首页 > 文章中心 > 人工智能研究现状综述

人工智能研究现状综述

开篇:润墨网以专业的文秘视角,为您筛选了八篇人工智能研究现状综述范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

人工智能研究现状综述范文第1篇

关键词: 人工智能 足球机器人 人工神经网络 智能控制

引言

足球机器人系统是一个典型的多智能体系统和分布式人工智能系统,涉及机器人学、计算机视觉[1]、模式识别、多智能体系统[2]、人工神经网络[3]等领域,而且它为人工智能理论研究及多种技术的集成应用提供了良好的实验平台。机器人球队与人类足球一样,它的胜负不但取决于机器人本身的性能,而且取决于比赛策略,只有将可靠的硬件与先进的策略结合才能取胜。人工智能技术在足球机器人的平台上有着重要的作用。从机器人的外观到机器人最重要的核心部分——控制、决策,都无不起着重要的作用。专家系统[4]、人工神经网络在机器人的路径规划[5]上得到充分的应用。

1.人工智能研究现状

人工智能[6-8]是一门研究人类智能机理,以及如何用计算机模拟人类智能活动的学科,该领域的研究包括机器人、语言识别[9]、图像识别、自然语言处理和专家系统等,涉及数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示[10][11]、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

几乎所有的编程语言均可用于解决人工智能算法,但从编程的便捷性和运行效率考虑,最好选用“人工智能语言”[12]。常用的人工智能语言有传统的函数型语言Lisp、逻辑型语言Prolog及面向对象语言Smalltalk、VC++及VB等,Math-Works公司推出的高性能数值计算可视化软件Matlab中包含神经网络工具箱,提供了许多Matlab函数。另外,还有多种系统工具用于开发特定领域的专家系统,如INSIGHT、GURU、CLIPS、ART等。这些实用工具为开发人工智能应用程序提供了便利条件,使人工智能越来越方便地运用于各种领域。

智能机器人是信息技术和人工智能等学科的综合试验场,可以全面检验信息技术和人工智能等各领域的成果,以及它们之间的相互关系。人工智能技术中的视觉、传感融合、行为决策、知识处理等技术,需要使无线通讯、智能控制、机电仪一体化、计算机仿真等许多关键技术有机、高效地集成统一。人们在很多领域都成功地实现了人工智能:自主规划和调度、博弈、自主控制、诊断、后勤规划、机器人技术、语言理解和问题求解等。

2.人工智能主要研究领域

人工智能的研究领域非常广泛,而且涉及的学科非常多。目前,人工智能的主要研究领域包括:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、智能决策支持系统及人工神经网络等。下面主要介绍在足球机器人设计、制造、控制等过程中常用的人工智能技术[13]。

2.1专家系统

专家系统是一个智能计算机程序系统,是一个具有大量专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。专家系统一般具有如下基本特征:具有专家水平的专门知识;能进行有效的推理;具有获取知识的能力;具有灵活性;具有透明性;具有交互性;具有实用性;具有一定的复杂性及难度。

2.2人工神经网络

人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、自学习、自组织和非线性映射等优点的神经网络与其他技术的结合,以及由此而来的混合方法和混合系统,已经成为一大研究热点。由于其他方法也有优点,因此将神经网络与其他方法相结合,取长补短,可以达到更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。

2.3图像处理

图像处理是用计算机对图像进行分析,达到所需结果,又称影像处理。图像处理技术主要包括图像压缩,增强和复原,匹配、描述和识别三个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。数字图像处理中的模式识别技术,可以对人眼无法识别的图像进行分类处理,可以快速准确地检索、匹配和识别出各种东西,在日常生活各方面和军事上用途较大。

3.人工智能在足球机器人中的应用

3.1基于专家系统的足球机器人规划

路径规划或避碰问题是足球机器人比赛中的一个重要环节。根据工作环境,路径规划模型可分为基于模型的全局路径规划和基于传感器的局部路径规划。全局路径规划的主要方法有:可视图法、自由空间法、最优控制法、栅格法、拓扑法、切线图法、神经网络法等。局部路径规划的主要方法有:人工势场法、模糊逻辑算法、神经网络法、遗传算法[14]等。机器人规划专家系统是用专家系统的结构和技术建立起来的机器人规划系统。大多数成功的专家系统都是以基于规则系统的结构来模仿人类的综合机理的。它由五部分组成:知识库、控制策略、推理机、知识获取、解释与说明。随着人工智能计算智能与进化算法研究的逐步发展,遗传算法、蚁群算法等的提出,机器人路径规划问题得到了相应发展。尤其是通过遗传算法在路径规划中的应用,机器人更加智能化,其运行路径更加逼近理想的优化要求。以动态、未知环境下的机器人路径规划为研究背景,利用遗传算法采用了基于路点坐标值的可变长染色体编码方式,构造了包含障碍物排斥子函数项的代价函数,使得路径规划中的地图信息被成功引入到了遗传操作的实现过程中。同时针对路径规划问题的具体应用,改进了交叉和变异两种遗传算子,获得了较为理想的路径搜索效率,达到了较好的移动机器人路径规划效果。

3.2人工神经网络在机器人定导航中的应用

人工神经网络是一种仿效生物神经系统的信息处理方法,其优点主要体现在它可以处理难以用模型或规则描述的过程和系统;对非线性系统具有统一的描述;有较强的信息融合能力。因此在移动机器人定位与导航方面,基于神经网络的多传感器信息融合正是利用了神经网络的这些特性,将机器人外部传感器的传感数据信息作为神经网络的输入处理对象,从而获得移动机器人自身位置与对障碍物比较精确的估计,实现移动机器人的避障与自定位。

结语

随着人工智能技术的进一步研究,足球机器人竞赛水平将不断提高。但就目前情况来看,在现有的基础上扩大应用的范围,增强应用的效果,还应主要在人工智能技术上做进一步的研究。专家系统在专家知识的总结、表述及不确定的情况下推理是目前专家系统的瓶颈所在。制造生产的多变复杂性及操作的人工经验性,使人工智能的应用受到限制。此外,一些工艺参数的定量化实现也不易。随着技术的飞速发展,人工智能技术也在进一步完善,如多种方法混合技术、多专家系统技术、机器学习方法、并行分布处理技术等。随着新型人工智能技术的出现,制造业将会更加光明,性能更加优越的足球机器人也不再遥远。

参考文献:

[1]郑南宁.计算机视觉与模式识别[M].北京-国防工业出版社,1998.3.

[2]Wang Hongbing Fan Zhihua She Chundong Formal Specification of Role Assignment for Open Multi Agent System Chinese of Journal Electronics[J].2007,16(2):212-216.

[3]LIMING ZHANG AND FANJI GU NEURAL INFORMATION PROCESSING VOLUME 1[M]Fudan University Press, 2001.

[4]Cai Zixing,King-Sun Fu. Expert-System-Based Robot Planning ?Control Theory & Applications[J] .1988(2): 35-42.

[5]张锐,吴成东.机器人智能控制研究进展[J].沈阳建筑工程学院学报(自然科学版),2003,19(1):61-64.

[6]蔡自兴,徐光祐.人工智能机器应用(第三版)清华大学出版社,2004.

[7]艾辉.谢康宁,谢百治.谈人工智能技术[J]中国医学教育技术,2004,18(2):78-80.

[8]Nilsson NJ.Artificial Intelligence:A New Synthesis[M].Beijing:China Machine Press,2006:72-95.

[9]Han Jiqing Gao Wen Robust Speech Recognition Method Based on Discriminative Environment Feature Extraction Journal of Computer Science and Technology[J]. 2001;16(5):458-464.

[10]Tang Zhijie Yang Baoan Zhang Kejing Design of Multi-attribute Knowledge Base Based on Hybrid Knowledge Representation Journal of Donghua University 2006,23(6):62-66.

[11]Hu Xiangpei Wang Xuyin Knowledge representation and rule——based solution system for dynamic programming model Journal of Harbin Institute of Technology 2003,10(2):190-194.

[12]姚根.人工智能的概况及实现方法[J] .2009,28(3):108.

人工智能研究现状综述范文第2篇

【关键词】人工神经网络 信息技术 发展趋势

人工神经网络技术在处理实际问题主要包括两个过程,一个是学习训练过程,另外一个是记忆联想过程。近年来随着人工网络技术的发展,人工神经网络技术在信号处理、图像处理、智能识别等领域已经取得了巨大的改变,为人们研究各类科学问题提供了一种新的方法和手段,使人们在交通运输、人工智能、军事、信息领域的工作更加便捷,近年来随着AI的发展,人工神经网络技术得到了快速的发展阶段。

1人工神经网络技术

人工神经网络技术也称ANN,是随着上个世纪八十年代人工智能发展兴起的一个研究热点,它的主要工作原理对人脑神经网络进行抽象处理,并仿造人脑神经网络建立简单的模型,按照不同的连接方式组成一个完整的网络,因此学术界也直接将它成为神经网络。神经网络其实就是一种运算模型,它是通过大量的节点——神经元连接起来的,其中不同的节点所代表的输出函数也不同,也就是所谓的激励函数;当有两个节点连接起来时称之为通过该连接信号的加权值,也称为权重,这就相当人脑神经网络记忆。人工神经网络技术是采用并行分布式系统,这种工作机理与传统的信息处理技术和人工智能技术完全不同,是一种全新的技术,它克服了传统基于逻辑符号的人工智能处理非结构信息化和直觉方面的缺陷,具有实时学习、自适应性和自组织性等特点。

2人工神经网络技术应用分析

随着人工神经网络技术的发展,它在模式识别、知识工程、信号处理、专家系统、机器人控制等方面的应用较广。

2.1生物信号的检测分析

目前大部分医学检测设备都是通过连续波形得到相关数据,从而根据所得数据对病情进行诊断。人工神经网络技术就是应用了这样的方式将多个神经元组合起来构成,解决了生物医学信号检测方面的难题,其适应性和独立性强,分布贮藏功能多。在生物医学领域该技术主要应用于对心电信号、听觉诱发电位信号、医学图像、肌电荷胃肠等信号的处理、识别和分析。

2.2医学专家系统

传统的医院专家系统是直接将专家的经验、学历、临床诊断方面取得的成绩等存储在计算机中,构建独立的医学知识库,通过逻辑推理进行诊断的一种方式。进入到二十一世纪,医院需要存储的医学知识越来越多,每天产生新的病况和知识,过去的一些专家系统显然已经无法适应医院的发展需求,因此医院的效率很低。而人工神经网络技术的出现为医院专家系统的构建提出了新的发展方向,通过人工神经网络技术,系统能够自主学习、自己组织、自行推理。因此在医学专家系统中该网络技术应用面较广。麻醉医学、重症医学中生理变量分析和评估较多,目前临床上一些还没有确切证据或者尚未发现的关系与现象,通过人工神经网络便能有效地解决。

2.3市场价格预测

在经济活动中,传统统计方法受到一些因素的制约,无法对价格变动做出准确的预测,因此难免在预测的时候出现失误的现象。人工神经网络技术能够处理那些不完整的、规律不明显、模糊不确定的数据,并作出有效地预测,因此人工神经网络技术具有传统统计方法无法比拟的优势。例如人工神经网络技术可以通过分析居民人均收入、贷款利率和城市化发展水平,从而组建一个完整的预测模型,准确预测出商品的价格变动情况。

2.险评价在从事某一项特定的活动时,由于社会上一些不确定因素,可能造成当事人经济上或者其他方面的损失。因此在进行某一项活动时,对活动进行有效的预测和评估,避免风险。人工神经网络技术可以根据风险的实际来源,构筑一套信用风险模型结构和风险评估系数,从而提出有效地解决方案。通过信用风险模型分析弥补主观预测方面的不足,从而达到避免风险的目的。

3人工神经网络技术未来发展

人工神经网络克服了传统人工智能对语言识别、模式、非结构化信息处理的缺陷,因此在模式识别、神经专家系统、智能控制、信息处理和天气预测等领域广泛应用。随着科学技术的进步,AI的快速发展,AI与遗传算法、模糊系统等方面结合,形成了计算智能,很多企业和国家开始大规模研发AI,人工神经网络正在模拟人类认知的方向发展,目前市场已经有很多不少人工智能产品面世。

4结语

通过上述研究分析,人工神经网络技术已经取得了相应的发展,但还存在很多不足:应用范围狭窄、预测精度低、通用模型缺乏创新等,因此需要我们在此基础上不断寻找新的突破点,加强对生物神经元系统的研究和探索,进一步挖掘其潜在的价值,将人工神经网络技术应用在更多领域中,为社会创造更大的财富。

参考文献

[1]周文婷,孟琪.运动员赛前心理调控的新策略——基于人工神经网络技术的比赛场地声景预测(综述)[J].哈尔滨体育学院学报,2015,33(03):15-21.

[2]张红兰.人工神经网络技术的应用现状分析[J].中国新通信,2014(02):76-76.

人工智能研究现状综述范文第3篇

关键词:机电一体化 现状 发展趋势

一、机电一体化的发展现状

机电一体化的发展大体可以分为3个阶段。20世纪60年代以前为第一阶段,这一阶段称为初级阶段。在这一时期,人们利用电子技术的初步成果来完善机械产品的性能。由于当时电子技术的发展尚未达到一定水平,机械技术与电子技术的结合还不可能广泛和深入发展,已经开发的产品也无法大量推广。

20世纪70年代~80年代为第二阶段,为蓬勃发展阶段。这一时期,计算机技术、控制技术、通信技术的发展,为机电一体化的发展奠定了技术基础。大规模、超大规模集成电路和微型计算机的迅猛发展,为机电一体化的发展提供了充分的物质基础。

20世纪90年代后期,开始了机电一体化技术向智能化方向迈进的新阶段,机电一体化进入深入发展时期。一方面,光学、通信技术等进入了机电一体化,微细加工技术也在机电一体化中展露头脚,出现了光机电一体化和微机电一体化等新分支;另一方面对机电一体化系统的建模设计、分析和集成方法、机电一体化的学科体系和发展趋势都进行了深入研究。

二、机电一体化的发展趋势

1.智能化趋势

智能化是21世纪机电一体化技术发展的一个重要发展方向。人工智能在机电一体化建设者的研究日益得到重视,机器人与数控机床的智能化就是重要应用。这里所说的“智能化”是对机器行为的描述,是在控制理论的基础上,吸收人工智能、运筹学、计算机科学、模糊数学、心理学、生理学和混沌动力学等新思想、新方法,模拟人类智能,使它具有判断推理、逻辑思维、自主决策等能力,以求得到更高的控制目标。机电一体化产品不可能具有与人完全相同的智能。但是,高性能、高速的微处理器使机电一体化产品赋有低级智能或人的部分智能。

2.模块化趋势

模块化是一项重要而艰巨的工程,利用标准单元迅速开发出新产品,扩大生产规模,制定各项标准,便于各部件、单元的匹配和接口。从电气产品的标准化、系列化带来的好处可以肯定,无论是对生产标准机电一体化单元的企业还是对生产机电一体化产品的企业,规模化将给机电一体化企业带来美好的前程。

3.网络化趋势

计算机技术等的突出成就是网络技术。机电一体化新产品一旦研制出来,只要其功能独到,质量可靠,很快就会畅销全球。由于网络的普及,而远程控制的终端设备本身就是机电一体化产品,利用家庭网络将各种家用电器连接成以计算机为中心的计算机集成家电系统,使人们在家里分享各种高技术带来的便利与快乐,因此机电一体化产品朝着网络化方向发展是为大势所趋。

4.微型化趋势

微型化指的是机电一体化向微型机器和微观领域发展的趋势,泛指几何尺寸不超过1cm的机电一体化产品,并向微米、纳米级发展。

微机电一体化产品体积小、耗能少、运动灵活,具有不可比拟的优势。微机电一体化发展的瓶颈在于微机械技术,微机电一体化产品的加工采用精细加工技术,即超精密技术,它包括光刻技术和蚀刻技术。

人工智能研究现状综述范文第4篇

关键词:机械一体化;技术;现状;产品;制造技术;发展趋势

现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,导致了工程领域的技术革命与改造。在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机械一体化,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入了“机械一体化”为特征的发展阶段。

一、概要

机械一体化是指在机构得主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。

机械一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。但其基本特征可概括为:机械一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。由此而产生的功能系统,则成为一个机械一体化系统或机械一体化产品。

二、发展状况

20世纪60年代以前为第一阶段,这一阶段称为初级阶段。在这一时期,人们自觉不自觉地利用电子技术的初步成果来完善机械产品的性能。特别是在第二次世界大战期间,战争刺激了机械产品与电子技术的结合,这些机械结合的军用技术,战后转为民用,对战后经济的恢复起了积极的作用。那时研制和开发从总体上看还处于自发状态。由于当时电子技术的发展尚未达到一定水平,机械技术与电子技术的结合还不可能广泛和深入发展,已经开发的产品也无法大量推广。

20世纪90年代后期,开始了机械一体化技术向智能化方向迈进的新阶段,机械一体化进入深入发展时期。一方面,光学、通信技术等进入了机械一体化,微细加工技术也在机械一体化中崭露头脚,出现了光机械一体化和微机械一体化等新分支;另一方面对机械一体化系统的建模设计、分析和集成方法,机械一体化的学科体系和发展趋势都进行了深入研究。同时,由于人工智能技术、神经网络技术及光纤技术等领域取得的巨大进步,为机械一体化技术开辟了发展的广阔天地。这些研究,将促使机械一体化进一步建立完整的基础和逐渐形成完整的科学体系。

三、发展趋势

1、智能化、模块化

智能化是21世纪机械一体化技术发展的一个重要发展方向。人工智能在机械一体化建设者的研究日益得到重视,机器人与数控机床的智能化就是重要应用。这里所说的“智能化”是对机器行为的描述,是在控制理论的基础上,吸收人工智能、运筹学、计算机科学、模糊数学、心理学、生理学和混沌动力学等新思想、新方法,模拟人类智能,使它具有判断推理、逻辑思维、自主决策等能力,以求得到更高的控制目标。诚然,使机械一体化产品具有与人完全相同的智能,是不可能的,也是不必要的。但是,高性能、高速的微处理器使机械一体化产品赋有低级智能或人的部分智能,则是完全可能而又必要的。

模块化是一项重要而艰巨的工程。由于机械一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、电气接口、动力接口、环境接口的机械一体化产品单元是一项十分复杂但又是非常重要的事。如研制集减速、智能调速、电机于一体的动力单元,具有视觉、图像处理、识别和测距等功能的控制单元,以及各种能完成典型操作的机械装置。这样,可利用标准单元迅速开发出新产品,同时也可以扩大生产规模。这需要制定各项标准,以便各部件、单元的匹配和接口。由于利益冲突,近期很难制定国际或国内这方面的标准,但可以通过组建一些大企业逐渐形成。

2、网络化、系统化

20世纪90年代,计算机技术等的突出成就是网络技术。网络技术的兴起和飞速发展给科学技术、工业生产、政治、军事、教育义举人么日常生活都带来了巨大的变革。各种网络将全球经济、生产连成一片,企业间的竞争也将全球化。机械一体化新产品一旦研制出来,只要其功能独到,质量可靠,很快就会畅销全球。由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾,而远程控制的终端设备本身就是机械一体化产品。

系统化的表现特征之一就是系统体系结构进一步采用开放式和模式化的总线结构。系统可以灵活组态,进行任意剪裁和组合,同时寻求实现多子系统协调控制和综合管理。表现之二是通信功能的大大加强,一般除RS232外,还有RS485、DCS人格化。未来的机械一体化更加注重产品与人的关系,机械一体化的人格化有两层含义。一层是,机械一体化产品的最终使用对象是人,如何赋予机械一体化产品人的智能、情感、人性显得越来越重要,特别是对家用机器人,其高层境界就是人机一体化。另一层是模仿生物机理,研制各种机械一体花产品。事实上,许多机械一体化产品都是受动物的启发研制出来的。

综上所述,机械一体化的出现不是孤立的,它是许多科学技术发展的结晶,是社会生产力发展到一定阶段的必然要求。当然,与机械一体化相关的技术还有很多,并且随着科学技术的发展,各种技术相互融合的趋势将越来越明显,机械一体化技术的广阔发展前景也将越来越光明。

参考文献

[1]李建勇.机械一体化技术.北京:科学出版社,2004.

人工智能研究现状综述范文第5篇

【关键词】智能电网 无功协调 优化 综述

电压无功协调优化一般简称为无功优化,包括优化规划和优化调度两个方面,其中优化调度又可分为静态无功优化调度和动态无功优化调度。研究无功优化策略主要包括模型和优化算法两部分,必要时还涉及系统构造、通信管理及控制协调等。现针对智能电网和电压无功协调优化方面的研究现状,综述如下。

1 智能电网

随着IT技术的蓬勃发展、智能电力电子器件的工艺成熟,以及各种分布式发电的广泛应用,在节能减排、能源转型的大趋势下,世界电力工业正进入一场以能源和信息互动的科技革命。这一革命的核心目标是,依靠尖端的信息技术、电工技术、新能源技术及其装备,建立分布式控制、灵活高效的智能电网。

1.1 智能电网的概念

目前,基于系统规模的智能电网,还没有统一的、严谨的定义。各国根据自身条件和发展需要,对智能电网有不同的理解。美国能源部指出,智能电网是一种拥有自愈、互动、能够抵御自然灾害和外部攻击,可容纳各种发电和储能,允许新业务、服务以及电力市场交易机制,提高资源利用率和生产效率,提供经济优质电能的电力网络。欧盟委员会对智能电网的定义,则是以客户为中心,支持分布式、可再生能源接入,能够实现负荷与本地电源的交互,具备高级自动化和分布式智能,灵活的电网应用、更可靠更安全的电力供应,以及面向服务的网架等特征。我国对建设坚强智能电网的描述是,建立以特高压电网为骨干网架,各级电网协调发展,具有信息化、数字化、自动化、互动化特征的统一的坚强智能电网。

1.2 智能电网的特点

尽管国内外对智能电网的定义不尽相同,但基于各自概念下的智能电网均体现出以下特点。

(1)自愈性和自适应性。能够对电网的状态进行在线辨识和自我评估,并形成控制预案;能够根据电网状态变化自动调整控制参数,协调电网各类设备安全运行;能够及时发现、快速诊断和消除事故隐患;故障发生时,在尽量少的人工干预下,利用分布式电源、储能装置以及在线自适应控制系统,实现故障隔离、自我恢复,避免大面积停电。

(2)互动性。通过双向通信,将电网与批发、零售电力市场连接起来,支持电力交易的有效开展,实现资源的优化配置;通过市场交易更好地激励电力市场主体参与电网安全管理,从而提升电力系统的安全运行水平,同时促使用户更好地控制自己的用电设备,实现节能高效的用电管理。

(3)兼容性。能够适应集中发电与分散发电协同共存的局面,支持多种分布式电源和储能设备的接入,支持用户侧作为负荷和电源的双重角色,扩大系统运行调节的可选资源范围,满足电网与自然环境和谐发展;标准化的电力和通讯界面接口,能以“即插即用”的方式实现用户与电网的交互。

(4)集成性。通过不断的流程优化、信息整合,实现企业管理、生产管理、调度自动化与电力市场管理业务的继承,形成全面的辅助决策支持体系,支撑企业管理的规范化和精细化,不断提升电力企业的管理效率。

(5)系统优化。实现资产规划、建设、运行维护等全寿命周期环节的优化,合理安排设备的运行与检修,提高资产的利用效率,有效地降低运行维护成本和投资成本,减少电网损耗。电网将在自然状态和计算机状态下更安全,新技术的配置将可以更好地识别和应对人为的和自然的侵害。

(6)节能高效。将大量的可再生能源用于分布式发电,减少一次能源消耗,并促进电力供应的平滑调节,降低线损;利用储能技术、能量回收技术等提高能源利用效率;用户主动参与用电管理,进一步降低用电损耗,提高用电能效。

2 电压无功协调优化

2.1 无功优化规划

无功优化规划的目的是,求出系统各节点在满足调压要求和其他运行约束条件下的最优无功补偿容量。这类规划问题一般被分解为投资规划和运行规划两个子问题,进行联合迭代求解。在投资规划子问题中,以投资变量为控制变量,以新安装无功电源的投资运行总费用最小为优化目标;在运行规划子问题中,以无功电源投入容量、变压器抽头档位和发电机机端电压等运行变量为控制变量,以运行费用最小为优化目标。

无功优化规划问题是具有大量局部极小值的多约束全局优化问题,且含有离散变量,这使常规的线性算法或者非线性算法遇到巨大的挑战。早期的做法一般是先基于工程经验、专家知识或者依据灵敏度矩阵选择需安装无功装置的节点,然后再采用线性规划或者非线性规划来求解相应的安装容量,在求解过程中,通常需要假设所有变量以及约束都是连续的,在求得最优点后再对各控制变量归整到离散值。这种方法的缺陷是由于数学上的近似,通常只能得到局部最优解;且由于有时归整后可能导致某些约束条件越限,得到的解甚至在可行域之外。

近年来,各种启发式人工智能搜索算法越来越多的应用到电力系统无功优化规划问题中来,模拟退火算法、TS算法、遗传算法成为解决各种复杂无功优化问题的主流算法。

2.2 无功优化调度

电力系统无功优化调度是保证电力系统安全、经济运行和优质供电的重要而有效的手段。通过对有载调压变压器抽头、无功补偿装置和发电机无功出力的调度,达到优化电压质量和降低网损的目的。根据无功优化调度的目标模型,可分为静态无功优化调度和动态无功优化调度。

静态无功优化的目标函数通常是系统网损或运行成本最小,或系统状态安全裕度、电压稳定裕度最大,或考虑多指标加权的综合最优。约束条件包括潮流方程等式约束,以及无功补偿容量、发电机无功出力、变压器抽头和电压幅值约束等不等式约束。就优化方法而言,主要有线性规划、非线性规划、专家系统、启发式人工智能算法等。

动态无功优化调度一般依据实时潮流或预测所得负荷,寻找在某一时间跨度内(通常为一天)网损电量最小,电压稳定性最优,同时调压、无功补偿等设备动作次数尽量少的无功调度模式和设备控制参数集。因此,动态无功优化调度在数学模型中引入了变压器抽头和补偿装置投切开关的允许动作次数的限制,以避免控制设备随负荷水平波动而过于频繁地操作,导致设备提前老化。很明显,动态无功优化调度问题要比无功优化规划及静态无功调度问题复杂得多,是一个多维度时空耦合问题,优化结果还受负荷预测精度、设备调节代价、负荷动态电压模型等因素的影响。为了简化动态无功优化问题,采取简化状态解空间的办法以降低维度。用不同方法将连续动态优化问题离散化为若干时段的静态优化问题,有助于提高求解效率。

3 结束语

电力系统电压无功协调优化是维持系统安全和电压稳定,保证系统无功潮流优化运行,并协调各级设备实现系统电压质量和运行经济性综合最优的多变量控制策略。根据工程要求和优化目标,无功优化分为规划和调度两类。早期的无功优化研究限于硬件技术水平和数据资源,主要从规划角度安排无功优化配置,模型较粗糙,也难以对大电网进行深度优化求解。近二十年来,实现无功实时调度成为学术界研究的重点,优化模型考虑的因素逐渐精确和全面,优化算法从线性、非线性的传统算法发展到如今广泛应用的人工智能、启发式搜索算法等,并朝着大电网、分布式、实时调度、全局最优的方向迈进。

人工智能研究现状综述范文第6篇

关键词:智能控制;方法;形式

中图分类号:TP31 文献标识码:A

1智能控制的发展

科学技术和生产的迅速发展是智能控制学科发展的动力。以往以单纯数学解析结构为基础的控制理论,其局限性日益明显。它的局限性主要体现在以下几方面:其一,在航空、航天、航海及各种工业部门,受控对象日益复杂。受控对象不仅规模大,运动学结构复杂,而且各运动变量之间严重耦合,同时还带有严重的不确定性(包括结构和参数两个方面的不确定性)和非线性。这样复杂的受控对象使得以确定模型和数学解析方法为基础的传统控制理论遇到了困难和挑战。其二,控制任务和目标的复杂化,也使传统的控制理论难于胜任。例如,一架性能优良的攻击机必须具备对空、地多目标自动攻击的能力,必须具备自动地形跟踪、回避的能力,必须具备自动导航和高品质自动飞行的能力。这样复杂的控制任务和控制指标要求,对于传统的控制理论来说是很困难的。其三,系统工作环境的复杂化,也使传统的控制理论产生麻烦。例如,在空战条件下,战场敌我态势的突变,气象条件的突变,敌方对我方系统的破坏和干扰,驾驶员的疲劳和意外失误,或者系统处于不利的化学物质环境中工作等。上述复杂受控对象,复杂的控制任务和控制目的,复杂的系统运行环境都促使人们研究新的控制方式去实现对它们的有效控制。这就是智能控制产生和发展的背景和动力。

另一方面,近代迅速发展的人工智能技术和计算机技术又为智能控制的发展提供了条件。诸如符号、语言的知识表达,状态特征的辨识,定性与定量,精确与模糊信号的处理,分析推理,逻辑运算,判断决策,自然语言理解和视觉系统等一系列拟人思维和功能均可通过计算机来实现。可以说,人工智能和计算机技术为智能控制的发展提供了物质条件。因此,智能控制不仅是科学技术和生产发展的推动和需要,也是科学技术发展的必然趋势;不仅是控制科学的继承、发展和提高,也是多学科相结合、共同迸发出的新的科学技术的火花。

2智能控制的主要形式

智能控制这一学科正在蓬勃发展,智能控制的形式也日新月异。目前正在兴起和研究的形式很多,其中主要的有如下几种。

2.1分级递阶智能控制

分级递阶智能控制是从系统工程出发,总结了人工智能与自适应控制、自学习控制和自组织控制的关系之后逐渐形成的,是智能控制最早的理论之一。

分级递阶智能控制有两种比较重要的理论:知识基/解析混合多层智能控制理论,该理论是由意大利学者A.Villa提出的,可用于解决复杂离散事件系统的控制设计问题。萨里迪斯三级智能控制理论,按照这种理论设计的智能控制系统是由组织级(最高级)、协调级(中间级)和执行级(最下级)三级组成的,并用熵函数来衡量每一一级的执行代价和效果,用熵进行最优决策。这一方法为现代工业、空间探测、核处理和医学领域应用自主控制系统提供了一个有效的方法。总之,分级递阶智能控制是为求解大系统,复杂系统的寻优、决策和有效控制而提出来的,是研究多级自寻优控制、多级模糊控制、多级专家控制、递阶智能多目标预测控制以及大型空间运动结构系统的三级递阶智能控制的有效方法。

2.2专家系统控制

专家系统控制(包括仿人智能控制和智能PID控制),是工程控制论和专家系统相结合的产物。这类智能控制的特点是专家的知识和经验与传统的PID控制器的结合,它所设计产生的控制规则简单易于实现,如飞行控制过程、化工PH过程的智能控制。在这一类智能控制中,还应指出的一种形式是实时监督控制专家系统,由故障检测、故障诊断和故障处理三部分组成,这种形式在航天、航空和化工等领域都有大量应用。

2.3模糊控制

该控制方法最早提出者之一是美国著名控制论专家LA.Zadeh,1965他发表了模糊集合论。模糊控制理论主要以模糊数学和规则表组成控制决策。它适用于难以建模的受控对象,但很难做到高精度。

2.4人工神经元网络控制

20世纪50年代末就已问世的神经元网络模仿生物神经系统,主要模仿人的大脑的神经网络模型和信息处理机能,如信息处理、判断、决策、联想、记忆、学习等功能,以实现仿人行为的智能控制。

2.5各种智能控制方法的交叉和结合

为了发挥各种不同智能控制方法的优点,克服它们各自的缺点和不足,各种组合、结合、互相交叉渗透的智能控制方法不断被提出和研究。例如,专家模糊控制、模糊神经网络控制、专家神经网络控制、模糊PID控制、专家PID控制和模糊学习控制等。

2.6各种智能控制方法与传统控制理论方法的交叉和结合

它们既能发挥智能控制的优点,也能发挥传统控制方法的优点,在工程实际中可获得完美的控制效果。它不仅是方法研究的交叉,而且也是多学科研究的交叉和发展。这些交叉和结合有模糊变结构控制、自适应模糊控制、自适应神经网络控制、神经网络变结构控制和专家模糊PID控制等。上述交叉和结合还可以举出一些,这些控制有的学者又称为综合控制理论和方法。

3智能自主控制

随着科学技术发展和生产的需要,自主控制,特别是用智能化的方法实现自主控制成为当今的热门研究课题。智能自主控制也是智能控制的一种形式。什么是智能自主控制,至今没有统一的定义,根据普遍的理解,给出如下说明。

3.1智能自主控制的含义

智能自主控制系统应该具有如下功能:系统能自动接受控制任务、控制要求和目标,并能对任务、目标和要求自主进行分析、判断、规划和决策。系统能自主感知、检测自身所处的状态信息、环境信息和干扰信息,并能自主进行融合、分析、识别、判断和决策;同时能作出能否执行任务的决策。

系统能根据控制任务、目标要求,结合系统所处的当前自身状态信息、环境信息、干扰信息,自主地进行分析、综合,并作出执行任务和如何完成任务的控制决策。系统能根据上述决策自主形成控制指令,自主操控系统状态的行为,并朝着完成控制任务和目标的方向运动。

在上述运动过程中,如果出现任务改变,出现事先未预见的环境变化和自身状态变化,或出现系统自身损伤,系统能根据任务改变、新的环境(干扰属环境变化)信息和自身状态信息的改变,自主地作出分析、判断,并作出改变系统状态行为的指令,使系统改变自身的状态。或自主进行系统重组,以适应外界环境的变化;或自主进行系统的故障诊断、自修复,以适应完成控制任务和目标的要求,最终自主完成控制任务,达到控制的目标。具有上述功能的系统可以认为是智能自主控制系统,或称为智能自主控制。

3.2智能自主控制系统的应用

智能自主控制的关键是用智能化的方法实现完全无人参与的控制过程,并使系统运行达到预期的目的。

现以智能自主控制的行驶车辆为例说明其智能自主控制的过程。假定要使车辆完成由A城去B城送货的任务。智能自主控制行车系统接受这一任务后,首先要做的工作是,接受任务,分析任务,同时检测系统自身所处状态(是否处于运行准备状态)和车辆重心目前所处的地理坐标位置。第二步,开启环境状态检测识别系统,确定车辆自身的环境坐标位置,即确定车身是否处于地理坐标的道路中间,车头和道路规定的行车方向是否相同。第三步,将以上检测结果与任务要求相结合,进行决策分析。根据智能自主控制行车系统存储的数字地图,决策、规划出行车路线,选择好行车道路,同时根据规划出的行车路线和道路向行车智能自动驾驶系统发出行车指令,给出行车控制信号。该系统能协调地启动发动机,能控制油门,方向盘和刹车,驾车按规划的行车路线和所选择的道路行驶。第四步,在行车过程中,智能自主控制行车系统中的智能自主导航系统,能不断记录行车方向、路线、行车速度和里程,确定车身重心的地理位置坐标;智能环境状态检测识别系统能确定车身相对周围环境的坐标。如果行车中的地理位置坐标偏离了规划出的行车路线,智能自主控制行车系统应能根据车身目前所处的位置,结合系统携带的数字地图重新规划出新的行车路线,并能选好行车道路。如果行车中车身偏离了行车道路中间线,或行车前方出现障碍,则智能自主控制行车系统能通过环境视觉识别系统,给出行车方向修正指令和停车指令,避免行车事故,保持行车任务的正常执行。第五步,当行车到达终点B城时,智能自主控制行车系统的智能导航系统能根据行车规划的终点位置的地理坐标和行车当前的地理位置坐标,判断行车的终点任务是否完成。

如果行车终点位置到达,则将停车任务转交给环境状态检测识别系统,由该系统搜索选择停车位置,并将此停车位置与出发前记录在系统数据库中的停车位置环境图像相匹配,匹配无差,则命令行车智能自动驾驶系统关闭油门、发动机,并停车。如果行车过程中,智能自主控制行车系统发生损坏,系统自身应能实现故障自诊断、自修复或系统自重组。这种自修复和系统自重组往往要求能在车辆行进中完成。

结语

智能控制系统的设计是一项复杂的系统工程,随着科技的发展与进步,有关技术还在不断的发展之中,但发展迅速,各种不同智能控制水平的系统正在不断的研究,其实际应用也不断涌现为人们的生活带来可极大的便利。

参考文献

[1]游明坤.智能控制理论的发展及应用[J].软件导刊,2006.

[2]胡氢,司纪凯.智能控制技术现状分析及发展[J].煤矿机械,2006.

人工智能研究现状综述范文第7篇

机电一体化是现代科学技术发展的必然结果,本文简述了机电一体化技术的基本概要和发展背景。综述了国内外机电一体化技术的现状,分析了机电一体化技术的发展趋势。

关键词

机电一体化技术现状产品制造技术发展趋势

0.绪论

现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,导致了工程领域的技术革命与改造。在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入了“机电一体化”为特征的发展阶段。

1.机电一体化概要

机电一体化是指在机构得主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。

机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。

因此,“机电一体化”涵盖“技术”和“产品”两个方面。只是,机电一体化技术是基于上述群体技术有机融合的一种综合技术,而不是机械技术、微电子技术以及其它新技术的简单组合、拼凑。这是机电一体化与机械加电气所形成的机械电气化在概念上的根本区别。机械工程技术有纯技术发展到机械电气化,仍属传统机械,其主要功能依然是代替和放大的体力。但是发展到机电一体化后,其中的微电子装置除可取代某些机械部件的原有功能外,还能赋予许多新的功能,如自动检测、自动处理信息、自动显示记录、自动调节与控制自动诊断与保护等。即机电一体化产品不仅是人的手与肢体的延伸,还是人的感官与头脑的眼神,具有智能化的特征是机电一体化与机械电气化在功能上的本质区别。

2.机电一体化的发展状况

机电一体化的发展大体可以分为3个阶段。20世纪60年代以前为第一阶段,这一阶段称为初级阶段。在这一时期,人们自觉不自觉地利用电子技术的初步成果来完善机械产品的性能。特别是在第二次世界大战期间,战争刺激了机械产品与电子技术的结合,这些机电结合的军用技术,战后转为民用,对战后经济的恢复起了积极的作用。那时研制和开发从总体上看还处于自发状态。由于当时电子技术的发展尚未达到一定水平,机械技术与电子技术的结合还不可能广泛和深入发展,已经开发的产品也无法大量推广。

20世纪70~80年代为第二阶段,可称为蓬勃发展阶段。这一时期,计算机技术、控制技术、通信技术的发展,为机电一体化的发展奠定了技术基础。大规模、超大规模集成电路和微型计算机的迅猛发展,为机电一体化的发展提供了充分的物质基础。这个时期的特点是:①mechatronics一词首先在日本被普遍接受,大约到20世纪80年代末期在世界范围内得到比较广泛的承认;②机电一体化技术和产品得到了极大发展;③各国均开始对机电一体化技术和产品给以很大的关注和支持。

20世纪90年代后期,开始了机电一体化技术向智能化方向迈进的新阶段,机电一体化进入深入发展时期。一方面,光学、通信技术等进入了机电一体化,微细加工技术也在机电一体化中崭露头脚,出现了光机电一体化和微机电一体化等新分支;另一方面对机电一体化系统的建模设计、分析和集成方法,机电一体化的学科体系和发展趋势都进行了深入研究。同时,由于人工智能技术、神经网络技术及光纤技术等领域取得的巨大进步,为机电一体化技术开辟了发展的广阔天地。这些研究,将促使机电一体化进一步建立完整的基础和逐渐形成完整的科学体系。

我国是从20世纪80年代初才开始在这方面研究和应用。国务院成立了机电一体化领导小组并将该技术列为“863计划”中。在制定“九五”规划和2010年发展纲要时充分考虑了国际上关于机电一体化技术的发展动向和由此可能带来的影响。许多大专院校、研究机构及一些大中型企业对这一技术的发展及应用做了大量的工作,不取得了一定成果,但与日本等先进国家相比仍有相当差距。

3.机电一体化的发展趋势

机电一体化是集机械、电子、光学、控制、计算机、信息等多学科的交叉综合,它的发展和进步依赖并促进相关技术的发展和进步。因此,机电一体化的主要发展方向如下:

3.1智能化

智能化是21世纪机电一体化技术发展的一个重要发展方向。人工智能在机电一体化建设者的研究日益得到重视,机器人与数控机床的智能化就是重要应用。这里所说的“智能化”是对机器行为的描述,是在控制理论的基础上,吸收人工智能、运筹学、计算机科学、模糊数学、心理学、生理学和混沌动力学等新思想、新方法,模拟人类智能,使它具有判断推理、逻辑思维、自主决策等能力,以求得到更高的控制目标。诚然,使机电一体化产品具有与人完全相同的智能,是不可能的,也是不必要的。但是,高性能、高速的微处理器使机电一体化产品赋有低级智能或人的部分智能,则是完全可能而又必要的。

3.2模块化

模块化是一项重要而艰巨的工程。由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、电气接口、动力接口、环境接口的机电一体化产品单元是一项十分复杂但又是非常重要的事。如研制集减速、智能调速、电机于一体的动力单元,具有视觉、图像处理、识别和测距等功能的控制单元,以及各种能完成典型操作的机械装置。这样,可利用标准单元迅速开发出新产品,同时也可以扩大生产规模。这需要制定各项标准,以便各部件、单元的匹配和接口。由于利益冲突,近期很难制定国际或国内这方面的标准,但可以通过组建一些大企业逐渐形成。显然,从电气产品的标准化、系列化带来的好处可以肯定,无论是对生产标准机电一体化单元的企业还是对生产机电一体化产品的企业,规模化将给机电一体化企业带来美好的前程。

3.3网络化

20世纪90年代,计算机技术等的突出成就是网络技术。网络技术的兴起和飞速发展给科学技术、工业生产、政治、军事、教育义举人么日常生活都带来了巨大的变革。各种网络将全球经济、生产连成一片,企业间的竞争也将全球化。机电一体化新产品一旦研制出来,只要其功能独到,质量可靠,很快就会畅销全球。由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾,而远程控制的终端设备本身就是机电一体化产品。现场总线和局域网技术是家用电器网络化已成大势,利用家庭网络(homenet)将各种家用电器连接成以计算机为中心的计算机集成家电系统(computerintegratedappliancesystem,CIAS),使人们在家里分享各种高技术带来的便利与快乐。因此,机电一体化产品无疑朝着网络化方向发展。

3.4微型化

微型化兴起于20世纪80年代末,指的是机电一体化向微型机器和微观领域发展的趋势。国外称其为微电子机械系统(MEMS),泛指几何尺寸不超过1cm3的机电一体化产品,并向微米、纳米级发展。微机电一体化产品体积小、耗能少、运动灵活,在生物医疗、军事、信息等方面具有不可比拟的优势。微机电一体化发展的瓶颈在于微机械技术,微机电一体化产品的加工采用精细加工技术,即超精密技术,它包括光刻技术和蚀刻技术两类。

3.5绿色化

工业的发达给人们生活带来了巨大变化。一方面,物质丰富,生活舒适;另一方面,资源减少,生态环境受到严重污染。于是,人们呼吁保护环境资源,回归自然。绿色产品概念在这种呼声下应运而生,绿色化是时代的趋势。绿色产品在其设计、制造、使用和销毁的生命过程中,符合特定的环境保护和人类健康的要求,对生态环境无害或危害极少,资源利用率极高。设计绿色的机电一体化产品,具有远大的发展前途。机电一体化产品的绿色化主要是指,使用时不污染生态环境,报废后能回收利用。

3.6系统化

系统化的表现特征之一就是系统体系结构进一步采用开放式和模式化的总线结构。系统可以灵活组态,进行任意剪裁和组合,同时寻求实现多子系统协调控制和综合管理。表现之二是通信功能的大大加强,一般除RS232外,还有RS485、DCS人格化。未来的机电一体化更加注重产品与人的关系,机电一体化的人格化有两层含义。一层是,机电一体化产品的最终使用对象是人,如何赋予机电一体化产品人的智能、情感、人性显得越来越重要,特别是对家用机器人,其高层境界就是人机一体化。另一层是模仿生物机理,研制各种机电一体花产品。事实上,许多机电一体化产品都是受动物的启发研制出来的。

4.结语

综上所述,机电一体化的出现不是孤立的,它是许多科学技术发展的结晶,是社会生产力发展到一定阶段的必然要求。当然,与机电一体化相关的技术还有很多,并且随着科学技术的发展,各种技术相互融合的趋势将越来越明显,机电一体化技术的广阔发展前景也将越来越光明。

5.参考文献

1.李建勇.机电一体化技术.北京:科学出版社,2004.

2.李运华.机电控制.北京:北京航空航天大学出版社,2003.

3.高钟毓.机电控制工程.北京:清华大学出版社,2002.

人工智能研究现状综述范文第8篇

关键词:铁路信号设备;故障诊断;方法

中图分类号:X731文献标识码: A

引言

铁路信号设备由于商品不合格以及维修处理不当等导致的安全事故频繁发生,对于铁路系统和交通的运行也会产生不容忽视的影响。在实践的工作当中导致铁路信号设备出现故障的原因较多,所以在分析和处理的过程当中不仅需要结合技术人员的经验,同时还需要加强铁路信号设备现场故障的模拟和演练,提升人员的故障处理和分析能力,并且使得处理技术得到最大范围的推广。在相关工作当中,常见的故障诊断方式有传统故障分析法、解析模型法、信号处理法以及人工智能铁路信号设备故障检测法等。还需要结合现场的情况和影响因素决定最佳的方案,以促进铁路信号设备的运行效率改进,促进设备的的高质量运转。

1、我国铁路信号设备的现状

随着经济信息技术的飞速发展,铁路信号系统已经成为了铁路安全行驶的保障,虽然现在铁路设备自身的应用功能在不断提高,但是在铁路信号实际的传递过程中,信号设备还存在严重的隐患。例如:枢纽调度监督设备在铁路信号设备中主要的功能就是保证调度信息能够准确直观,以此来保证铁路枢纽的畅通,但是此设备在铁路枢纽中的工作模式是以分散式为主,这就导致单个设备的运作并不能有效地提高铁路运输小路,而当铁路进行货运时,还存在一定的问题。

2、铁路信号设备故障处理方法

2.1、传统铁路信号设备故障检测方式

首先是传统故障检测技术。所谓的传统故障检测法就是依靠具有扎实的工作经验的工作人员经过对故障部位的分析和研究,对设备的故障经过细致的排除之后,对现场的情况进行处理。常用的方式有比较法、逻辑推理法、压缩法、代换法意思观察检测法等等,上述技术也是人们在日常的生活当中较为常用的。通过技术人员对铁路信号设备的故障进行检查,可以明显的呈现出故障的部位和性质,而通过各种试验和操纵的方式,则可以判定得出铁路信号设备故障发生的大致位置以及电路故障的层次。另外,通过计算机软件以及硬件技术,还可以对日常的故障进行系统化的处理。在运用传统技术进行故障检测的过程当中,首要的一点就是需要保证电路的通常,保证设备的电力供应需求,对机器的运转情况进行细致的检测,并且以此来明确故障部位。

2.2、排除雷电对铁路信号的影响

2.2.1、室内防雷

电源防护、信道防护以及机房屏蔽都是室内信号设备防雷袭击工作的重点。电源防护一般采用多级防护,其防护的关键部位由交流电源三相线引入,电源屏前、用户终端电子设备比如UPS电源前,分别为电源的I,II,III级防护,其中I级防护三相线每一相的状态应具备显示功能、故障报警和雷电计数的功能。信道就是信息传输的通道。一旦信道遭到破坏,那么会导致信息传输出现中断或信息遭到干扰导致出现错误,进而影响信号设备的正常工作,阻碍通车,严重则让整个路网发生瘫痪,因此,信道应成为防雷工作的重点。机房内墙要想做好雷电防护,最好选择铁磁材料作为主要屏蔽材料,地板则需要使用静电地板,室内金属构件需要形成等电位连接。

2.2.2、室外防雷

应确保室外信号设备的外壳接地,外壳主要包括金属箱、盒、柜,选择具有良好电磁屏蔽和电气贯通性能的材料进行制作。电缆最好选用屏蔽电缆,并确保屏蔽层能够接地;如果选用非屏蔽电缆,应保证其贯穿在钢管内部,埋地敷设,同时让钢管能够接地。需要注意的是钢轨是不能够代替地线的。

2.2.3、安装要求

防雷元件的设备应具有集中性,这样的安装效果是为了保证其牢固稳定,也便于检测和维护。如果现场设置专门的防雷分线柜,可以整合成一体的防雷单元以插件的形式直接插在防雷分线柜内,进而接入被保护电路。防雷分线柜的使用使分线、防雷一体化,便于维修和测试。

2.3、人工智能铁路信号设备故障检测技术

专家控制系统的故障诊断技术适合用于模拟人的逻辑思维,解决需要进行逻辑推理的复杂诊断问题,这是这一方法的很大的优点。通过这一方法知识可以通过符号表示出来,对知识细节的处理,对于问题处理的模块化非常有效这一方法可以通过专业知识解释自己的具体解答推理步骤。基于我国车站微机监测的实际,运用这一方法将知识和实践结合起来,采用人工智能的方法对问题进行处理非常有助于故障的排除和解决。同时也需要与传统的故障处理办法相结合,因此方法新颖独特,很利于故障的准确定位和及时解决。模糊性是由于我们对事物的定义没有根本的把握,在数量上没有规定,在质上没有明确的涵义。模糊逻辑具有很多在故障排查当中的所具有的独特优势,因此被越来越广泛地采用。模糊逻辑方法进入故障诊断领域是一种必然的发展趋势,它比较适合表达模糊的知识,在普及的时候比较接近人的逻辑思维。结合上述的分析,当前的人工智能技术是今后针对铁路信号设备故障进行检测和维修的主要技术手段之一,同时也是技术的重要发展方向,应当明确工作的重点和难点,并且以促进技术的全面发展为基础原则,最终为铁路信号设备的稳定运行奠定基础。

2.4、信号设备故障维护制度

当遇到信号设备故障时应积极组织故障修复。对于一般故障,维护人员应在联系登记后,会同值班人员对事故信号进行试验检查修复,修复过程应查明原因、记录处理过程及结果。对于严重设备缺陷,当危及行车安全时,若不能及时排除故障应尽快联系值班人员登记停用设备,然后查出原因,尽快排除故障,恢复使用。如不能判明原因,应立即上报。听从上级指示处理。

2.5、重大列车事故时,信号设备处理制度

对于运行机车出现重大故障如脱轨、相撞、颠覆事故时,维护人员不应擅自处理信号设备,应先保护事故现场并立即报告电务段调度。

2.6、现场维护工作制度

对于发生影响行车的设备故障时,信号维修人员应对接发列车进路排列状况,调车作业情况,控制台的显示状态,列车运行时分,设备位置状态以及故障现象登记在《行车设备检查登记簿》中,作为原始记录备查。

3、对铁路信号设备及时更新

为了全面的保证铁路信号系统的稳定安全运行,首先需要对相关工作提供技术上的支持,及时的检查设备和信号的更新,对原有的设备类型和基础的设施进行细致的分析,并且对设备安全指数进行研究,加强规定。对于铁路信号系统和相关设备,需要全面的保证其符合各项基本要求才能够投入使用。铁路信号系统和相关信号设备的发展是当前铁路交通运输事业当中的核心环节,同时也是现代化科技发展的成果,在实践的控制当中还需要按照实际的要求加以管理,采用智能化和自动化的管理技术,加强产品和系统的认证,并且以快速和准确的指挥为铁路事业的运营提供相关信息和资料,结合指令情况来对列车的运行进行指挥。另外,还需要提升铁路信号系统的运用价值,加强系统的维护和运营技术,以现代化的数字技术为系统提供相关的安全保障,并且为全面推动铁路运营安全性和经济性提供相关的技术性支持。相关铁路信号系统主要包含有运行的管理、运输计划、维护工作的管理、集中信息管理、设备管理、车辆控制系统管理、电力控制管理等等,以实现一体化的技术,实现子系统的信息数据共享。同时,还应当全面增强铁路信号系统的自动化技术,为了实现上述目标,应当深刻的意识到信号设备的价值,由于科学技术的发展,还应当着眼于地方的经济和发展现状,以确保铁路运输事业高效和安全为基础环节,构建出全新的操作信号系统平台,合理的改善和解决当前由于计算机软件和系统自身安全性而导致的相关问题,解决存在的智能化和标准化的难题,实现高效和安全的运营,为今后相关事业的蓬勃发展奠定基础条件。

4、铁路信号发展方向探讨

因为现代社会计算机网络技术的快速发展,使各个行业进行网络化的管理都成为了现代管理的必要性前提,同时也是未来社会发展的必然趋势。因此,网络在未来铁路信号系统中的管理应用也会成为铁路信号管理有效性的重要组成部分。在铁路信号全面智能化、集成化的基础上,可以保证铁路实现全面准确的获取线路上的信息,同时还可以有效地保证铁路的正常运行。所以,在铁路中进行计算机技术的应用,是保证铁路信号系统问题的主要方法,这同时也是以后铁路发展过程中重要的组成部分。

5、结语

综上所述,随着社会的进步,铁路信号设备的故障解决对于保证交通道路的顺畅运行有着重大的意义,所以在今后的工作当中还应当明确重点,明确工作的难点,并且以增强核心技术为关键,加强故障的维修和处理技术。

参考文献

[1]冷娜.铁路信号设备故障诊断方法综述[J].铁道勘测与设计,2011,04:49-52.

[2]张保银,梁朝辉,李永燕.铁路信号设备故障诊断专家系统研究[J].铁道通信信号,2010,09:26-28.