开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘要:
农业生物环境工程主要是通过专业的工程技术,针对农业生产中的环境因素进行调节和控制,为作物以及动物的生长创造出一个最佳的外部环境,从而改变传统农业过分依赖自然环境的不足,减少不利条件和自然灾害的影响。本文主要针对农业生物环境工程在农业生态中的应用情况进行了分析和探讨。
关键词:
农业生态;农业生物环境工程;应用
在经济发展的带动下,作为我国基础产业的农业获得了巨大的发展机遇,农产品的质量和产量不断提高,但是与此同时也带来了许多的问题,尤其是过度种植以及超载放牧所引发的土地荒漠化、漫灌浇水引发的水资源紧缺等,无不影响着农业的可持续发展。在这种情况,应用农业生物环境工程,推动生态农业,逐渐成为人们关注的热点问题。
1三位一体生态农业模式
三位一体生态农业模式常见于我国南方地区,最为典型的就是“猪-沼-果”,这种模式是以沼气作为纽带,实现农业种植与畜牧养殖的协调发展。农户可以对庭院的空间进行充分利用,建立沼气池、猪圈以及厕所,将沼气池放在猪圈的地下,在猪圈中养猪,上层设置鸡笼养鸡,闲置土地种植果树,畜牧的排泄物进入沼气池经厌氧发酵后产生沼气,可以作为照明以及做饭的能源,消除环境污染,剩余的沼液和沼渣则可以作为有机肥或者饲料添加剂,从而实现物质以及能源的良性循环[1]。作为一种优秀的循环经济模式,从“猪-沼-果”模式中可以看到循环经济的一些本质性特征,以生态经济、清洁生产、绿色消费等为依托,体现出了再利用和再循环的原则,可以产生良好的经济效益和生态效益。
2四位一体生态农业模式
1植物遗传工程
目前的植物基因工程可通过生物载体细胞注射、基因枪高速细胞子弹轰击等技术向几乎所有的植物输入外来植物基因。以前导入植物体的外源基因只限于外源报告标记基因,抗卡那霉素和抗潮湿链霉素基因。最近已导人了BUR等抗除草剂基因、镶嵌病毒外壳基因、鸡蛋蛋白基因、豆血红蛋白基因和谷酞胺酶合成基因。此外,抗病、抗虫基因的导入也有所报道,对于控制单宁合成的酶基因已被克隆。目前关于植物—病原物相互关系的分子生物学研究主要着眼于病原物基因工程,即从病原菌中或植物本身克隆制备出致病基因与调节基因,以及获得病原物的特异性DN段用于病原分类及病害检测。自1986年首次获得能抗烟草花叶病毒的转基因烟草植株后,目前已利用基因工程获得许多抗病毒植株,如抗花叶病毒首楷,抗花叶病毒黄瓜,抗X病毒和Y病毒马铃薯等。生物诱导广泛应用于植物对真菌、病毒及类病毒、细菌等病原物抗性的诱导,在烟草、黄瓜、西瓜、甜菜、马铃薯、小麦、苹果、番茄、棉花、水稻等诸多植物中已见报道。生物诱导包括:用非病原菌诱导,用异种病原菌诱导,用弱致病力菌株诱导,用热杀死的病原菌诱导等方法,诱导对病原菌的抗性。生物技术创造了越来越多的基因植物,如消除了腐烂基因的耐贮存番茄,抗病虫害长颈南瓜,抗虫害转基因土豆,抗棉铃虫棉花,抗白叶枯病转基因水稻等等。植物细胞工程包括茎尖脱毒、快速繁殖、花药、小抱子培养、染色体工程、单倍体育种、原生质体培养、细胞融合等技术。植物细胞融合技术可克服远缘杂交中的不亲和障碍,更加广泛地组合起多种植物的优良遗传性状,从而培养出理想的植物新品种。脱毒快速繁殖技术在经济作物、花卉、果树上应用效益显著,快速繁殖成功的植物已有四百多种,其中甘蔗、、康乃馨、草萄、兰花等等已投入生产。在作物育种方面,用花药培养和染色体工程育种等技术与常规育种技术结合的方法已培育出许多具有特殊抗性、耐性的优良新品种,利用花药培养技术获得纯合基因型已在小麦、水稻等谷类作物上广泛应用。以原生质体培养再生植株方面,近几年内取得了突飞猛进的进展。一些作物如赤豆、大豆、刀豆、棉花、油菜等重要经济作物已成功地从原生质体再生成植株,特别是一直认为难以培养的禾谷类,如水稻、大麦、小麦、谷子、高粱的原生质体培养都已相继突破。木本植物成功的例子也逐渐增加。药用植物与真菌原生质体培养的进展也十分迅速。以上的成就,为利用原生质体的遗传操作改良农作物打下了坚实的基础。利用原生质体融合获得体细胞杂种,最近又研究出了利用卡那霉素和潮湿链霉素的抗性互补来选择杂种细胞的方法。中国在单倍体研究上一直处于国际领先水平,原生质体培养及细胞融合研究也趋于国际同类研究水平。
2动物遗传工程
动物细胞培养中胚胎移植(ET)技术对提高动物的生产率和繁殖力有重要意义,世界范围内已加以多方面的研究利用。ET技术已在兔、马、猪、牛、羊等动物上相继成功,但只有牛的ET技术达到了非手术利用阶段,所以牛胚胎移植进入商品化,在美国、加拿大、日本等国推广较大。日本已利用ET技术扩繁可提供用于人工授精的种公牛,1992年全日本的奶公牛有8。%以Erf分娩育成。通过ET技术可使母牛分娩双胞胎或多胞胎,这种一胚多产的核移技术在日本已获成功。中国的单克隆抗体研究始于八十年代,至今已研制成功几干种单克隆抗体应用于畜禽疫病。在禽畜的性状选择育种上,采用DNA指纹鉴定技术识别DN段可加速选择过程。微生物工程的微生物农业和微生物开发,部分解决了养殖业的饲料问题。用微生物发酵生产单细胞蛋白饲料,在前苏联年产量约为130万吨,美国年产80万吨;以米糠为基础,添加含杆菌、链球菌、酵母菌等微生物作为饲料添加剂喂养猪、牛、鸡,能够分解禽畜粪中的有害气体,减少环境污染,提高饲料吸收率,提高肉、奶产量。此外,近年来通过生物技术在食用菌的遗传育种学上获得了广泛的重视。通过原生质体培养,用PEG法和电场诱导法为诱导突变体和远缘杂交开辟了一条新的途径,涉及的菇种有香菇、平菇、金针菇、木耳、草菇等。
3生物固氮
菌根菌对植物生育的促进作用近年来逐年受到关注。菌根菌的菌丝可以帮助作物根毛吸收范围更大的土体中的移动速度缓慢的磷酸盐离子和钾离子。VA菌根菌不但可以改善土壤环境,促进作物对养分的吸收,而且对抗御作物的某些土传性真菌病害具有十分重要的作用。VA菌根真菌与根瘤菌双接种对绿豆、蚕豆、花生、大豆等作物具有良好的生长效应。科学家对豆科植物-一根瘤菌共生固氮的研究从经典的生态学、生理学和遗传学研究步入了分子生物学领域。在根瘤菌方面,已确认有结瘤和固氮两个基因组参与完成共生固氮作用。
4生物防治
由于地球环境日益恶化,生物防治植物病虫害的方法受到重视,生物防治包括天敌防治和微生物制剂防治。微生物制剂包括细菌制剂、病毒制剂和真菌制剂。细菌制剂以苏云金杆菌(BT)为主。现在全世界已有60多种BT制剂工业化商品,能有效防治150多种鳞翅目害虫,年产量达8000吨左右。BT杀虫剂与其它微生物农药相比,具有选择性高、混用性强、毒力强、速效、无污染等优点,因而广受欢迎。植物细菌杀菌剂是以放线菌类的链霉菌属为基础制成的,防治菜豆、大豆和其它作物的细菌病害,可使细菌病害感染率下降7%。目前正进行基因筛选组合,以制出广谱新菌种,获得BT基因导入植株中培养出抗病虫植株。利用目前的优良菌种,培育出不产芽抱,只产晶体的高效菌株是正在开发的新技术。病毒生物制剂是以核型多角体病毒(NPV)的颗粒体病毒为基础制成的,目前已生产出防治甘蓝夜蛾、棉铃虫、黄地老虎、美国白蛾等害虫的病毒制剂。真菌生物制剂中有蜡蚁轮枝菌制剂用于防治温室白粉虱;白僵菌制剂防治马铃薯甲虫和温室烟蓟马;座壳抱菌制剂防治黄瓜温室白粉虱;木霉菌制剂防治根腐及其它植物病害;单端抱霉素防治黄瓜白粉病;腔蠢盘抱剂防治白粉病等。随着生物技术的发展,农业对生物技术日见倚重,到2000年,运用生物技术和其它增产措施将占世界粮食增产的5/6,农业中出现的问题最终也将由生物工程来解决。
摘要:生态农业是未来农业发展的方向,农业生物环境工程是发展生态农业的重要手段。本文对生态农业和农业生物环境工程技术的发展状况进行了概括,介绍了农业生物环境工程应用于生态农业的主要模式及其特点,就我国如何发展设施生态农业提出了一些建议。
关键词:农业生物环境工程工厂化设施农业生态农业农业可持续发展
引言
农业的快速发展使农产品的产量大幅度提高,但同时也带来了大量的负面影响。农作物产量的提高以大量化石燃料为代价;过度种植和超载放牧加速了土地资源退化,草场产草、载畜能力逐渐下降,土壤“荒漠化”、“沙化”现象严重;水浇地的农业种植方式加剧了我国水资源的紧缺;大量使用农药导致生态平衡失调和农产品污染超标;大量使用化肥导致水体富营养化甚至形成海水赤潮;集约化畜禽养殖粪便污染严重,导致环境卫生状况低下;水产品养殖造成水体直接污染等。现在人类正越来越多地认识到传统农业生产对农业生态环境破坏与污染问题的严重性,越来越多的专家学者正在提倡和研究大力利用农业生物环境工程,发展高效的设施生态农业。
1 农业生物环境工程的涵义与发展过程
农业生物环境工程是通过工程手段有效地调控动植物生产中的温、光、水、气等环境因素,创造最优的生长发育环境,改变传统农业生产依赖于自然气候条件的被动性,有效避免不利自然条件和自然灾害的影响,摆脱地域和季节的限制,以有限的能源、土地和水资源消耗,达到很高的生产效率,在实现稳定的周年连续生产,供应给市场优质农产品,满足人们生活的需要的同时,最大程度地保护生态环境。
农业生物环境工程在农业技术方面应用广泛,从上世纪50年代开始在发达国家发展起来,并在60多年来的发展过程中大大促进了设施农业的发展,当前世界设施园艺和集约化养殖生产都已具有相当规模,它正以传统农业所未有速率,创造出很高的生产效率和经济效益。
荷兰是世界上设施农业最为发达的国家,其蔬菜出口居世界首位,鲜花出口占全球市场的60%,大部分蔬菜和花卉的生产在温室内进行。目前,荷兰温室建筑面积为1.1亿平方米,占全世界玻璃温室面积的1/4。荷兰政府致力于农业的可持续发展,注重开发与保护相结合,有机生态农业贯穿于整个农业的发展之中,高新技术集成的工厂化农业在荷兰被广泛应用。在栽培上,荷兰温室农业采用基质营养栽培,采用生物病虫防治和使用生物农药来预防病虫害。为了适应水资源严重缺乏的环境,以色列研究发展了一条节水农业之路,经过半个多世纪的发展,以色列已经形成了完整的节水农业体系,研制出世界上最先进的喷灌、滴灌、微喷灌和微滴灌等节水灌溉技术,完全取代了传统的沟渠漫灌方式,实现了农业节水技术的飞跃。
摘 要:在高新科技领域中,生物工程的发展将占据重要的位置,其适用范围也会更加广泛。本文介绍了生物工程在农业资源开发中的应用,和传统农业生产模式相比,基因工程具有独特的优势,并打破传统模式的局限性。利用其优势对新型作物和牲畜品种进行培育,使农业生产得到真正的革新;而细胞工程不仅可以通过细胞融合的方式,生产优良杂种,更增加了工厂育苗快速生长的可能;而形成生态农业和绿色农业时,发酵工程起到重要的作用;在农副产品精加工、深加工中最主要的方式就是酶工程。
关键字:生物工程;农业资源;基因工程
1 基因工程的应用
随着人口的增加,老龄化趋势严重,食品生产成为国家首先要解决的问题,而我国对转基因食物研究的水平,在世界也首屈一指,因此在大田试验和商业化方面,地位仅次于美国和加拿大。特别是我国首创的“转基因杂交水稻”更是得到了专业研究的认可。
基因工程通过相应的技术手段,让动植物按照人的意愿在生长时呈现一些优势。例如:
(1)培养具有抗病虫害、抗逆、抗除草剂的农作物。美国科学家在对这方面进行研究时,尝试将壳质酶基因引入到作物中,最终得到了具有抗真菌病害的转基因植物,并已经培育出具有抗除草剂作用的高粱、小麦和玉米。同样,我国在这方面的领域,利用转基因技术培育具有广谱高抗白叶枯病的转基因杂交稻。
(2)通过转基因技术,还可以培养出具有高营养的食品。随着人们对食物营养的要求越来越高,人类对这类产品的需求也越来越高。现在培养出的食物主要有具有高蛋白的转基因玉米,并且培育出含丰富消化肽的大豆,这类大豆更容易被人体吸收。
(3)除此之外,还利用转基因技术培育出具有保健作用的食品。美国就尝试培育具有高含量抗癌物质的西红柿,以及可以预防心脏病的大豆,这类转基因大豆富含丰富的异黄酮。虽然基因工程在近年来的发展更加广泛,但是对于这种发展仍然有许多学者持有怀疑的态度,认为其安全性并不能得到保证,即使如此,基因工程的应用为农业资源的发展起到重要的作用。
摘要:从高等农业院校生物工程专业人才培养出发,探索了实验课程改革,重点在于实验课程中运用多媒体工具讲解实验技术和原理,将相关实验课程进行整合,从专业层面开设系统的实验课,使各门课程的实验内容和上课时间尽量衔接,共享实验平台资源,重视培养学生的创新能力和团队精神。
关键词:生物工程 实验课程 改革
21 世纪是生命科学和信息科学的时代,高等农业院校作为培养生物工程专业人才的摇篮,应该培养复合型生物工程人才,重视学生的创新能力和团队精神培养,让学生掌握生物工程及其产业化的科学原理,掌握生物化学、分子生物学、微生物学、天然产物提取、发酵工程和酶工程等学科的基本理论知识;掌握微生物育种、微生物细胞大规模培养、微生物发酵产品及其分离纯化的基本技术,具备在农业生物技术领域从事生产管理和产品研发的能力。然而在传统生物工程实验课程体系中,由于缺乏多媒体教学环节,对实验技术和原理的讲解比较困难;各门实验课程相对独立,实验内容往往互不衔接,上课时间不集中,难以形成完整的课程体系;教学以被动的灌输式为主,学生缺乏主动探索精神;课程实验室相对独立,设备重复低端现象严重, 浪费了宝贵的实验资源。因此,开展生物工程专业实验课程体系的改革势在必行。
一、生物工程专业实验课程改革的基本内容
农业院校生物工程专业开设的实验课程主要有:生物化学与分子生物学实验技术、微生物学实验技术、天然产物提取、发酵工程和酶工程实验技术、基因工程实验技术、细胞工程实验技术等,大多以农作物、发酵微生物和中草药作为实验材料。
在教学内容上将不同相关实验课程整合。从专业培养层面统一开设系统的实验项目,将各门课程的实验内容和时间尽量衔接。通过对酶工程、生化及分子生物学实验技术、微生物实验和天然产物提取学等实验课程的调整,统一整合为生物工程专业综合实验,更新实验教学内容,完善实验体系。
在教学方法上加入多媒体教学。传统的实验课程教学主要沿袭黑板讲解、学生操作的模式。这种教学方式信息量小,不够形象生动。通过拍摄实验教学视频,制作多媒体课件教学,能够透彻的讲解实验原理和操作过程,使学生较容易地掌握实验技能。同时将课程内容网络化,以微博、微信、博客、校内网站为主要平台,使课程上网,便于学生随时预习复习、答疑解惑。
在教学资源上尽量共享实验平台资源。将课程实验室统筹安排, 常用设备安排在公共开放房间,方便师生使用,严格避免设备重复采购, 将实验资源主要用于教学效果好的综合实验项目。
水稻是全世界将近一半人口的主粮.据统计目前全球水稻栽培面积约为每年1.62亿公顷[1],其中亚洲最多(1.43亿公顷)占88%,非洲和美洲其次,分别占6.4%和4.4%.绝大部分水稻生产国家为发展中国家,经济发展相对落后,人口密度高而且增长速度快,不少区域还因土壤质量差、肥力贫瘠,基础设施落后,导致自然灾害频发,粮食短缺问题严重.更为严峻的是,世界人口还将继续增长,估计至2050年世界人口将再增加20亿.而水稻主要生产国(除日本)是未来人口增长最快的区域.水稻作为主要粮食作物,持续增产将是这些国家社会和经济发展的先决条件.增加水稻生产可通过两条途径:扩大耕种面积和增加单位面积产量.但随着世界范围的工业化和城镇化发展,耕地面积不但难以扩展,而且不断被占用减少,在我国保护18亿亩耕地红线已经成为基本国策.因此,增加水稻生产,主要只能依靠提高单位面积产量.提高单位面积产量、实现稳产高产一直是农业科技发展的主攻目标,这主要依靠两条措施:品种改良和发展适宜栽培技术.传统育种技术曾经并还在为解决我国及世界的粮食安全问题做出重要贡献,但随着20世纪分子生物学技术的发展,分子育种技术正在发挥越来越巨大的作用,预计可为解决我国和世界未来粮食问题提供最有希望的方法.但无论是分子育种还是现代栽培技术的发展,在追求高产目标的同时都必须兼顾水稻农业的可持续发展.半个多世纪以来,随着水稻单产和总产量的提高,化肥和农药的投入不断增加,生态系统平衡已经受到明显影响.增施化肥导致养分向地表水流失,影响河流和湖泊生态系统,产生富营养化,导致水华爆发.而大量农药投入已经明显影响农田生态系统生物多样性,导致小型动物和有益昆虫的减少或消失.化肥农药引起的生态环境问题已经受到分子育种研究领域的高度重视.近30多年来,国内外转基因生物技术迅速发展,目前抗病虫转基因水稻品种的推广应用已呼之欲出,而养分高效利用的转基因品种也指日可待.可见,现代分子育种技术正在为解决生态环境问题做出巨大努力.但在全球变化背景下,生态环境问题变得异常复杂和严峻,不仅需要考虑化肥农药污染,而且需要考虑温室气体排放.
灌溉水稻田是一类独特的生态系统,在土壤中除了常见微生物如固氮菌和硝化菌外,还存在两类特殊的微生物,即:产甲烷菌和甲烷氧化菌.由于在耕种期间土壤淹水,土壤中的有机物质在产甲烷菌等多种功能微生物作用下发生厌氧降解、形成短链脂肪酸类中间产物、并最终转化为甲烷.甲烷可通过植物通气组织或土-水界面直接排放到大气,成为重要温室气体.最近30年来,稻田甲烷的产生和排放一直是国内外学术界特别是生态环境研究领域的关注焦点.但由于受到多种人为和自然因素的复杂影响,目前对稻田甲烷的排放通量以及对全球变化的贡献仍然存在较大不确定性.尽管如此,在获得高产、保持生态系统良性发展的同时,发展减少温室气体排放的农田管理技术,无疑将有助于促使水稻农业的可持续发展.分子育种技术已经在为农田减肥减药发挥巨大作用,但迄今为止,鲜见在温室气体减排方面的研究.而最近福建农业科学院与瑞典研究人员的合作研究成果代表了这方面的突破[2].植物光合作用是植物生长发育的基础.通过调控光合产物在地上-地下的分配,使更多光合产物向农作物籽实部分输送,是作物育种技术研究的重要目标之一.2003年,瑞典学者在对大麦的研究中发现并分离了一类大麦糖信号转录因子[3],命名为SUSIBA2(即:Sugar-signalinginbarley).该信号系统调控淀粉合成,进而可调控所在组织器官作为光合产物传输的“源”或“汇”功能.Sun[3]等发现SUSIBA2在大麦籽实的高表达,能显著增加籽实淀粉生成量,提高光合产物的汇强度,并相对减少光合产物向其他器官包括根部的转移.最近,他们与福建农业科学院合作,把大麦的SUSIBA2基因转移到水稻基因组,获得了两个纯合子品系SUSIBA2-77与SUSIBA2-80.他们分别在田间和植物生长箱进行比较试验,发现SUSIBA2-77的甲烷排放量只有野生对照组(Nipp)的10%以下.随后,他们在福州、广州和南宁三地(生态环境差异很大)进行SUSIBA2-77与SUSIBA2-80的田间试验,发现SUSIBA2-80与SUSIBA2-77呈现类似的趋势.基因测序结果显示这与HvSUSIBA2的活性有着紧密的联系,而与SUSIBA2基因在水稻基因组的插入位点并无太大关联.为了深入探讨HvSUSIBA2植株甲烷减排的机理,他们采用了三管齐下的方法:定量测定根际产甲烷微生物的变化;观测SUSIBA2植株的表型性状;描述基因型的变化特征.
采用荧光原位杂交和定量PCR分析方法,他们发现产甲烷古菌总量以及主要菌群的丰度在SUSIBA2水稻的根际显著小于Nipp野生型.从表型性状来看,相比野生对照组,SUSIBA2-77的谷粒饱满,稻穗较大,甚至出现下垂,而根系较纤细;地上部分的干重较大,地下部分较小;谷粒的淀粉含量(87%)显著高于野生对照(77%).有意思的是,SUSIBA2基因的转入使得水稻茎秆的淀粉含量也显著增加,而叶子和根部并未出现明显变化.选取糖信号系统相关的基因进行基因表达(转录组和蛋白组)分析,作者进一步证实了SUSIBA2在不同组织器官的表达调控功能.为此,他们提出了SUSIBA2转基因水稻增产减排的雪球效应模型.他们认为SUSIBA2水稻使籽实作为光合产物汇的强度显著增强,当糖浓度随光合作用增加时,SUSIBA2能够提高籽实中糖诱导靶基因的表达活性,增强籽实的光合产物汇强度,并促使籽实从源组织摄取更多的糖.该过程循环往复,最终增加了籽实淀粉含量,形成了更加饱满的谷粒.根部和叶子则由于缺乏SUSIBA2的高表达,光合产物的分配相对较少.总之,转基因水稻使更多的光合同化碳输送到籽实,而向地下的分配显著减少.其结果是根系分泌物降低,土壤中产甲烷有机底物减少,产甲烷微生物的生长和活性受到影响,甲烷的排放显著降低.过去大量研究探索了水稻植物生长、根系分泌物与甲烷排放的关系,研究发现在没有人为添加有机肥或秸秆还田的情况下,稻田甲烷排放量与水稻根系分泌作用呈正向线性关系[4].研究还发现,水稻品种和土壤氮磷养分条件对甲烷排放的影响很大程度上取决于这些因子对根系分泌作用的调控[4-6].
随后,稳定同位素示踪研究表明,水稻根际存在活跃的产甲烷菌群[7],支持了甲烷产生与根系分泌作用直接相关的认识.基于甲烷排放与植物生长及根系分泌作用的关系,研究者曾尝试筛选能满足高产和低甲烷排放的水稻品种[4,8],另有研究表明人为控制水稻分蘖和稻穗数可调控甲烷排放量[9],支持通过优化水稻光合产物分配、提高谷物产量、发展高产低甲烷排放育种技术的研究设想.遗憾的是,迄今为止从未有符合推广应用要求的水稻品种被研发出来.Su等[2]采用生物工程技术,显著推动了这方面的研究发展.Su等的研究代表生物工程技术或分子育种技术为解决水稻农业可持续发展做出的一步重要尝试.尽管这个尝试本身还有一些值得商榷的问题,例如:SUSIBA2转基因是否会影响植株的理想根冠比?谷物和地上部分的光合产物汇强度过高,势必影响根系生长,这或许会降低根系的养分吸收能力和物理支撑能力.因此,通过调控光合产物源-汇关系发展高产低甲烷排放品种,只能在满足理想根冠比情况下才实际可行.但不管怎样,该尝试对于通过学科交叉,开发水稻农业可持续发展的新技术具有重要引导意义.水稻根际微生物调控可能是非常值得下一步思考研究的问题.长期以来,国内外对水稻生物学研究一直非常重视,我国尤其如此.目前已经有3000多株水稻的基因组得到测序[10],这为深入研究水稻与环境相互作用提供了难得的机会.另一方面,水稻土及根际微生物的研究也取得了显著进展.这为水稻分子生物学或生物工程技术与根际微生物研究的交叉发展提供了机遇.越来越多的研究表明,植物种类对根际微生物群落具有选择性,其内在原因或许可追溯到植物和根际微生物基因组的差异.植物和根际微生物可能都拥有编码一些信号分子的基因,用于调控植物与根际微生物的专一性相互作用,豆科植物与根瘤固氮菌之间的信号传递即是一个典型例子.水稻基因组与微生物基因组的研究能否推动水稻-根际微生物专一性相互作用的认识?并通过发展生物工程技术,调控根际微生物的群落结构,实现水稻高产、优质以及生态环境的可持续发展?这将是未来研究的重要挑战.一个理想的水稻-根际微生物相互作用模式可能具有以下一些特征(图1):(1)抑制产甲烷菌,但有利于甲烷氧化菌活动;(2)激发共生或非共生固氮菌;(3)促进有益于根系和植物生长的促生菌;(4)有利于养分高效利用的微生物;(5)抑制病原菌的生长活动.通过生物工程技术,充分挖掘植物-根际微生物相互作用关系,促进水稻生产体系的可持续发展,必将成为未来水稻农业科学的一个重要发展趋势.
作者:徐镱钦 陆雅海 单位:北京大学城市与环境学院
1植物遗传工程目前的植物基因工程可通过生物载体细胞注射、基因枪高速细胞子弹轰击等技术向几乎所有的植物输入外来植物基因。以前导入植物体的外源基因只限于外源报告标记基因,抗卡那霉素和抗潮湿链霉素基因。最近已导人了BUR等抗除草剂基因、镶嵌病毒外壳基因、鸡蛋蛋白基因、豆血红蛋白基因和谷酞胺酶合成基因。此外,抗病、抗虫基因的导入也有所报道,对于控制单宁合成的酶基因已被克隆。
目前关于植物—病原物相互关系的分子生物学研究主要着眼于病原物基因工程,即从病原菌中或植物本身克隆制备出致病基因与调节基因,以及获得病原物的特异性DN段用于病原分类及病害检测。
自1986年首次获得能抗烟草花叶病毒的转基因烟草植株后,目前已利用基因工程获得许多抗病毒植株,如抗花叶病毒首楷,抗花叶病毒黄瓜,抗X病毒和Y病毒马铃薯等。生物诱导广泛应用于植物对真菌、病毒及类病毒、细菌等病原物抗性的诱导,在烟草、黄瓜、西瓜、甜菜、马铃薯、小麦、苹果、番茄、棉花、水稻等诸多植物中已见报道。
生物诱导包括:用非病原菌诱导,用异种病原菌诱导,用弱致病力菌株诱导,用热杀死的病原菌诱导等方法,诱导对病原菌的抗性。生物技术创造了越来越多的基因植物,如消除了腐烂基因的耐贮存番茄,抗病虫害长颈南瓜,抗虫害转基因土豆,抗棉铃虫棉花,抗白叶枯病转基因水稻等等。植物细胞工程包括茎尖脱毒、快速繁殖、花药、小抱子培养、染色体工程、单倍体育种、原生质体培养、细胞融合等技术。植物细胞融合技术可克服远缘杂交中的不亲和障碍,更加广泛地组合起多种植物的优良遗传性状,从而培养出理想的植物新品种。脱毒快速繁殖技术在经济作物、花卉、果树上应用效益显著,快速繁殖成功的植物已有四百多种,其中甘蔗、、康乃馨、草萄、兰花等等已投入生产。
在作物育种方面,用花药培养和染色体工程育种等技术与常规育种技术结合的方法已培育出许多具有特殊抗性、耐性的优良新品种,利用花药培养技术获得纯合基因型已在小麦、水稻等谷类作物上广泛应用。
以原生质体培养再生植株方面,近几年内取得了突飞猛进的进展。一些作物如赤豆、大豆、刀豆、棉花、油菜等重要经济作物已成功地从原生质体再生成植株,特别是一直认为难以培养的禾谷类,如水稻、大麦、小麦、谷子、高粱的原生质体培养都已相继突破。木本植物成功的例子也逐渐增加。药用植物与真菌原生质体培养的进展也十分迅速。以上的成就,为利用原生质体的遗传操作改良农作物打下了坚实的基础。
利用原生质体融合获得体细胞杂种,最近又研究出了利用卡那霉素和潮湿链霉素的抗性互补来选择杂种细胞的方法。中国在单倍体研究上一直处于国际领先水平,原生质体培养及细胞融合研究也趋于国际同类研究水平。
2动物遗传工程
12月6日,为更好地推动农业生物技术的科普宣传工作,中国生物工程学会在海南省三亚市举办了农业生物技术科普宣传专家座谈会,邀请农业生物技术领域重要科学家和一线科研人员、管理专家到会,就转基因技术及其产业化进程中的机遇和挑战、科学传播对于转基因技术发展的重要意义、农业生物技术科学家的社会责任、科学家与媒体的沟通策略等内容座谈研讨。本次座谈会还是中国生物工程学会开展中国科协会员日系列活动的一个重要组成部分。
来自农业部科技发展中心、中国科学院遗传与发育生物学研究所、中国疾病预防控制中心、中国农业科学院、中国热带农业科学院、中国农业大学、华中农业大学、上海交通大学、海南大学、山西省农业科学院、中种集团、大北农集团以及中国植物生理与分子生物学会、中国植物保护学会和中国生物工程学会的30位专家参加了本次座谈会。
座谈会上,专家们表示,转基因科普宣传工作要争取主动,形成合力。要发挥好相关学会、科研院校、有关企业以及专家团体的优势,组建一支由一线科学家和科普专家组成的骨干队伍,进一步动员科技人员积极承担科普宣传的责任。提出以倡议的方式尽快成立农业生物技术科普宣传专家联合组织,以国家有关科技创新、促进生物技术发展的政策方针为指引,争取有关政府部门和中国科协和指导与支持,发挥好相关学会、科研院校和企业科技专家的集体优势,共同促进农业生物技术发展与产业化。
会议还讨论了拟成立的科普宣传专家联系组织的将要开展的工作,包括介绍农业生物技术基础知识和国内外发展动态、转基因安全管理与评价体系与进展、转基因新品种重大专项研究成果等重要信息;宣传农业生物技术发展的必要性、科学性、可行性和紧迫性,重点针对转基因食品与环境安全问题为公众解疑释惑;建立专门的科学传播信息网络平台,加强信息共享与交流合作,提高科普宣传的组织性、主动性、计划性和时效性;广泛联系和动员科研人员、教师、研究生以及广大志愿者等各方力量,针对社会不同人群,开展形式多样、生动活泼的科学传播活动;扩大科技界与新闻界的交流与互动,积极主动应对舆情,为生物技术发展创造良好的条件和氛围。(责任编辑:尹莉华)
(来源:中国生物工程学会供稿)
[摘 要]作为直接为农业生产及农业科学领域输送高技术人才的培养基地,高等农业学府在对学生的创业素质教育中应充分利用有限的教育资源去发展和培养农业人才。这不仅符合农学生物学类高等教育的发展方向,而且也能够同社会发展一道与时俱进。依据现代教育教学理论,以培养农学生物学类学生的自我创业能力和高尚品格为目的,对高等农业院校生物工程教学中如何转变教学观念、优化教学环境、优化课堂教学、发挥实验教学作用、全面深入开展课外实践活动及生产实习等方面来进行创业素质教育作出初步研究和探讨。
[关键词]高等农业院校 生物工程教学 创业素质教育
[中图分类号] G642.0 [文献标识码] A [文章编号] 2095-3437(2015)01-0037-03
随着社会主义市场经济体制的逐步完善,在校大学生规模及毕业生规模大幅度增长,大学生就业竞争日趋激烈。面对竞争如此激烈的就业市场,高等农业院校的毕业生一方面缺乏学科优势,另一方面面对的职业选择、就业岗位又主要是“三农”,如果没有充分的思想准备和能力准备,学生毕业就意味着失业,即使勉强就业了,也是改行或是从事简单的事务性工作。
高等农业教育的现状与其使命的完成之间相距甚远,其发展形势出现了严重的滑坡,其中的根本原因是教育目标滞后于社会发展,忽视对学生进行创业素质教育。创业素质教育是指以开发和提高学生的创业素质,培养具有开拓型个性的人才为目的的教育。[1]高等农业院校必须改革传统教育观,加强对在校生的创业素质教育,使他们在农业领域创造适合自己专业特长的就业机会,开创属于自己的新天地。这样不仅可以为毕业生就业开辟新的、更广阔的渠道,而且还可以使高等农业教育走出困境,在经济生活中发挥其应有的作用,促进国民经济的发展。
一、进行创业素质教育的重要意义
首先,创业素质教育的开展顺应了中国乃至世界经济发展的潮流。相比于七八十年代农业院校对技术人才的着重培养,现今的农业高等学府在培养学生专业技能的同时更应注重对学生自主创业能力的培养。要知道,一味追求学生的就业择业问题并不能从根本上解决农业经济问题。农业院校只有不断地发掘学生的创新能力,树立学生的竞争意识,培养学生自主创业能力,才能在中国未来的经济发展蓝图上添上精彩的一笔。
其次,进行创业素质教育是落实全面素质教育的基础。[2]在21世纪的今天,农业高等学府的素质教育不仅仅是提高学生的文化、技能与品德修养。客观地讲,对于学生创业能力的培养在国内经济发展趋于缓慢及全球经济发展失衡的今天已变得更为重要。培养创业型人才,不仅能使毕业生具有就业能力,具有创业才能,还能为祖国输送大批全方位的人才。
为响应国务院“生物产业发展规划”和“现代农作物种业发展规划”的,推动我国转基因生物新品种培育重大科技专项研究和产业化进程,中国生物工程学会、中国植物生理与分子生物学学会、中国作物学会、中国植物保护学会和中国农业生物技术学会于2013年2月28日在北京举办了 “农作物生物育种产业化高峰论坛”(以下简称“论坛”)。我国农业生物技术领域的著名专家许智宏院士、范云六院士、戴景瑞院士、李宁院士等到会,来自相关管理部门、科研院校、种子企业的专家和科技人员共200多人参加了本次高峰论坛。国际农业生物技术应用服务组织主席Clive James博士、农业部种子管理局廖西元副局长、中国农业科学院作物科学研究所所长万建民教授、中国科学院农业政策研究中心主任黄季焜研究员分别就国内外转基因农作物研究与产业发展现状与趋势、育种新时代的种业科技创新、生物育种对农业宏观经济的影响等重要专题做了特邀报告。
论坛主席许智宏院士在主旨演讲中强调了发展生物技术对国家粮食安全和经济发展的重大意义,指出了当前我国面对的时代机遇和挑战。为了加快推进以转基因技术为核心的农业生物育种产业化,他号召科技工作者要大力弘扬科学精神、加强科学知识的普及和宣传。
专家报告显示,2012年全球转基因作物总种植面积较上年又有大幅度增长,已达到1.703亿公顷(折合25.55亿亩,为我国耕地面积的1.4倍)。与产业发展之初的1996年相比,17年间面积增长了100倍。目前全世界生产的81%的大豆、81%的棉花、35%的玉米、30%的油菜都是转基因品种。除了28个国家批准种植转基因作物以外,还有30个国家批准进口转基因产品用于食品和饲料加工,相关区域的人口约占世界总人口的四分之三以上。农业生物技术已成为世界新技术革命的重要组成部分,大势所趋,不可逆转。
作为16个国家重大科技专项之一,“转基因生物新品种培育”重大专项实施5年以来,我国生物育种自主创新能力和水平有了全面和显著提高,进展令人瞩目。我国已发掘了具有自主知识产权的抗病虫、抗除草剂、优质、抗逆等重要功能基因,棉花、玉米、水稻等农作物生物育种基础研究和应用研究已形成了自己的特色与优势,并已拥有一批达到国际先进水平、具有产业发展潜力的创新性成果。此外,我国农作物种业发展也步入了体制、机制和科技创新的新阶段。
有关专家在报告中还指出,转基因技术在我国正处于产业化发展的关键时期,由于受到诸多因素的影响,我国近年农业生物育种产业化进程有所减缓。随着全球经济一体化进程不断加快和生物技术迅猛发展,农作物生物育种国际竞争更加激烈,推进现代种业发展,加强种业科技创新,加快优良品种的培育和推广,已成为突破我国耕地和水等资源约束、发展现代农业、保障粮食安全及农产品有效供给、提升农业国际竞争力的迫切需要。
为了推进农作物生物育种产业化,有关专家提出要加大重大专项实施力度,积极推进重大成果产业化;研究借鉴国外种业研发管理模式,加快实现我国种业科技创新;加强科学传播,为生物育种发展创造良好氛围等多项重要建议。
高峰论坛上,研究人员、研究生和到访的媒体记者都踊跃提问和发表看法,气氛热烈,互动充分。会后不少代表反映,本次论坛层次高、代表性广泛,大会组织有序,参会收获很大。本次高峰论坛对农业生物育种产业化进程中多方面、深层次的问题进行了探讨,使与会专家和代表获得了许多重要信息。
这次是会议也是相关领域学会联合开展学术交流的一次有益尝试,有望对农业生物育种产业化的发展起到积极的推动作用。同时,本次论坛也显示出,通过学会联合,有效地集聚专家和科技社团的力量,从而更好地推动学术交流、科学传播以及促进产业发展。(来源:中国生物工程学会)