但是,通常情况来说,这个函数取fi(∑,WijXi-θi)的情况。

3将人工神经网络技术进行全面使用

互联网的人工神经网络技术具有独特的结构和处理措施,具体包括在:自动控制处理和网络技术模式识别、模型图像处理和相应的传感器信号处理技术。信号处理技术和机器人控制处理技术、地理领域和焊接、在电力系统应用和相关数据挖掘、军事和交通行业、农业和气象行业等多个领域纷纷体现出其卓越的贡献。

ART人工神经网络技术的运用。人工神经网络技术ART在网络语音和网络图像、文字处理和具体识别等方面,得到广泛的应用;同时,在工业处理系统中也有相应的应用,例如,在工业系统中的故障诊断和故障检测以及事故警报等情况的控制;人工神经网络ART技术还应用在数据挖掘方面,在相关数据中挖掘最稳定和最有意义的模式。具体的神经网络技术ART的优势为:网络技术处理能力高、稳定性强以及聚类效果非常好。

全文阅读

人工神经网络模论文

1数据

1.1GPS台站数据GPS时间序列由中国地壳运动观测网络提供[10],这些GPS站在解算过程中扣除了固体潮、海潮、极潮的影响.本文选取的是华北平原区域内BJFS、BJSH、JIXN、TAIN、ZHNZ台站的数据,为了得到更理想的GPS时间序列数据,本文对这72个月的GPS数据进行预处理工作,包括:线性拟合去除趋势项、剔除噪声数据以及小波分解保留长周期信号[11].

1.2GRACE数据本文采用的GRACE重力卫星数据是由美国德克萨斯大学空间研究中心提供的高精度Level-2RL05版本的GRACE重力场前60阶球谐系数(2005年1月~2010年12月)[12].在此基础上,根据Blewitt[13,14]、Wahr[15]的结果推导由GRACE时变重力资料解算的陆地水储量,如公式(1)所示。

1.3CPC水文模型数据研究表明,地表水储量可以忽略[7],所以研究区陆地水储量变化可以用式(2)表示。示土壤水分引起的陆地水储量变化,来自CPC水文模型.通过式(2)可获得地下水储量的变化值.以BJFS台站为例,如图1所示,绿色线表示GRACE解算的陆地水储量,红色线表示CPC水文模型解算的土壤水储量,蓝色线为地下水储量.由于GRACE解算的陆地水储量在解算过程中扣除了背景场的影响,因此本文对72个月的降水量、地下水埋深以及GPS测站的地表形变数据做同样的处理.

2研究方法

2.1人工神经网络算法原理BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传递,误差反向传递.在前向传递过程中,输入信号从输入层经隐含层逐层处理,直至输出层.每一层的神经元状态只影响到下一层神经元状态.若输出层不能满足期望的输出要求,则转入反向传播,根据预测误差调整网络权值和阈值,从而使得BP神经网络预测输出不断逼近期望输出[16].其拓扑结构如图2所示.X1,X2,…,Xn是BP神经网络的输入值,Y1,Y2,…,Ym是BP神经网络的预测值,ωij和ωjk为BP神经网络权值.

2.2基于BP神经网络的地表垂直负荷形变量模拟

2.2.1指标选取地表负荷形变是由地表流体质量(包括大气、陆地水等)重新分布引起的不同尺度变化.因此将GRACE解算的水储量作为一个输入因子.此外,分析华北平原地表负荷形变的成因,认为地下水超采对该区的地表负荷形变有一定影响.为此将地下水埋深作为BP神经网络模型的一个输入因子.降水量与地表负荷形变量间存在一定关系,一方面降水的增多会相对减少对地下水的开采,另一方面在降水过程中浅层黏性土吸水后表现出一定的膨胀性,因此将历年的降水量也作为一个输入因素[17].为了探求不同水储量作为输入因子时模型的模拟精度,本文结合来自CPC水文模型的土壤水储量,将解算出的地下水储量作为另一个输入因子.

全文阅读

径向基神经网络论文

1本文提出的方法

EL检测原理与检测系统在文献[1]中有详细的描述。本文采用该文献中的方法对太阳能电池片的EL图像进行采集。图1(a)、(b)、(c)分别表示由CCD采集的一块大小为125bits×125bits的虚焊缺陷图像、微裂缺陷图像和断指缺陷图像。图1(d)是无缺陷太阳能电池组图像,它包含36(6×6)块大小为125bits×125bits的太阳能电池片图像。本文提出融合主成分分析(PCA)改进反向传播神经网络(BPNN)方法和径向基神经网络(RBFNN)方法对太阳能电池缺陷电致发光图像进行处理,主要包括图像采集、PCA特征提取降维、神经网络分类训练、预测输出等部分,如图2所示。

1.1PCA处理输入数据当BPNN和RBFNN的输入是太阳能电池板缺陷图像集时,图像是以向量的形式表示。向量维数太大将不利于网络的计算。我们采用主成分分量分析(PCA)算法[15]来提取该向量的主要特征分量,既不损失重要信息又能减少网络的计算量。PCA是基于协方差矩阵将样本数据投影到一个新的空间中,那么表示该样本数据就只需要该样本数据最大的一个线性无关组的特征值对应的空间坐标即可。将特征值从大到小排列,取较大特征值对应的分量就称为主成分分量。通过这种由高维数据空间向低维数据空间投影的方法,可以将原始的高维数据压缩到低维。假设数据矩阵Xn×p由样本图像组成,n是样本数,p是样本图像的大小。若Xn×p的每一行代表一幅样本图像,则Xn×p的PCA降维矩阵求解步骤如下。

1.2创建BPNN模型和RBFNN模型太阳能电池缺陷种类很多,不同缺陷类型图像具有不同特征。对太阳能电池缺陷图像求其主成分分量作为BPNN的输入,缺陷的分类作为输出,输入层有k个神经元(降维后主成分分量个数),输出层有1个神经元(缺陷的分类向量)。隐层的节点数可以凭经验多次实验确定,也可以设计一个隐含层数目可变的BPNN。通过误差对比,选择在给定对比次数内误差最小所对应的隐含层神经元数目,从而确定BPNN的结构。一般来说,3层BPNN就能以任意的精度逼近任意的连续函数[16]。本论文选择3层BPNN,结构为k-m-1,m为隐含层节点数。为了使网络训练时不发生“过拟合”现象,设计合理BPNN模型的过程是一个不断调整参数对比结果的过程。确定BPNN结构后,就可以对该网络进行训练。训练函数采用Levenberg-Marquardt函数,隐含层神经元传递函数为S型正切函数tansig,输出层神经元函数为纯线性函数purelin。调用格式:net=newff(Y,T,[m,1],{‘tansig’,‘purelin’},‘train-lm’);Y为神经网络的输入矩阵向量(PCA降维后的矩阵向量),T为神经网络的输出矩阵向量。Matlab自带4种主要的函数来设计RBFNN:newrbe,newrb,newgrnn,newpnn。本文用相同的训练样本集和测试样本集创建和测试了这4种网络,其中,用newgrnn创建的网络识别率最高,因此选用广义回归神经网络newgrnn来创建RBFNN:(1)隐含层径向基神经元层数目等于输入样本数,其权值等于输入矩阵向量的转置。(2)输出层线性神经元层,以隐含层神经元的输出作为该层的输入,权值为输出矩阵向量T,无阈值向量。调用格式:net=newgrnn(Y,T,Spread);Y为神经网络的输入矩阵向量(PCA降维后的矩阵向量),T为神经网络的输出矩阵向量,Spread为径向基函数的扩展速度。

1.3太阳能电池缺陷的检测算法(1)数据映射。取每种类型缺陷图像的60%和40%分别作为BPNN和RBFNN的训练样本集和测试样本集。将样本集中每张图片变成矩阵中的一列,形成一个矩阵,采用2.1节中的方法对该矩阵进行PCA降维后的矩阵作为BPNN和RBFNN的输入。将虚焊、微裂、断指和无缺陷4种不同类型图像分别标记为1,2,3,4,作为网络期望输出T。(2)数据归一化。将输入输出矩阵向量归一化为[-1,1],利于神经网络的计算。(3)分别调用2.2节中创建的BPNN和RBFNN,设置网络参数,利用训练样本集先对网络训练,然后将训练好的网络对测试样本集进行仿真,并对仿真结果进行反归一化。(4)最后将仿真预测输出分别和图像1,2,3,4比较,差值的绝对值小于阈值0.5认为预测正确。阈值是根据网络的期望输出选择的,以能正确区分不同缺陷类型为宜。识别率定义为正确识别的数量和样本数的比值。

2实验内容与结果分析

为了验证本文方法的有效性,我们通过CCD图像采集系统采集了1000张太阳能电池板EL图片,包括250张虚焊样本、250张微裂样本、250张断指样本、250张无缺陷样本,大小为125bits×125bits。我们利用图片组成的样本数据集进行了大量的实验,将每种类型缺陷图像的60%和40%分别作为BPNN和RBFNN的训练样本集和测试样本集。算法测试硬件平台为Inteli5750、主频2.66GHz的CPU,4G内存的PC机,编译环境为Mat-labR2012b。由于样本图像数据较大,需采用2.1节中的PCA算法进行降维处理。对样本图像集降维后,得到神经网络的输入矩阵。但是,随着样本数的增加,占有主要信息的主成分维数也在增加。因此,分别采用占有主要信息60%~90%的图像作为BPNN的输入,对应的降维后的主成分维数k为BPNN输入层节点数。由于BPNN的结果每次都不同,所以运行50次,保存识别率最高的网络。图3是在不同样本集数下的PCA-BPNN的最高识别率。其中,样本数n=1000时的PCA-BPNN识别率如表1所示。同时网络参数设置也列在表1中。隐含层中的最佳节点数是采用经验公式所得[17]。从图3和表1中可以看出,当维数降至20维(占主要信息70%)、总样本数为1000(测试样本400)时,4种类型总的最高识别率为93.5%。在相同的训练样本集和测试样本集上,采用与BPNN同样的输入和输出,在不同样本集数下,PCA-RBFNN的最高识别率如图4所示。其中,样本数n=1000时的PCA-RBFNN识别率如表2所示。参数Spread的设置也列在表2中,首先设定Spread为1,然后以10倍的间隔速度递减。从图4和表2中可以看出,样本数为1000(测试样本400)时,PCA维数降到15(占主要信息65%),总的最高识别率为96.25%。两种网络的测试样本集最高识别率对比分别如图5和表3所示。图5(a)、(b)分别为采用PCA-BPNN与PCA-RBFNN方法时测试样本集中的4种缺陷样本图像的期望值与预测值。表3列出了两种方法的具体识别结果。从表3可以看出,两种方法对虚焊缺陷识别率均较高,分别为99%和100%;微裂缺陷识别率较低,分别为89%和92%。这是因为虚焊缺陷面积较大,颜色较深具有显著特点;而微裂缺陷面积较小,与背景对比不强烈,导致错误分类。采用本文提出的BPNN和RBFNN方法处理一幅750×750大小的图像大约分别需要1.8s和0.1s,PCA降维的时间大约为0.02s。将上述两种方法与FCM[18]及ICA[3]方法进行比较,结果如表4所示。可以看出,RBFNN方法具有较高的识别率和较短的计算时间,更适合于在线检测。

3结论

全文阅读

神经网络地形分析论文

1引言

在水利及土木工程中经常会遇到地形面,地形面是典型的空间自由曲面,地形面在给出时,往往只给出一些反映地形、地貌特征的离散点,而无法给出描述地形面的曲面方程。然而有时需要对地形面进行描述,或者当给出的地形面的点不完整时,需要插补出合理的点。以往大多用最小二乘法或其它曲面拟合方法如三次参数样条曲面、Bezier曲面或非均匀有理B样条曲面等,这些拟合方法的缺点是:型值点一旦给定,就不能更改,否则必须重新构造表达函数;在构造曲线曲率变化较大或型值点奇异时,容易产生畸变,有时需要人为干预;此外,这些方法对数据格式都有要求。

神经网络技术借用基于人类智能(如学习和自适应)的模型、模糊技术方法,利用人类的模糊思想来求解问题,在许多领域优于传统技术。用神经网络进行地形面构造,只要测量有限个点(可以是无序的),不需要其它更多的地形面信息和曲面知识,当地形面复杂或者是测量数据不完整时,用神经网络方法更具优势,而且还可以自动处理型值点奇异情况。

本文提出用BP神经网络结合模拟退火算法进行地形面的曲面构造。

2模型与算法的选择

为了对地形面进行曲面构造,首先要有一些用于神经网络训练的初始样本点,对所建立的神经网络进行学习训练,学习训练的本质就是通过改变网络神经元之间的连接权值,使网络能将样本集的内涵以联结权矩阵的方式存储起来,从而具有完成某些特殊任务的能力。权值的改变依据是样本点训练时产生的实际输出和期望输出间的误差,按一定方式来调整网络权值,使误差逐渐减少,当误差降到给定的范围内,就可认为学习结束,学习结束后,神经网络模型就可用于地形面的构造。

BP网是一种单向传播的多层前向网络。网络除输入输出节点外,还有一层或多层的隐层节点,同层节点中没有任何耦合。输入信号从输入层节点依次传过各隐层节点,然后传到输出节点,每一层节点的输出只影响下一层节点的输出。其节点单元传递函数通常为Sigmoid型。BP算法使神经网络学习中一种广泛采用的学习算法,具有简单、有效、易于实现等优点。但因为BP算法是一种非线性优化方法,因此有可能会陷入局部极小点,无法得到预期结果,为解决BP算法的这一缺点,本文将模拟退火算法结合到BP算法中。

模拟退火算法是神经网络学习中另一种被广泛采用的一种学习算法。它的基本出发点就是金属的退火过程和一般组合优化问题之间的相似性。在金属热加工过程中,要想使固体金属达到低能态的晶格,需要将金属升温熔化,使其达到高能态,然后逐步降温,使其凝固。若在凝固点附近,温度降速足够慢,则金属一定可以形成最低能态。对优化问题来说,它也有类似的过程,它的解空间中的每一个点都代表一个解,每个解都有自己的目标函数,优化实际上就是在解空间中寻找目标函数使其达到最小或最大解。

全文阅读

神经网络信息论文

[摘要]本文从生物神经元的角度简单阐述了人脑高级思维的形成机制。通过对反射、认知、创造等概念的重新定义,全面的解析人脑的工作原理,以及在这一运行机制下对于外界所反应出来的相关现象。

[关键词]反射认知创造神经网络人工智能

一、生物神经网络系统

生物神经系统是以神经元为基本单位,神经元的外部形态各异,但基本功能相同,在处于静息状态时(无刺激传导),神经细胞膜处于极化状态,膜内的电压低于膜外电压,当膜的某处受到的刺激足够强时,刺激处会在极短的时间内出现去极化、反极化(膜内的电压高于膜外电压)、复极化的过程,当刺激部位处于反极化状态时,邻近未受刺激的部位仍处于极化状态,两着之间就会形成局部电流,这个局部电流又会刺激没有去极化的细胞膜使之去极化等等,这样不断的重复这一过程,将动作电位传播开去,一直到神经末梢。

神经元与神经元之间的信息传递是通过突触相联系的,前一个神经元的轴突末梢作用于下一个神经元的胞体、树突或轴突等处组成突触。不同神经元的轴突末梢可以释放不同的化学递质,这些递质在与后膜受体结合时,有的能引起后膜去极化,当去极化足够大时就形成了动作电位;也有的能引起后膜极化增强,即超极化,阻碍动作电位的形成,能释放这种递质的神经元被称为抑制神经元。此外,有的神经元之间可以直接通过突触间隙直接进行电位传递,称为电突触。还有的因树突膜上电压门控式钠通道很少,树突上的兴奋或抑制活动是以电紧张性形式扩布的,这种扩布是具有衰减性的。

图1

一个神经元可以通过轴突作用于成千上万的神经元,也可以通过树突从成千上万的神经元接受信息,当多个突触作用在神经元上面时,有的能引起去极化,有的能引起超极化,神经元的冲动,即能否产生动作电位,取决于全部突触的去极化与超级化作用之后,膜的电位的总和以及自身的阈值。

神经纤维的电传导速度因神经元的种类、形态、髓鞘有无等因素的不同而存在很大差异,大致从0.3m/s到100m/s不等。在神经元与神经元之间的信息交换速度也因突触种类或神经递质的不同而存在着不同的突触延搁,突触传递信息的功能有快有慢,快突触传递以毫秒为单位计算,主要控制一些即时的反应;慢突触传递可长达以秒为单位来进行,甚至以小时,日为单位计算,它主要和人的学习,记忆以及精神病的产生有关系。2000年诺贝尔生理学或医学奖授予了瑞典哥德堡大学77岁的阿维·卡尔松、美国洛克菲勒大学74岁的保罗·格林加德以及出生于奥地利的美国哥伦比亚大学70岁的埃里克·坎德尔,以表彰他们发现了慢突触传递这样一种“神经细胞间的信号转导形式”。本次获奖者的主要贡献在于揭示“慢突触传递”,在此之前,“快突触传递”已经得过诺贝尔奖。此外,使用频繁的突触联系会变得更紧密,即突触的特点之一是用进废退,高频刺激突触前神经元后,在突触后神经元上纪录到的电位会增大,而且会维持相当长的时间。所以可以得出一条由若干不定种类的神经元排列构成的信息传导链对信息的传导速度会存在很大的弹性空间,这一点对神经系统认知事件有着非常重要的意义。

全文阅读

PSOBP神经网络研究论文

摘要基于粒子群优化的算法具有全局随机搜索最优解的特点。本文尝试把PSO算法和神经网络权值训练的常用算法BP算法结合起来进行数据的训练,实现对一组数据的训练,并对结果与BP算法的训练结果进行了对比,得到了较好的效果。

关键词神经网络;反向传播算法;PSO算法;适应度函数

人工神经网络是由人工神经元互连而成的网络,它从微观结构和功能上实现对人脑的抽象和简化,具有许多优点。对神经网络的权值系数的确定,传统上采用反向传播算法(BP算法)。BP网络是一种多层前向反馈神经网络,BP算法是由两部分组成:信息的正向传递与误差的反向传播。在反向传播算法中,对权值的训练采用的是爬山法(即:δ算法)。这种方法在诸多领域取得了巨大的成功,但是它有可能陷入局部最小值,不能保证收敛到全局极小点。另外,反向传播算法训练次数多,收敛速度慢,使学习结果不能令人满意。

粒子群优化算法(ParticleSwarmOptimizer,PSO)是一种进化计算技术(evolutionarycomputation)。源于对鸟群捕食的行为研究,PSO中,每个优化问题的解都是搜索空间中的一只鸟,我们称之为粒子。所有的粒子都有一个由被优化的函数决定的适应值(fitnessvalue),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。如果用粒子群算法对神经网络的权值进行训练,会得到较快的收敛速度,而且可以避免局部最值得出现。研究表明PSO是一种很有潜力的神经网络算法。

本文提出了一种基于PSO算法的BP网络学习算法,并通过MATLAB7.0实现对一组简单的向量进行训练对PSO—BP算法和BP算法进行了对比,试验结果说明PSO—BP算法适合训练BP网络,并且也有希望应用于其他种类的前向网络的训练。

1PSO算法

PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的例子都有一个由被优化的函数决定的适应值(fitnessvalue),每个粒子还有一个速度决定它们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。

D维搜索空间中,有m个粒子,其中第i个粒子的位置是,m,其速度为。将带入目标函数可计算出适应值。记第i个粒子搜索到的最优位置为,整个粒子群搜索到的最优位置为。离子状态更新操作为:

全文阅读

混合神经网络论文

1混合神经网络

1.1混合神经网络的结构本文提出的混合神经网络是在CC神经网络的基础上,在隐含层的生成中增加了乘算子的部分以提高神经网络非线性辨识能力。乘算子和加算子结构上的自增长基本相互独立,既保留了原CC神经网络的优点,同时也使得乘算子的特点得到发挥。混合神经网络的结构如图3所示,网络的隐含层由两种不同类型的算子(乘算子和加算子)共同构成。这种混合隐含层根据构成的算子类型分为加法部分和乘法部分。通过相关性s来确定其中一个隐含层部分增加节点,加法部分采用级联结构与原CC神经网络相同,乘法部分采用单层结构避免其阶数过高,最后两个隐含层的输出同时作为输出节点的输入进行输出。

1.2引导型粒子群算法针对混合隐含层的结构、权值和阈值的求取,本文提出了一种新的引导型粒子群算法(GQPSOI)。GQPSOI通过控制粒子i和j之间的距离来保证粒子不会收敛得太快从而陷入局部极小值,同时根据各粒子p(i,:)和p(j,:)之间的距离D(i,j)以及粒子间平均距离D来计算淘汰度Ew决定淘汰粒子并对其进行量子化更新。

1.3混合神经网络算法流程混合神经网络的自增长过程如图4所示。网络增长的具体步骤如下。(1)网络结构初始化。网络中只有输入层和输出层,无隐含层,如图4(a)所示。(2)使用GQPSOI算法训练输出权值。(3)对网络性能进行判断,如满足要求,则算法结束,网络停止增长,如图4(d)所示,否则转到下一步。(4)建立隐含层节点候选池(内含一个乘算子和一个加算子),分别将候选隐含层节点代入网络结构并使用GQPSOI算法以最大相关性原理训练两个候选节点,分别计算两个候选节点与现有残差Ep,o的相关性s。(5)选择相关性s最大的候选节点,作为新的隐节点加入网络结构,如图4(b)、(c)所示,并固定新隐节点的输入权值。转移到步骤(2),对整个网络的输出权值进行调整。

2混合神经网络网络性能测试

2.1GQPSOI算法性能测试首先应用几个经典函数[9]对GQPSOI算法的性能进行了评价,并将实验结果与几种常见的算法进行了对比。这些函数包括:F1(Sphere函数)、F2(Rosenbrock函数)、F3(Rastrigin函数)、F4(Griewank函数)、F5(Ackley函数),评价函数的维数为10。经过30次独立运行实验,每次的函数评价次数(FEs)[12]为100000。表1给出了GQPSOI算法与离子群算法(PSO),遗传算法(GA)以及差分进化法(DE)在30次独立运行评价试验中得到最优值的平均值和标准差。从表1中可以看出,在F2的实验中GQPSOI算法在30次独立运行中的平均值为7.746×10−12,这一结果明显优于PSO算法的29.55和GA算法的97.19,略优于DE的2.541×10−11。从F1、F3、F4、F5的实验结果也都可以看出GQPSOI算法明显优于其他算法。实验证明了GQPSOI算法的有效性和适用性,能够应用于神经网络的参数和结构调整。

2.2燃料电池的建模实验

2.2.1基于燃料电池输出电压的模型质子交换膜燃料电池[13-15]作为一种高效的清洁能源,在过去的几十年里取得了巨大的进展。在正常操作条件下,一片单电池可以输出大约0.5~0.9V电压。为了应用于实际能源供应,有可能需要将多片单电池串联在一起。具有级联结构的质子交换膜燃料电池实验装置如图5所示。从图5可以看出,电池引出电流I,电池温度T,H2和O2压力PH2和PO2会影响电池电压。将混合神经网络用于质子交换膜燃料电池的软测量建模,选用电池引出电流I,电池温度T,H2和O2压力PH2和PO2会影响电池电压的变量作为输入变量。将56片单电池的串联输出电压作为其输出,模型的目标函数取实际输出值与模型输出值得均方根误差(使其最小)。混合神经网络中加法部分以及输出层的神经元传递函数采用S型函数,GQPSOI算法中设置种群数30,最大迭代步长为1000,引导粒子起作用的概率设置为2%。图6为5kW质子交换膜燃料电池堆的实验装置。该实验系统采用增湿器与电池堆分体设置,参数检测采用传感器-直读式仪表方式,气体和水的流量测量采用转子流量计,电堆采用电阻负载,可直接测量电堆的输出电流、电压或功率。电池堆参数见表2。

全文阅读