首页 > 文章中心 > 纳米复合材料

纳米复合材料范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

纳米复合材料的探讨

摘要:综述了纳米复合材料的性能、特点、制备技术以及应用领域的现状,指出了纳米复合材料作为一种新型的纳米材料进行研究和开发的重要意义。

关键词:纳米复合材料;特性;制备技术;应用

1 引言

“纳米复合材料”的提出是在20 世纪80 年代末期,由于纳米复合材料种类繁多以及纳米相复合粒子具有独特的性能,使其一出现即为世界各国科研工作者所关注,并看好它的应用前景。根据国际标准化组织的定义,复合材料就是由2种或2种以上物理和化学性质不同的物质组合而成的一种多相固态材料。在复合材料中,通常有一种为连续相的基体和分散相的增强材料。由于纳米复合材料各组分间性能“取长补短”,充分弥补了单一材料的缺点和不足,产生了单一材料所不具备的新性能,开创了材料设计方面的新局面,因此研究纳米复合粒子的制备技术有着重要的意义。

纳米复合材料由2种或2种以上的固相[其中至少有一维为纳米级大小(1 nm~100 nm) ]复合而成。纳米复合材料也可以是指分散相尺寸有一维小于100 nm的复合材料,分散相的组成可以是有机化合物,也可以是无机化合物。本文在文献的基础上,针对纳米复合材料的主要性能与特点、制备技术、主要应用及应用前景等作了比较详细的介绍和展望。

2纳米复合材料的性能与特点

2. 1纳米复合材料的基本性能

纳米复合材料在基本性能上具有普通复合材料所具有的共同特点:

全文阅读

纳米金刚石纳米复合材料性能研究

摘要:制备了环氧树脂/纳米金刚石纳米复合材料,研究了纳米金刚石对复合材料力学性能和热性能的影响。研究结果表明,随纳米金刚石含量的增加复合材料的力学性能呈现先增加后降低的趋势。当添加0.4%的纳米金刚石时,复合材料的拉伸强度和弯曲强度比纯环氧树脂分别提高了51.9%和52.5%,冲击强度为纯环氧树脂的1.9倍。复合材料的热稳定性能随着纳米金刚石含量的增加而提高,玻璃化转变温度随着纳米金刚石含量的增加而降低。利用SEM对复合材料增韧增强机理进行了探讨。

关键词:纳米金刚石,环氧树脂,复合材料,制备,性能

环氧树脂是一种重要的热固性树脂,具有优异的机械性能、电绝缘性能和粘接性能,加工性能好,可应用在电子封装、胶黏剂、涂料等领域。但是环氧树脂固化后存在不耐冲击和应力开裂的缺点[1-2]。因此,增韧改性一直是环氧树脂领域研究的热点[3-4]。目前环氧树脂增韧常用的方法主要有弹性体增韧、IPN互穿网络聚合物增韧、核壳结构聚合物增韧、纳米粒子等方法[5-7]。纳米金刚石(Nanodiamond,ND)由于其独特的结构和物理化学特性被广泛地应用于、抗磨损、复合材料、药物传递等领域[8-10]。纳米金刚石是一种理想的纳米增强增韧材料,本文利用机械共混法制备一种新型的环氧树脂/纳米金刚石纳米复合材料,系统地研究了纳米金刚石对环氧树脂结构和性能的影响。

1实验部分

1.1原料与试剂纳米金刚石(直径5nm~10nm,纯度≥97%),南京先丰纳米材料科技有限公司;双酚A型环氧树脂(DGEBA),工业级,中国台湾南亚树脂有限公司,环氧值为0.51mol/100g;聚醚胺(JeffamineD-230),工业级,活泼氢当量60g•mol-1,美国亨斯迈公司。1.2环氧树脂/纳米金刚石纳米复合材料的制备室温下,将纳米金刚石、环氧树脂按比例混合,利用SF0.4砂磨分散搅拌多用机混合分散2h,再加入固化剂JeffamineD-230继续分散20min,其中环氧树脂和固化剂的质量比为100∶32,抽真空除去气泡后倒入硅橡胶模具中室温固化24h。1.3测试与表征拉伸性能和弯曲性能分别根据ASTM3039和ASTMD790采用台湾高铁公司的GOTECHAI-700M型万能材料试验机测定。无缺口冲击强度根据ASTMD256-88采用台湾高铁公司的GO-TECHGT-7045-MDL型冲击试验机测定。TGA测试采用德国耐驰公司的TGA209F3型热重分析仪测定,升温速率20℃/min,温度范围40℃~600℃,在氮气气氛下进行测试。DMA测试采用美国TA公司的Q800动态热机械分析仪测定,采用单悬臂模式,升温速率10℃/min,测试温度范围为30℃~200℃,样条尺寸10mm×4mm×30mm,频率为1Hz。复合材料冲击断面的相貌经过喷金处理后在日立公司SU8010型扫描电子显微镜上观察。

2结果与讨论

2.1环氧树脂/纳米金刚石纳米复合材料的力学性能表1是不同纳米金刚石含量时环氧树脂纳米复合材料的力学性能。从表1中可知,复合材料的纳米金刚石含量(质量分数)低于0.4%时,拉伸强度随着其用量的增加而增加,超过0.4%后复合材料的拉伸强度有所下降,这是由于部分纳米金刚石发生了团聚。纳米金刚石用量为0.4%时,复合材料的拉伸强度为67.6MPa,比纯环氧树脂提高了51.9%。随着纳米金刚石用量的进一步增加,复合材料的拉伸强度有所降低,复合材料的弯曲强度和弯曲模量在纳米金刚石含量为0.4%时达到最高值,分别为58.19MPa和1.29GPa,但随着纳米金刚石用量的进一步增加,复合材料的弯曲强度和弯曲模量逐渐降低。从表1中还可以看出,添加纳米金刚石后,复合材料的冲击强度明显提高,随着纳米金刚石用量的增加先增加后降低,在添加量为0.4%时达到最大值为17.26kJ•m-2,是纯环氧树脂的1.9倍。在复合材料受到外力作用时,纳米金刚石在环氧树脂基体内产生很多的微变形区,能够较好地传递载荷,同时纳米金刚石粒子之间的基体产生塑性变形,从而起到良好的增韧效果。当纳米金刚石添加量超过一定比例后容易团聚,产生的塑性变形太大,容易发展成为宏观应力开裂,因此导致复合材料的冲击性能下降。图1是环氧树脂/纳米金刚石纳米复合材料的TGA曲线,表2为复合材料的TGA分析数据。从图1和表2中可以看出,随着纳米金刚石用量的增加复合材料的热稳定性逐渐提高。添加0.5%的纳米金刚石,复合材料的残炭率(600℃)由纯环氧树脂的1.88%提高到3.51%。这是因为高温阶段纳米金刚石形成一层炭层,对环氧树脂起到了保护作用,延缓了环氧树脂的热降解[11]。图2是环氧树脂/纳米金刚石纳米复合材料的DMA曲线。从图中可以看出,添加纳米金刚石后复合材料的储能模量比纯环氧树脂明显提高,且随着填料含量增加而逐渐升高,这是由于纳米金刚石具有高的强度和硬度,对环氧树脂具有较好的增强作用。从图2中还可以看出,纳米金刚石的加入明显降低了复合材料的玻璃化转变温度(Tg)。这是由于纳米金刚石加入后破坏了环氧树脂的交联网络结构,降低其交联密度,因此复合材料的玻璃化转变温度降低[12]。2.4环氧树脂/纳米金刚石纳米复合材料的形貌分析图3是环氧树脂/纳米金刚石复合材料冲击断面的SEM谱图。如图3a所示,纯环氧树脂的冲击断面平整光滑,是脆性断裂。如图3b、图3c所示,添加纳米金刚石后复合材料的断裂面明显变得粗糙,是韧性断裂。从图3d中还可以看到,纳米金刚石能够在环氧树脂基体中均匀分散,并且与树脂基体之间的界面比较模糊。纳米金刚石的加入使得环氧树脂试样断裂面的裂纹呈无序分布,在复合材料受到冲击时载荷能够通过界面有效传递到纳米金刚石,阻止微裂纹的宏观扩展,因此环氧树脂的强度和韧性得到了提高。a:纯环氧树脂;b:0.1%ND;c

3结论

全文阅读

碳纳米管纳米复合材料现状与发展

摘 要:碳纳米管从物理和化学方面都具有独特性,它的应用范围广泛,从汽车防护零件到修饰电机,从氢气的储存到微波吸收等等,都得到了广泛的应用。所以碳纳米管的发现是材料学,工程制备的一个优秀成果。本文从碳纳米管的发现,到对它的简介,特性的应用以及目前存在的一些亟需解决的问题进行了阐述。并提出了对它未来发展的建议和展望。

关键词:碳纳米管;制备应用;特性;微波吸收

中图分类号:TB393 文献标识码:A 文章编号:1674-7712 (2013) 10-0031-01

一、发现与初步特性研究

碳纳米管是在1991年由日本科学家发现并做出了报道。是在实验中用高倍的隧道显微镜意外观察到的,由于全部由碳原子形成,而且是石墨按一定形式叠合组成,所以称它为碳纳米管。经过进一步的细致研究,发现碳纳米管表面扩张的强度好,可耐2000多度以上的高温,并且导热性能快,导热率高,电负载能力远远超过铁铜等普通金属。所有这些特性,让碳纳米管具备了进行加工,变成适合实际应用的复合材料的条件。按目前的划分,主要把碳纳米管制备成结构和功能量大复合材料类型。碳纳米管的初步特性:它具备了优越的导电性能,这些性能与碳纳米管自身的特殊形成结构有着密切的关系。从碳纳米管的自身形成结构来讲,碳纳米管和石墨的片层结构可以说是基本相同的,众所周之,石墨具备优越的电学性能,因此它也具备了优越的电学性能。经过研究初步认为它的导电性能与自身的管径和他的管壁形成螺旋角度有关。如果管径大于6毫米的情况下,导电性能会大幅度的下降;相反的,如果小于这一临界数值,就可以具备一维量子导线的优越导电性。碳纳米管在力学方面也有自身的特点,尤其表现在抗扩展性方面,在强度和韧性方面性能突出。从机构来分析碳纳米管碳原子之间的距离很短、自身管径较小,结构自身就具有优越性,铜金属要远远逊色于碳纳米管。所以它在符合材料方面的发展不可限量。

二、碳纳米管实现应用的制备过程

碳纳米管如果想完场大批量的工业等方面的应用,一定要先实现低成本情况下大量的制备。碳纳米发现以后,如何制备它并且采取何种工艺是人们研究的热点。可以说在制备方法上,有许多成功的案例。它们互有优劣。下面列举几个常见方法,加以说明。早期的床催化裂解法工艺相对简单,经济成本较低,可以体现碳纳米管的物理特点。但它也有不足,催化剂与碳纳米管的接触不足,催化剂不能高效工作,产量低,不适合大批量生产。因此对设备进行了相应改进,采用沸腾床,加大接触面积,让催化剂不断实现颗粒的运动状态,提高了催化剂的效率,增加了碳纳米管的产量。直到现今设备的优化仍在不断进行。常用的还有利用机械力和磁力搅拌实现分离出碳纳米管的溶液共混复合法。目的是让碳纳米管均匀分散在聚合物溶液中,再将多余的溶剂除去后即可获得聚合物/碳纳米管复合材料。这种方法的优点是操作简单、方便快捷,常常用于制备膜类材料,比如,树脂类符合材料,烯类等符合材料。利用转子实现剪切力量从而制备碳纳米管的方法熔融共混复合法:是可以避免溶剂或表面活性剂对复合材料的污染,复合物没有发现断裂和破损,但仅适用于耐高温、不易分解的聚合物中同时还有将碳纳米管分散在聚合物单体,加入引发剂,引发单体原位聚合生成高分子,得到聚合物/碳纳米管复合材料。这种方法被认为是提高碳纳米管分散及加强其与聚合物基体相互作用的最行之有效的方法。以上各种方法,优势明显但也存在这不足。适合根据生产制备材料的分类进行选取,也适合对制备的设备进行优化,来进一步提升碳纳米管的制备效率。

三、目前碳纳米管的应用范围

全文阅读

纳米复合材料生物相容

【摘要】目的通过体内、体外实验,对纳米羟基磷石复合40%二氧化锆材料进行早期生物相容性评价。方法按照国家标准GB/T16886医疗器械生物学评价标准的要求,同时报据纳米羟基磷灰石复合40%二氧化锆材料的特定用途,选取样本进行如下生物学实验:致敏试验,溶血试验,刺激试验,肌肉植入试验。结论经体内和体外试验结果显示:纳米羟基磷灰石复合40%二氧化锆材料无致敏、无刺激、无变形,具有良好的血液及生物相容性。

【关键词】纳米羟基磷灰石二氧化锆生物相容性

由于创伤、感染、肿瘤以及先天性缺损等原因所致骨缺损在临床十分常见,传统修复骨缺损的方法:如自体骨移植,同种异体骨移植。自体骨取骨量有限,同时取自体骨痛苦大、后遗症多、异体骨又有排异反应。论文百事通而人工合成的骨移植材料在一定程度上可以达到自体骨和异体骨修复的效果,又可以避免疾病感染和骨源有限等弊端[1]。纳米羟基磷灰石与人体骨骼主要无机成分相似的化学组成和晶体结构,它具有良好的生物相容性,对人体无毒,又能够在植入人体后同骨表面形成很强的化学键结合,有利于骨的长入[2]。然而它的脆性大、韧性较差、容易发生断裂破坏,二氧化锆陶瓷是一种生物惰性陶瓷,具有良好的生物相容性、较高的弯曲强度、断裂韧性和较低的弹性模量。正是由于二氧化锆具有增韧补强的作用,有效的改善纳米羟基磷灰石的力学性能[3]。因此,纳米羟基磷灰石复合40%二氧化锆陶瓷材料,兼具材料生物活性、骨诱导性以及材料力学特性,成为用于承载部位骨缺损修复具有广泛前景的新兴材料。

一、实验方法

(一)致敏试验

取豚鼠30只,雌雄各半,体重300—500g,随机分为三组,实验组、阴性对照组和阳性对照组各10只。实验样品的生理盐水浸提液,5%甲醛溶液作为阳性对照,生理盐水作为阴性对照[4]。

(二)刺激试验

选用新西兰白兔,每组3只,雌雄各半随机分3组,体重2.5kg-3.0kg。HA/40%ZrO2浸提液,阴性对照:生理盐水,阳性对照为3%甲醛溶液。在脊柱左侧取一去毛区,标记5个点,常规麻醉消毒用1ml注射器试验组于5个点每点注射0.1ml的浸提液,阴性对照组每点注射0.1ml的生理盐水,阳性对照组每点注射01.ml的甲醛溶液。

全文阅读

碳纳米管纳米复合材料的研究现状及问题

[摘 要]文章介绍了碳纳米管的结构和性能,综述了碳纳米管/聚合物复合材料的制备方法及其聚合物结构复合材料和聚合物功能复合材料中的应用研究情况,在此基础上,分析了碳纳米管在复合材料制备过程中的纯化、分散、损伤和界面等问题,并展望了今后碳纳米管/聚合物复合材料的发展趋势。

[关键词]碳纳米管;复合材料;结构;性能

自从 1991 年日本筑波 NEC 实验室的物理学家饭岛澄男(Sumio Iijima)[1]首次报道了碳纳米管以来,其独特的原子结构与性能引起了科学工作者的极大兴趣。按石墨层数的不同碳纳米管可以 分 为单壁碳 纳 米管(SWNTs) 和多壁碳 纳 米管(MWNTs)。碳纳米管具有极高的比表面积、力学性能(碳纳米管理论上的轴向弹性模量与抗张强度分别为 1~2 TPa 和 200Gpa)、卓越的热性能与电性能(碳纳米管在真空下的耐热温度可达 2800 ℃,导热率是金刚石的 2 倍,电子载流容量是铜导线的 1000 倍)[2-7]。碳纳米管的这些特性使其在复合材料领域成为理想的填料。聚合物容易加工并可制造成结构复杂的构件,采用传统的加工方法即可将聚合物/碳纳米管复合材料加工及制造成结构复杂的构件,并且在加工过程中不会破坏碳纳米管的结构,从而降低生产成本。因此,聚合物/碳纳米管复合材料被广泛地研究。

根据不同的应用目的,聚合物/碳纳米管复合材料可相应地分为结构复合材料和功能复合材料两大类。近几年,人们已经制备了各种各样的聚合物/碳纳米管复合材料,并对所制备的复合材料的力学性能、电性能、热性能、光性能等其它各种性能进行了广泛地研究,对这些研究结果分析表明:聚合物/碳纳米管复合材料的性能取决于多种因素,如碳纳米管的类型(单壁碳纳米管或多壁碳纳米管),形态和结构(直径、长度和手性)等。文章主要对聚合物/碳纳米管复合材料的研究现状进行综述,并对其所面临的挑战进行讨论。

1 聚合物/碳纳米管复合材料的制备

聚合物/碳纳米管复合材料的制备方法主要有三种:液相共混、固相共融和原位聚合方法,其中以共混法较为普遍。

1.1 溶液共混复合法

溶液法是利用机械搅拌、磁力搅拌或高能超声将团聚的碳纳米管剥离开来,均匀分散在聚合物溶液中,再将多余的溶剂除去后即可获得聚合物/碳纳米管复合材料。这种方法的优点是操作简单、方便快捷,主要用来制备膜材料。Xu et al[8]和Lau et al.[9]采用这种方法制备了CNT/环氧树脂复合材料,并报道了复合材料的性能。除了环氧树脂,其它聚合物(如聚苯乙烯、聚乙烯醇和聚氯乙烯等)也可采用这种方法制备复合材料。

全文阅读

纳米复合材料的发展现状及展望

摘 要 从纳米技术的角度论述了非金属粘土矿物——蒙脱石制备聚合物基纳米复合材料的发展现状和发展前景,并预测了聚苯乙烯纳米复合材料可能发展的新领域。

关键词 蒙脱石;纳米复合材料;非金属粘土矿物

中图分类号:TQ327.7 文献标识码:A 文章编号:1671-7597(2013)15-0017-01

纳米是长度单位(Nanometer,nm),原称“毫微米”,1 nm=10-9 m,即十亿分之一米,一只乒乓球放在地球上就相当于将一纳米直径的小球放在一只乒乓球上。纳米粒子通常是指尺寸在1 nm~100 nm之间的粒子。纳米效应为实际应用开拓了广泛的新领域。利用纳米粒子的熔点低,可采取粉末冶金的新工艺。调节颗粒的尺寸,可制造具有一定频宽的微波吸收纳米材料,用于电磁波屏蔽、隐形飞机等。纳米银与普通银的性质完全不同,普通银为导体,而粒径小于20 nm的纳米银却是绝缘体。金属铂是银白色金属,俗称白金;而纳米级金属铂是黑色的,俗称为铂黑。纳米粒子具有很高的活性,例如木屑、面粉、纤维等粒子若小到纳米级的范围时,一遇火种极易引起爆炸。纳米粒子是热力学不稳定系统,易于自发地凝聚以降低其表面能,因此对已制备好的纳米粒子,如果久置则需设法保护,例如保存在惰性空气中或其他稳定的介质中以防止凝聚。

纳米材料是物质以纳米结构按一定方式组装成的体系。它是纳米科技发展的重要基础,也是纳米科技最为重要的研究对象。纳米技术被公认为21世纪最具有发展前途的科学之一,纳米材料也被人们誉为21世纪最有前途的材料。由于纳米材料本身所具有的特殊性能,使其能够广泛应用于化工、纺织、军事、医学等各个领域。本文阐述了蒙脱石/高聚物纳米复合材料的研究进展,并对其发展前景加以展望,期望对其深层次的加工应用有所帮助。

1 纳米材料的分类

纳米材料有多种分类方式,按其维数可分为:零维的纳米颗粒和原子团簇,一维的纳米线、纳米棒和纳米管,二维的纳米膜、纳米涂层和超晶格等;按化学成分可分为:纳米金属,纳米晶体,纳米陶瓷,纳米玻璃以及纳米高分子等;按材料物性可分为:纳米半导体材料,纳米磁性材料,纳米非线性光学材料,纳米铁磁体材料,纳米超导体材料,以及纳米热电材料等;按应用可分为:纳米电子材料,纳米光电子材料,纳米生物医用材料,纳米敏感材料,以及纳米储能材料等;按照材料的几何形状特征,可以把纳米材料分为:①纳米颗粒与粉体;②碳纳米管与一维纳米线;③纳米带材;④纳米薄膜;⑤中孔材料(如多孔碳、分子筛);⑥纳米结构材料;⑦有机分子材料。

2 纳米矿物资源的研究意义

全文阅读

纳米复合材料的探索及应用

摘要:纳米颗粒在塑料中的应用潜力很大,因为只要添加很少量纳米填料就可起到添加大量的其它助剂更好的作用。最近的数百篇有关纳米材料的论文表明,在改善塑料的机械性能、阻隔性能、阻燃性能和导电性能方面,纳米材料的研究和应用取得了令人兴奋的进展。

关键词:纳米复合材料;纳米粘土;碳纳米管;纳米石墨片;阻隔性;阻燃性

[中图分类号]TQ323.6[文献识别码]A[文章编号]

纳米复合材料的发展还处于成长期,据预测,在未来几十年内,它们将被证明是改变塑料工业面貌的最强有力的事物。只要通过熔融共混或原位聚合在聚合物中添加2%~5%的纳米颗粒,复合材料的热-机械性能、阻隔性能和阻燃性能将会得到戏剧性的提高。在提高耐热性、尺寸稳定性、导电性方面,它们也能超越普通填料和纤维填料。

纳米尺度的增强塑料在汽车和包装业已经市场化,尽管利润不是太高,发展速度也比预期的慢。但是就像热心的研究人员和商业界人土在最近发表的多篇论文所指出的,纳米复合材料的发展步伐将大大加快[1-3]。

美国商业通讯有限公司(BCC)的市场调查报告指出,在2003年,世界市场上的聚合物纳米复合材料的总产量为二千四百五十万镑,价值九千余万美元。BCC还指出,纳米复合材料的市场年增长率将会达到18.4%,到2008年产值将会达到两亿多美元。

在研究开发和实际应用中处于领先地位的纳米填料是纳米粘土、纳米滑石、碳纳米管和石墨片。但是其它如合成粘土、多面体低聚硅倍半氧烷(POSS)、以及像亚麻和苎麻之类的天然纤维也在被积极地开发。

1.最常用的纳米填料

全文阅读

PP/纳米MgO复合材料的性能研究

1实验部分

1.1主要原料

PP(Z30S-2,熔体流动速率为23g/10min,等规度≥95%),抚顺乙烯化工公司;纳米MgO(平均粒径为50nm,纯度为99.9%),上海谱振生物科技公司。

1.2主要设备

双螺杆挤出机组(SHJ-20B型),南京海思挤出设备公司;注塑机(HTB-80型),宁波海天塑料机械公司;紫外可见光谱仪(LAMBDA35型),美国PE公司;冲击实验机(XJJ-5型),河北承德实验机公司;电子拉力实验机(RGD-5),深圳瑞格尔仪器公司;扫描电镜(SEM,SIRION200型),荷兰FEI公司;同步热分析仪(TGA-DSC1型),瑞士梅特勒-托利多公司。

1.3样品制备

将PP与纳米MgO按一定比例混合均匀,在双螺杆挤出机上熔融共混挤出造粒制得PP/纳米MgO复合材料。共混粒料干燥后,在注塑机上注射成标准测试用样条。

1.4测试与表征

全文阅读

碳纳米管增强铜基复合材料性能研究

摘 要 采用球磨混料工艺,真空热压法烧结方法制备了碳纳米管/Cu复合材料,研究了该纳米复合材料组织与性能之间的关系,分析碳纳米管对Cu基复合材料组织和性能的影响规律。结果表明:随着复合材料碳纳米管含量的增加,复合材料的孔隙增多,复合材料的硬度和相对密度逐渐下降。

关键词 碳纳米管/铜基复合材料;制备工艺;显微组织

中图分类号:TB33 文献标识码:A 文章编号:1671-7597(2013)13-0050-02

将增强纤维、颗粒等与铜制备成铜基复合材料,可以提高其强度、耐磨性以及保持较优良的导电导热性能。SiC作为一种陶瓷颗粒,具有弹性模量高及抗氧化性能好等优良性能。由于金属具有优良的力学机械性能,使得金属基复合材料可以按机械零件的结构和性能要求,设计成合理组织和性能分布,从而工程技术人员对材料的性能进行最佳设计。由于能够根据不同的力学性能要求来选择相应的金属基体和不同的增强体,使得复合材料中的各组成材料之间既能保持各自的最佳性能特点,又可以进行性能上的相互补充,功能上的取长补短,甚至满足一定的特殊性能,所以纳米复合材料是一类具有结构和功能极佳的材料。另外,纳米复合材料由于具有特有的的纳米表面效应、特有的纳米量子尺寸效应,能够对其光学特性产生影响。按照复合材料基体的性能特点特,人们将纳米复合材料通常分三大类:纳米树脂基复合材料、纳米陶瓷基复合材料和纳米金属基复合材料。纳米金属基复合材料不仅具有强度高、韧性高的特点,纳米金属基复合材料还具有耐高温、高耐磨及高的热稳定性等性能。纳米金属基复合材料应用表明:在功能方面具有高比电阻性能、高透磁率性能,以及高磁性阻力等物理性能。本文采用球磨混料方法,通过真空热压法工艺,制备出碳纳米管增强铜基复合材料,研究铜基纳米复合材料的制备工艺,分析相应的材料性能。

1 试验材料及方法

1.1 试验材料

试验用原材料是上海九凌冶炼有限公司生产的电解铜粉,铜粉纯度是99.8%,铜粉粒度为-300目,铜粉松装密度是1.2~1.7。碳纳米管(CNTs)选用深圳纳米港有限公司产品。选用哈尔滨化工化学试剂厂的十二烷基硫酸钠(化学纯),以及该厂生产的酒精(分析纯)。

1.2 试验方法

全文阅读

纳米复合包装材料的应用优势与前景

摘 要:随着材料科学的不断进步,人们在材料研究上已近进入纳米级水平,纳米复合包装材料的应用,赋予包装材料更多的特殊功能或特性。文章就纳米复合材料的特点以及在食品包装上的应用,对其保鲜、抗菌、阻隔等性能进行研究,同时对该材料的安全性能进行一定的评价。

关键词:纳米复合包装材料;应用优势;安全性;研究;应用进展

前言

纳米包装材料通常是指利用纳米技术对材料进行纳米级的合成、改性、添加,使材料具备某一功能或特性的一种包装材料。经过合成、改性、添加后的材料分别称为复合、改性、纯纳米包装材料。文章所提的复合包装材料是采用纳米颗粒和其他材料进行复合制作出来的新型材料。目前国内外主要的研究是聚合物的纳米复合材料,也就是将纳米材料通过超微粒子或10nm级的分子水平融入到高柔性的聚合物内形成的材料。目前常用聚合物有PP、PE、PVC、PET、PA、LCP等,常用纳米颗粒有金属氧化物、金属以及无机聚合物等。目前多种复合材料在食品包装上得到了广泛应用,得到了很好的应用效果。

1 纳米复合包装材料的特点

随着科学技术的不断发展,包装材料的制造技术与实际应用也取得了巨大的突破,目前通过在传统制造工艺中添加纳米颗粒,可以得到纳米复合包装材料,不仅使传统的包装材料在质量及功能上有了显著的提升,同时也促进了制造工艺的发展。纳米技术作为一种先进的技术手段,通过与传统的包装材料制造技术相结合,通过将纳米技术的优越性能在材料包装制造中予以体现,尤其是纳米颗粒的属性特征,不仅结构稳定,同时可塑性较强,使得新型包装材料韧性较强,增加了新型包装材料的可靠性,扩大了包装材料的使用范围,促进了制造业的发展。另外,纳米技术具有较强的清洁功能,不仅生产工艺不会对环境产生危害,同时纳米技术还可以实现重复利用的功能。因此,将纳米技术与传统包装制造技术相结合,使得新型包装材料具有可降解的功能,不仅减少了对环境的破坏,同时也增加了资源的利用率,符合我国生态发展的要求。另外,纳米复合包装材料密度较强,能够有效的阻挡细菌的侵入,避免细菌的滋生,同时还具有保鲜的特点[1]。

2 纳米复合包装材料的应用优势

2.1 食品保鲜包装上的应用

全文阅读