首页 > 文章中心 > 隧道安全监测方案

隧道安全监测方案

开篇:润墨网以专业的文秘视角,为您筛选了八篇隧道安全监测方案范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

隧道安全监测方案范文第1篇

[关键词]:铁路隧道施工监控量测地表沉降数据分析

中图分类号:U25 文献标识码:A

0引言

隧道监控量测贯穿于整个隧道施工过程中,是一项非常重要的工作。监测的目的主要包括:保证施工安全;预测施工引起的地表变形;验证支护结构设计,指导施工;总结工程经验,提高设计、施工技术水平。

隧道地表沉降是隧道工程应进行的日常监控量测的必测项目。本文以新歌乐山隧道地表沉降为例,阐述了监测项目现场操作具体过程、数据获取及处理方法。

1新歌乐山隧道工程概况

新歌乐山隧道属新建兰渝铁路引入重庆枢纽工程,位于既有渝怀线歌乐山隧道左侧约25~50m,设计时速120km/h。隧道进口里程K1106+280,出口里程K1108+547,全长2267m。隧道进出口为浅埋段,洞顶覆盖层仅4~8m,出口洞顶及周边有大量民房,且下穿公路,出口段约300m采用非爆破法开挖。不良地质有岩溶、煤窑采空区、富水软弱围岩,特殊岩土为盐溶角砾岩及石膏。施工难度极大,安全风险高,为极高风险隧道,如图1所示。

图1 新歌乐山隧道现场图 图2新歌乐山隧道地表下沉测点布设示意图

2. 地表沉降

隧道洞口浅埋层覆盖薄,堆积松散、自身稳定性差。在施工过程中易受自重、雨水和施工爆破的影响,极易发生坍塌,沉降等大变形事故,威胁隧道的整体稳定。隧道开挖后,洞口浅埋段地层中的应力扰动区延伸至地表,围岩力学形态的变化在很大程度上反映于地表沉降,且地表沉降可以反映隧道开挖过程中围岩变形的全过程。因此,必须对地表沉降情况进行严格的监测和控制,保证施工安全。

3. 监控量测方案设计

监控量测贯穿在整个施工过程中,必须在隧道施工做好方案设计,在施工开始后根据现场情况做出细微调整。新歌乐山隧道的设计是由中铁第二设计院完成,严格按照工程测量规范(GB/5026-2007)、铁路隧道工程施工技术指南(TZ204-2008)和铁路隧道监控量测技术规程(TB10121-2007) 等国家标准前提下制定了详细方案。

3.1测点布设

理论上地表下沉受支护影响在隧道中线上沉降最厉害,往两旁沉降量递减,因此沉降曲线曲率在中间最大,两旁远离隧道中线逐渐递减。若考虑不同的沉降曲线模型,两旁的测点间距也应该是中间密两旁稀疏。但考虑新歌乐山隧道工程围岩好,隧道工艺不难等情况中线两旁的监测点都等间距布设。

针对浅埋段较短和围岩情况比较好的前提下,在进口端里程桩号K1106+285m,出口端里程桩号K1108+540m布设两个监测断面,每个监测断面上布设一个水准基点和11个监测点。面向里程增大的方向,从左往右编号1至11,其中6号点位于隧道中线上。监测断面高度距离隧道地表面高度约15m、拱高5m,按45°影响范围规定,监测断面长40m,每个监测点间距为4m。基点在远离隧道沉降影响范围外,基点与监测点埋设钢筋水泥桩。布置方案如图2所示,测点现场照片如图3所示。

图3新歌乐山隧道地表下沉测点布设示意图 图4富斯特乃尔法(Forstner method)

3.2仪器选择检校

地表沉降变化细微,观测精度要求高,其量测精度一般为±1mm。因此,采用二等水准精度要求。仪器选用南方DL-201电子水准仪,水准仪根据国家规范进行年检,合格后方可用于生产。在作业期间应进行最重要的水准管轴平行于视准轴检验,即i角检验。

用富斯特乃尔法对该电子水准仪进行i角检验校,如图4所示。第一次测得高差为h1=0.02312m,第二次测得高差为h2=0.02270m,得到i=12″。根据《国家一二等水准测量规范》(GB/T 12897-2006)规定,用于二等水准测量的i角指标限差不得大于15.0″,超过20″测量成果作废的规定。该电子水准仪满足精度要求。

3.3监测周期

监测周期主要取决于开挖面距监测断面的距离与沉降速度的大小。新歌乐山隧道总共布设两条地表下沉监测断面,出口端地表下沉(K1108+540)监测断面于2010年4月25日开始监测至2010年5月9日结束,监测频率1次/天;进口端地表下沉(K1106+285)监测断面于2010年4月26日开始监测,至2010年5月9日结束;监测频率1次/天。

3.4施测方法

通过基点与监测点进行水准联测,得到测量时刻监测点相对于基点的高差,通过两相检测周期高差对比即可以得到沉降变化。

以监测点n点为例,第一次观测周期测点n与基点的高差hn1,第二次观测周期测点n与基点的高程差为hn2。两次高差相减,得测点n在第一、二观测期间地表沉降hn12=hn1-hn2 。第三观测周期测点n相对于基点的高差hn3,与第二观测周期相减,得到测点n第二、三周期的地表沉降量hn23=hn2-hn3。以同样的方法可以得到所有监测点在不同观测周期的地表沉降量,相邻周期沉降量对比即可得到地表沉降变化趋势,通过分析判断做出相应预警或建议修改施工方案。

4. 新歌乐山隧道地面沉降数据分析

该隧道施工技术成熟,都为Ⅴ级围岩,状况理想,监测结果主要采取Excel图表法进行分析预测。具体数据处理过程:野外原始数据录入相应表格;用编辑好的公式自动计算各图表需求数据(变化速度、累计量等);选择数据按照不同方式自动生成图表(变化速度图、累计量图等)。

4.1地表下沉监测处理结果

地表沉降监测是为得到每个点累计沉降量,每个点每日沉降速度,根据变化趋势预测之后的变化情况。期间沉降量都在允许正常变化范围内,对安全施工没影响。所有数据负值表示沉降,正值表示反弹,受数据量大与保密规定,仅举例说明出口端K1108+540断面1号点情况,全断面各点数据对比图表。

图5 1号监测点累计地表下沉量

图6 1号监测点地表下沉速度

图7 K1108+540各点下沉累计量对比

图8 K1108+540各点地表下沉速度对比

4.2监控量测结果总结分析

根据监测各断面的地表沉降,得到各断面累计观测值和变形速率都较小,在位移Ⅲ级管理标准内,隧道轮廓结构稳定安全,可以预测各监测断面将逐步趋于稳定。

(1)两条断面隧道中线6号点沉降量并不是最大,也没呈现出从中间往两旁递减的趋势。出现这种情况原因可能是隧道浅埋段比较短,监测断面地表覆盖层厚且围岩稳定,出现整体沉降现象。

(2)监测期间沉降速度并没呈现如常规隧道地表沉降监测规律,前期较小,而后慢慢增大,开挖面通过地表下沉监测断面后沉降速率再慢慢减小的现象。现实情况是监测第一天最大,而后基本平稳,后期有沉降反弹,趋于停止情况出现。出现这种情况原因可能是地表沉降工作并没有按设计在隧道施工开始前就进行,监测开始时开挖面已经接近监测断面里程,加上围岩情况良好、覆盖层厚导致沉降速度未出现增大,而是慢慢减小状况。

(3)通观监测数据得出:地表沉降监测数据形式正常;按照数据生成图表显示地表沉降正趋于稳定,当前施工方法继续施工安全可行;生成图表显示两条监测断面地表沉降正趋于停止,两条监测断面监测点沉降速率在2010年5月9日均在0.2~0.5mm/天内,按照相关规范,满足净空位移和拱顶下沉的测量频率(按位移速度)要求,可以将监测周期改为1次/3天。

5.结论

近年大量隧道工程在建或拟建,做好监控量测,积累经验为今后同类型隧道设计施工提供类比依据。新歌乐山隧道监控量测中总结出以下经验。

(1)监控量测现场操作在遵循施工设计的基础上尽量多结合现场具体情况,选择合理的监测方案;监测过程中应尽量与施工单位沟通协调,了解他们作业安排,特别是爆破安排,调整具体监测时间,提高工作效率。

(2)地表沉降监测时,在固定位置架设水准仪,前后视距差L固定不变。电子水准仪i角不变,即i角误差不变,相邻周期间高差相减则消除,可以很好的解决前后视距差超限的问题。

(3)同一项监测工作尽量在固定时间监测,避免前后两周期温差过大,温度改正常数对监测结果的影响。

(4)监控量测是隧道安全施工特别有效地保障性工作,一定做到及时、准确、真实客观,根据得到的数据调整监测周期、方案。每次监测结束后应及时进行数据处理分析,绘制各种时态曲线,找出变化规律,预测隧道变形情况。

参考文献

[1] 刘招伟,王梦恕,董新平. 地铁隧道盾构法施工引起的地表沉降分析[J]. 岩石力学与工程学报, 2003, 08: 1297-1301.

[2] 李卫平,王志杰. 隧道地表沉降测量方法研究与仿真[J]. 计算机仿真, 2012, 08: 357-359.

[3]中国有色金属工业协会主编.工程测量规范(GB50026-2007)[S].北京:中国计划出版社,

2008.

[4] 中铁一局集团有限公司主编.铁路隧道工程施工技术指南(TZ204-2008)[S].北京: 中国铁道出版社, 2008.

[5] 中铁二院工程集团责任有限公司主编.铁路隧道监控量测技术规程(TB10121-2007)[S].北京: 中国铁道出版社出版,2007.

[6]中铁二十三局.新歌乐山隧道控制网复测成果报告[R].重庆:中铁二十三局,2010.

隧道安全监测方案范文第2篇

关键词:隧道支护结构;健康监测系统;构建

1 引言

近年来,我国的建筑工程行业获得了很大的发展,其在很多建筑结构施工中都应用了先进的施工技术,在施工方法上也进行了改变,因此,对隧道工程施工的结构安全性进行监测成为了检验隧道安全的重要措施。隧道施工取得了很大的进步,同时,在施工健康监测方法也取得了很大的进步,对现有的施工技术情况进行掌握,更加系统和全面的对采集传输进行更好的利用,在进行采集的时候,可以对施工现场的化学成分相关信息进行收集,然后对施工过程中可能存在的风险进行识别,这样也能提高监测的准确性。隧道施工过程中,一定好保证施工的安全性,这样不仅仅能够更好的提高施工企业的信誉,同时,也能促进隧道工程建设获得更好的发展。现在,对隧道施工进行监测是有一些方法的,隧道施工安全监测与其相比存在很大的差别,其在发展过程中实现了更加系统、全面的发展,经济性方面也非常好。

2 隧道施工健康监测系统组成探讨

隧道健康监测系统在利用过程中实现了在施工前、施工中和施工后的健康监测,在施工前,健康监测能够对出现的风险进行识别,同时,也能将出现的风险进行排除;在施工中,健康监测能够对施工中出现的任何情况都进行了解;在施工后,能够保持观测角度对隧道健康监测系统进行分析,对系统的组成情况进行掌握。

隧道是非常特殊的施工工程,在施工过程中面临的问题也非常多,对出现的问题及时发现进行处理,对保证施工的安全性非常有利。在施工前,对开挖的风险进行监测,同时进行提醒,这样能够促使整个施工是在安全控制状态下进行施工,施工前要对施工地点的地质进行分析,在确定没有安全隐患的情况下,制定施工组织计划,避免出现盲目施工的风险。隧道在施工过程中,开挖工程具有的风险非常大,开挖过程中非常容易遇到瓦斯、地下水以及地质构造破碎的情况,为了更好的提高安全性,在施工中可以对先进的技术进行利用,对提高隧道施工工程的监测和应急能力非常有利。

对施工人员和施工设备进行监测,对可能出现的风险可以进行有针对的预防,监测风险的时候也能提高其处理的速度。隧道施工现场可视监控系统,能够对施工现场的情况进行实时的反映,因此,相关的管理部门也能更好的对施工情况进行指导。隧道施工人员和设备的使用都要满足安全施工规范,这样能够确保隧道施工的安全性。隧道施工过程中,其施工质量的好坏和构造的尺寸以及位置有很大的关系,因此,对构造的尺寸和位置要进行有效的控制,在施工中对其进行很好的观察,对出现的问题及时解决。

3 隧道支护与围岩结构体系分析

对施工经验进行总结,得出了理想的支护体结构,其应该满足两个方面的要求,要保证支护体能够和周围的围岩紧密的结合,这样能够将支护结构和围岩作为一个完整的结构进行施工;支护体在使用的时候要能够和围岩共同产生形变,而且这种形变要保证是有限的,支护体要能够对围岩的变形量进行控制,对围岩的承载能力进行充分的利用。因此,隧道施工中,支护体的结构采用了柔性支护结构,这样能够和围岩实现紧密联系,同时,也能给围岩提供必要的支护能力。

支护体钢构件通常是钢拱架和格栅拱架,钢拱架一般都是由槽钢或者是工字钢弯制而成,而格栅拱架通常是由螺纹钢筋弯曲焊接而成,这种钢结构虽刚度非常低,在施工中,对围岩的支撑效果也不明显,但是,其在施工中能够和混凝土紧密结合为一体,能够形成完整的钢筋混凝土结构,对提高支护结构的刚度有非常明显的效果,同时,也能更好的发挥结构的施工作用。格栅拱架在施工中非常的方便,重量也非常轻,因此,在安装过程中也具有很多的优点。刚度较大的拱架能够在支撑效果方面非常明显,同时,也能避免出现围岩早期变形的问题。型钢结构拱架在施工中具有很多的优点,但是,其在制造过程中要面临很多的问题,其在制作过程中由于本身的刚度较大,弯曲的过程比较困难,而且,重量方面也比较大,在搬运和安装过程中要面临的问题非常多,因此,钢拱架一般都是应用在特殊地质结构中,避免出现围岩早期变形过大的问题,同时,在稳定性方面也能发挥很大的效果。

4 针对隧道支护体的健康监测技术分析

4.1 隧道支护体健康监测系统的组成

实际的监测系统一般应包括以下几个部分:现场监测。由就地安装的现场传感器和自动采集单元构成,结合目前先进的传感技术,利用先进有效的信号处理技术,实现数字化的信号采集和分析处理。通信与传输。在隧道里利用各种有线和无线传输方式,结合网络等远程传输设备将数据传输到监控中心。通过各种检测方法对隧道结构的变形与受力情况进行监测,及时提供围岩沉降和变形信息,及时预见事故和险情。

4.2 隧道结构健康监测参数

隧道结构健康状态监测需要从隧道结构中提取能反映结构特性的参数信号,如应力、应变、温度、变形、位移等信号,所以隧道结构安全监测主要应该集中在以下方面。监测位移,为了了解隧道断面的变形情况可以检测隧道的周边收敛、纵向位移及洞口地表沉降等位移情况,依此来判断隧道结构的稳定性。

5 支护体健康监测系统设计

隧道支护体结构健康监测不同于目前工程上常用的应力监测,旨在监测支护体内部受力钢结构是否与设计位置一致、受力钢构件细部结构是否受到损害、施工完成后乃至运营期间,位于复杂地质结构处的结构体是否稳定无变形。即系统应该包括三个子系统:支护体结构完整性检测、支护体结构损伤监测以及支护体拱顶变形沉降监测。为实现系统目标,设想三个子系统技术实现总体思路及要解决的技术关键分别是:支护的结构完整性检测子系统:拟利用在隧道地质超前预测时得到的隧道两侧的雷达波数据,通过杂波抑制处理和参数估计得到支护的完整性信息。该方面的技术关键在于如何提高接收振动反射波的识别质量,形成易于操作、效果好的构造物定形定位技术。支护体结构损伤监测子系统:该系统目的是实现较为精确的支护体结构是否受到损伤监测值,为后续施工和防护提供有效的数据支持。支护体沉降变形监测子系统:该子系统目的是较传统隧道变形监测方法在测量精度、设备组成与安装上进行简化。技术关键是设备组装与分析集成技术。

6 结束语

文章对隧道施工前期存在的安全风险进行分析,对隧道施工健康监测系统构成进行分析,对影响健康监测的问题进行深入讨论,对支护体结构的重要性和支护检验的必要性进行分析,提出了隧道结构健康监测系统的总体设计方案和技术措施。

参考文献

[1]林强.隧道支护体结构健康监测技术研究[D].长安大学,2010.

[2]李明.山岭隧道与地下工程健康评价理论研究及应用[D].西南交通大学,2011.

隧道安全监测方案范文第3篇

2、铁厂沟隧道左线起讫桩号ZK79+335~ZK80+270,长935m;右线起讫桩号YK79+305~YK80+240,长935m。隧道最大埋深约35m。左右线隧道测设线间距:进口21.45m,出口17.78m,属小间距隧道形式。本隧道工程地质及水文地质较为复杂,隧道围岩主要为IV、V类围岩为主,岩性为泥质砂岩或粉砂岩,为软质岩。

2、监控量测的目的

为了掌握围岩在开挖过程中的动态信息和支护结构的稳定状态,提供有关隧道施工全面、系统的信息资料,为评价和修改支护参数,力学分析及二次衬砌施作时提供信息依据,确保施工安全和支护结构的稳定,监控量测是施工过程中必须完成的施工程序。对围岩支护系统的稳定状态进行监测,是确保施工安全、指导施工程序、便利施工管理的重要手段。

3、监控量测项目

根据设计图纸和规范要求,本隧道施工必须进行的监控量测项目有:洞口浅埋地段地表下埋观测、洞室周边位移变形监控量测以及日常观察与施工调查。

4、监控测量设备仪器、量测方法、频率

5、测量监控方案

5.1地质和支护状态观察(洞内外观测)

①洞内外观察(即地质和支护状态观察)分开挖工作面观察和已施工区段观察两部分,开挖工作面观察在每次开挖后进行一次,内容包括围岩岩性、产状、变形、围岩风化变质情况、节理裂隙发育、断层分布和形态、地下水情况、工作面稳定状态、底板情况、及喷射砼的效果等,观测后应绘制开挖工作面地质素描图,填写工作面状态记录表及围岩类别识别卡,对已成区段的观测应每天进行一次,观察内容包括喷射砼、锚杆、钢架的状况,并将观测情况进行记录。

②洞外观察包括洞口地表情况、地表沉陷、边坡及仰拱的稳定、地表水渗透的观察。

③观测方法:地质罗盘和眼睛进行观测。

④在观察过程中如发现地质条件恶化,初期支护发生异常现象,立即通知施工负责人采取应急措施,并派专人进行不间断观察。同时报设监理、设计单位进行现场查勘,制定加固处理方案。

5.2 拱项下沉及周边收敛量测

拱顶下沉及周边收敛量测应在同一断面进行,并采用相同的量测频率。如位移出现异常情况,加大量测频率。

收敛量测采用JSS30A型收敛计。可测量小于25mm的距离,测量精度为0.01mm。使用时先悬挂仪器、调整钢尺张拉力,至刻度标线重合时,即可读数。为减少测量时的视觉误差,读数三足取平均值。根据测量数值计算收敛值L=L1-L2和收敛速度 V(t)=L/t。

根据《公路隧道施工技术规范》的要求,结合本标段隧道具体情况,确定各级围岩拱顶下沉及周边收敛量测断面及量测频率,岩层变化处应调整或增设量测断面。

每次测量结果应记录,并根据测量结果计算收敛速度,进行相应分析。

5.3洞口段地表下沉量测

根据本工程设计图纸要求,地表下沉量测布置在隧道每端洞口,其测点的布置与拱顶下沉及周边收敛测量的测点在同一断面内,量测频率原则上采用1~2次/日的频率。

5.4锚杆拉拔力

锚杆拉拔试验主要以锚杆的拉拔力检查锚固力。施作锚杆地段每10m或300根检查一组,每组至少做3根锚杆拉拔试验。

监测仪器:锚杆拉拔器。

6、 量测要求

隧道开挖后应及时进行各项观测。量测部位及测点的布设应根据地质条件、量测项目和施工方法等确定,测点应距开挖面2m的范围内尽快安设,并应开挖后24h内或下一次开挖前测读初次读数;测点的测试频率应根据围岩和支护的位移速度及距离开挖面的距离确定;现场测量的手段应根据量测项目及国内仪器的现状进行选用,要求简单可靠,耐久、成本低,稳定性能好,便于分析和反馈。

7、量测数据的处理及应用

根据现场量测数据绘制位移――时间曲线或散点图,在位移――时间曲线趋平缓时应进行回归分析,以推算最终位移和掌握位移变化规律。当最终收敛值大于允许收敛值的80%且无明显减缓趋势,或当位移――时间曲线出现反弯点,即位移出现反常的急骤增加现象,表明围岩和支护已呈不稳定状态,应及时加强支护,必要时应停止掘进,采取必要的安全措施;

根据位移变化速率判断围岩稳定状况,当变化速率大于10~20mm/天时,需加强支护系统;当变化速率小于0.2 mm/天时,认为围岩达到基本稳定。

在膨胀性围岩和地应力大的围岩中初期支护变化时间长,必要时,可提前施作衬砌混凝土。

二次支护(混凝土)施作时间:各测试项目显示位移速度明显减缓并已基本稳定;各项位移已达到预计位移量的80~90%(预计位移量可通过回归分析得到);周边位移速度小于0.10~0.2mm/d;或拱顶下沉速度小于0.07~0.15mm/d。如果围岩破碎,稳定性差时,可采取衬砌紧跟,提前施作二次模筑衬砌。

测量过程中如发现异常现象或与设计不符时,应及时提出,以便修改支护参数。

测点埋设情况和量测资料应纳入竣工文件,以备运营中查考或继续观察。

其它事项应严格按《公路隧道施工技术规范》规定办理。

8、量测管理

成立专门的现场监控测量小组,由项目总工任组长,下辖施工技术部,质量部、隧道施工队等,负责测点埋设、日常测量、数据处理和分析以及仪器的保养维修工作,并及时进行信息反馈指导施工和设计。

隧道安全监测方案范文第4篇

关键词: 盾构隧道; 公路隧道; 下穿; 安全监控中

1  工程概况

南京地铁与玄武湖公路隧道为南京市政两大重点项目, 地铁一号线盾构施工隧道(左、右线) 与玄武湖公路隧道在新模范马路与中央路的丁字路口立体交叉, 公路隧道在地铁隧道的上方, 并先于地铁隧道施工。两条隧道互交处的最小净距右线为11004m , 左线为11053m , 因此, 在盾构机穿越公路隧道下方的施工过程中, 安全监控成为确保两隧道结构安全的一项重要工作。

盾构机穿越地层为粘土性地层, 有淤泥质粉质粘土、粉质粘土、粉土等, 土质不均, 土质较差。围岩划分为Ⅰ 类, 地下水主要为孔隙潜水与弱承压水, 采用土压平衡式盾构掘进。玄武湖公路隧道采用明挖顺做法施工, 围护结构采用SMW 法工法, 主体结构为钢筋砼箱体结构, 底板为850mm 厚钢筋砼, 垫层为200mm 厚素砼, 并沿公路隧道纵向设抗拔桩, 主体结构仅先于地铁隧道2 月完成施工, 并预留了极小的盾构穿越空间。

2  安全监控方案

为保证盾构的安全通过和公路隧道的安全, 根据可能出现影响安全的因素, 选择布置适当的监控方案, 使其能客观地反映盾构通过公路隧道时的安全状况。211  监测内容及测点的布置对盾构隧道进行管片衬砌沉降和收敛监测, 同时对公路隧道进行底板隆沉、隧道净空收敛监测及围岩压力测试。其中管片变形点布置在盾构左右隧道轴线与公路隧道上行、下行隧道中线相交处的断面上; 考虑到盾构引起的地表沉降槽呈正态曲线分布[2 ] , 盾构隧道上方沉降量大, 向两侧逐渐减小, 因此布置成如图1 (a) 所示的公路隧道底板隆沉点; 在公路隧道上行、下行隧道内沿盾构左右线隧道轴线布设公路隧道净空收敛点; 在公路隧道与盾构隧道交叉处埋设6 个土体压力测点, 布置于垫层与土体之间。所有测点如图1 所示。

(a)

(b)

图1  监测点布置图

212  监测频率及预警盾构机通常的平均掘进速度为每天12m , 在下穿公路隧道时放缓速度, 约每天8m 。盾构机接近公路隧道60m 前开始初测并按照规范要求的频率进行观测, 通过时每6 小时测量一次。同时当监测值累积变化接近或超过报警值时, 加大监测频率。预警值按照Ⅲ 级监测管理[3 ] 来确定, 即将控制值的三分之二作为警告值, 控制值的三分之一作为基准值, 将警告值和控制值之间称为警告范围, 实测值落在此范围, 应提出警告, 需要调整施工参数、采取施工对策; 警告值和基准值之间称为注意范围; 实测值落在基准值以下, 说明两隧道和围岩是稳定的。同时利用变化速率作为辅助监测基准。213  控制措施。

为减小盾构施工对玄武湖公路隧道的影响, 在施工中应尽可能地减小对周围土体的扰动和地表沉降, 关键技术是保持盾构开挖面的稳定和管片脱出盾尾后建筑空隙。盾构开挖面的稳定可以通过优化掘进参数来控制, 其重要参数有三个: 正面压力、推进速度和出土控制。在盾构还未到达公路隧道的掘进过程中, 通过地表沉降曲线进行实测反馈, 以验证选择施工参数的合理性或据以调整优化施工参数。在通过公路隧道时减小正面压力, 放慢推进速度, 加快出渣速度能达到降低地表隆起的目的; 相反, 采取提高正面压力, 加快推进速度, 减少出渣量, 能起到控制沉降的目的, 这样能够保证公路隧道路面的稳定。

建筑的空隙的充填则采取同步与二次注浆。在盾构掘进过程中, 尽快在脱出盾尾后环形建筑空隙中充填足量的浆液进行同步注浆。二次注浆是弥补同步注浆的不足, 减小沉降的有效辅助手段, 在盾构下穿公路隧道时, 以达到控制地表沉降的目的。盾构通过后, 根据实时监测结果及时控制固结沉降, 在管片衬砌后实施跟踪回填与固结注浆, 尤其是对拱部120°范围内进行地层的固结注浆, 最大程度地保证公路隧道和盾构隧道的稳定。

同时注意盾构姿态的控制, 在盾构推进和管片拼装时确保姿态不后退、不变向、不变坡, 保持连续均衡的施工。并且在公路隧道与盾构隧道互交处, 加载垫层, 沿玄武湖隧道纵向设抗拔桩。

3  实测情况分析

盾构左线于2002 年5 月16 日至19 日完成公路隧道段的施工。在盾构机接近公路隧道60m 到远离公路隧道100m 这一阶段, 连续对监测项目进行跟踪监测分析。

(1) 土压力分析图2 是盾构机左线穿越公路隧道时, 土压力的变化情况。

图2  土压力变化曲线土压力的变化规律与盾构施工进程相对应, 土压变化规律比较明显, 主要有以下特点: 1) 右线土压力(Y4 、Y5 、Y6) 基本没有变化, 说明盾构掘进影响范围比较小, 右线上方土压力比较正常, 土体没有发生大的扰动。

2) 从左线土压力(Y1 、Y2 、Y3) 的变化情况来看, 盾构推进对左线上方土体有挤压作用。盾构切口前方土压略有下降(主要是泡沫影响所致), 但数值比较小; 盾构切口到达时与盾构土仓顶部压力基本一致。

3) 盾尾到达时土压上升(主要受同步注浆影响), 盾尾通过后土压开始下降, 最终稳定但仍比掘进前略大。土压下降是浆液固结收缩所致, 总体上同步注浆对地层有压密作用。

4) 图2 还反映出在盾构到达后, 土压力不断增加, 平均大约增加0106MPa , 随后又减少了大约0104MPa 。说明盾构在推进时对周围主体产生挤压, 使压力增加, 而后产生弹性恢复, 压力减小。压力经历了减小—增大—减小的动态变化后, 其间使公路隧道和盾构隧道的受力发生变化, 控制不好会影响两隧道的安全。

(2) 公路隧道底板沉降

从4 月25 日开始对玄武湖公路隧道底板开始跟踪监测, 到5 月23 日盾构已经完全穿出一段距离后, 公路隧道南北线29 个监测点最大隆沉值为119mm , 最小值011mm , 未影响公路隧道的安全。为分析盾构推进对公路隧道底板影响规律, 分别绘制公路隧道方向(南线) 沉降在不同时间段内的变化曲线图, 以及典型点随时间变化的曲线图(图3 , 图4) 。

图3  南线公路隧道底板各时段沉降曲线

图4  典型地表点随时间变化曲线

分析图3 、图4 可以得到以下结论:

1) 盾构未到达公路隧道时, 地表有比较大的沉降量, 最大沉降量为116mm , 说明盾构正面对土体的推应力小于原始侧向地应力。而且其沉降量曲线与累积沉降量曲线很接近, 说明这一阶段的沉降量是通过公路隧道时主要沉降段。

2) 盾构通过时, 地表有隆起的现象, 最大值仅为017mm , 由于盾构切口到达时与盾构土仓顶部压力基本一致, 微量隆起跟强注浆量有关。同时没有出现大的隆起说明抗拔桩起到了抗拔的作用。

3) 盾构通过后, 公路隧道地表有微小的沉降, 其中S1 -1 , S2 -1 处于抗拔桩外沉降明显。

4) 分析典型点沉降过程, 盾构到达前的沉降量占到总沉降量的95 % 以上, 速率为0108mmΠd。而通过时的隆起抵消了通过后由于土体的固结引起的沉降。

5) 监测数据显示, 当覆土厚度不够时, 加载垫层和抗拔桩是有效的措施之一, 能很好地控制地表的隆沉。

(3) 管片沉降及隧道收敛

监测数据显示公路隧道的净空收敛最大变化量为0187mm 。同时根据对地铁管片连续的跟踪监测表明, 相交处地铁隧道最大累积收敛为1148mm , 最大累积沉降为0170mm 。考虑到读数的误差, 可以认定在穿越玄武湖公路隧道期间, 公路隧道没有受到大的影响; 完全穿越后地铁管片的沉降以及收敛在控制范围内, 说明公路隧道已经趋于稳定, 盾构隧道安全穿越公路隧道。

4  结论

(1) 监测数据表明在盾构隧道穿越公路隧道期间, 盾构的各种参数设置比较适当, 在推进速度较快(约60mmΠmin) 的情况下, 保证了公路隧道的稳定; 同时为右线盾构隧道的再次穿越积累了经验。

(2) 地铁隧道与不同类型的隧道互交并且采用土压平衡盾构施工, 当覆土厚度不够时, 可加载垫层和设置抗拔桩。监测结果表明一些变形数值远远小于控制值。在覆土最小仅为11004m 的状态下, 盾构机安全穿越公路隧道, 为以后同类型工程积累宝贵的经验。

(3) 在盾构推进时, 须加强周边环境的监测, 根据实际情况来调整盾构推进参数, 控制地表沉降, 保证相交隧道的安全有着重要的作用。

参考文献

[1 ] 唐益群等. 上海地铁盾构施工引起地面沉降原因分析研究

隧道安全监测方案范文第5篇

关键词:运营地铁保护地下连续墙冷冻法止水隧道变形监测

中图分类号:U448文献标识码: A

引言:随着城市轨道交通的迅速发展,在运营地铁线路附近进行工程建设的现象越来越常见。为确保原有地铁线路的正常运营,必须严格控制施工对运营地铁隧道的影响,同时做好施工期间对地铁隧道的监控。本文以华南某运营地铁隧道为例,探讨在运营地铁隧道上方修建公路隧道时的保护措施和监控措施,从而确保地铁线路的安全运营。

1 工程概况

华南某地铁隧道上方修建下穿公路隧道,该公路隧道与地铁隧道在平面上成十字交叉。地铁隧道为盾构法施工,外径约6.0m,左右线之间净距约7m。地铁隧道顶覆土约16m,地铁上方基坑开挖深度约10m,地铁衬砌结构顶距基坑底约6m。为有效控制基坑变形,基坑采用地下连续墙围护,为有效止水封闭基坑及控制坑底隆起,基坑底以下4m 范围内采用三轴水泥土搅拌桩满堂加固。为更好地保证止水,在地铁上方基坑南北端增加冷冻法止水施工。工程基坑与地铁结构关系见图1-1。

图1-1 工程基坑与地铁结构关系图

2 工程施工对地铁隧道影响分析

根据该公路隧道的设计、施工方案,并结合地铁隧道所处的地质环境分析,本工程的施工可能对地铁隧道产生以下几方面的影响:

2.1基坑施工卸荷或加载易导致地铁隧道结构变形

基坑开挖的卸荷,主体施工时的加载期间,地铁隧道上方进行重复的卸载和加载,易引起坑底土体回弹、位移,地层变化向隧道传递,继而引起区间隧道管片出现回弹变形,严重时直接影响列车运营。上部的工程活动对拱顶的受力、变形影响较大,可能导致地铁既有结构变形;管片开裂、连接螺栓刚度受损;地铁防水结构破坏,造成道床、隧道渗漏水。

2.2 基坑底存在涌水、涌砂风险从而影响地铁隧道安全

地铁隧道主要处于透水性砂层中,施工中稍加扰动极易形成流砂状态,当基底出现涌水、涌砂和管涌,则易造成基坑失稳,大量水土流入基坑,造成周边地面或建筑物下沉,引起地陷或建筑物倾斜,引起坑底隆起,地层移动并导致地铁隧道结构变形,从而引起区间隧道管片出现变形,造成隧道开裂、破损、渗水现象,严重时隧道位移过大,造成轨道变形,或地铁运营电网受损,直接影响列车运营安全。

2.3 近距离施工震动造成地铁设备破坏

地铁上方基坑支护中的三轴水泥土搅拌桩、地下连续墙、旋挖桩与地铁隧道结构的距离较近,如地铁隧道两侧的连续墙与隧道相距5米,两孔隧道之间的旋挖桩,桩长超过地铁隧道结构底,特别是连续墙成槽及修槽施工中,破除连续墙、中隔离墙桩头引起的震动,均易对地铁隧道造成影响,或者造成地铁防水结构破坏。

2.4 冷冻法钻孔施工及冻胀冻融对地铁结构的影响

根据冷冻法止水设计方案,为达到更好的冻结效果,冷冻管需与隧道结构外表面密贴,因此在施工中有钻通隧道结构的风险。另外,由于冻结工法特点,冻结期会使隧道结构产生冻胀变形,严重时可能造成管片较大的变形甚至破坏,而在解冻期,冻土体融化体积收缩,地层会产生一定的沉降,对附近的隧道结构也会造成一定的影响。

3 工程施工期间对地铁隧道的保护措施

通过以上该工程的施工对地铁隧道的影响分析,结合实际施工情况,对运营地铁隧道采取了以下几方面的保护措施:

3.1 对运营地铁隧道进行人工加密监控

为了较直观地掌握工程施工过程中地铁隧道产生的变化情况,需对地铁隧道结构进行一定频率的动态监控,并建立档案进行比较分析。主要通过施工前隧道结构现状普查、施工过程中的人工监控和施工后的现状确认三部分来进行。施工期间的人工监控主要是安排人员通过肉眼观察和拍照建档的方式,详细记录施工期间隧道管片的变化情况,频率则根据实际施工情况略做调整,在基坑支护阶段为每周检查一次,在土方开挖及主体结构施工期间则调整为每周两次。

该段隧道在施工前普查中状态良好,结构无渗漏水现象,管片无裂缝、错台等异常情况。而在基坑支护阶段,冷冻法施工开始后,冷冻法影响区域的管片出现不同程度的渗漏水现象。出现该情况后,工程人员结合施工开始以来监控的记录进行分析,确定是冷冻法的冻胀力令原管片止水胶条发生弹性变形,导致止水压力低于外部水压力,从而引起渗漏水。通过采取调整冷冻设备参数和对渗漏位置进行注浆止水,及时处理了冷冻法引起的隧道结构渗漏水现象。

3.2 围护结构控制措施

地铁隧道上方近距离的搅拌桩、连续墙、旋挖桩施工深度和垂直度控制是本工程安全控制的重点,在实际施工中采取了以下控制措施:

(1)认真核对公路隧道与地铁隧道的平面位置及高程,提高施工中的精度;

(2)搅拌桩和旋挖桩分别通过搅拌桩机和旋挖钻机的钻杆标识来控制桩长,设立自动开关控制装置,连续墙通过测绳反复测量成槽深度;

(3)通过成槽机和旋挖钻机自身配备的电脑系统,自动调整钻杆垂直度;搅拌桩机通过钻架悬吊铅垂来控制垂直度,终孔后再采用超声波检测孔壁垂直度。

3.3 土方开挖控制措施

为有效控制地铁隧道上方土体开挖步骤,防止土体卸载后地铁隧道上浮,施工时采用了分块、分层、分条、限时开挖的方式。施工过程中东西两区依次开挖,先施工西区,后施工东区,深度方向上分层开挖,严格遵循“开槽支撑、先撑后挖、对称、平衡、限时”的原则,基坑竖向分三层开挖,第三层分条开挖完成后及时浇筑该条垫层,以控制基坑隆起,减少对地铁隧道的影响,垫层完成后,及时施作主体结构。

3.4 冷冻法施工控制措施

(1)钻孔前,对每个孔的长度和地面及孔底标高进行细化,在隧道顶上部1m 以上段采用牙轮钻头钻孔, 以克服地层软硬不均的影响,保证钻孔垂直度和提高钻孔效率。 在隧道上部的孔及可能偏斜碰到隧道的冻结孔,提前在地面配好钻杆长度,详细记录钻进深度,根据设计尺寸当离隧道还有1m 时,改换三翼钻头,钻头上不配硬质合金(钻不动隧道管片),慢慢钻至设计深度,同时根据钻进扭矩和进尺速率判断是否到达隧道边缘。

(2)本冻结区域土体为粉质粘土和风化岩,含水量和渗透系数小,同时上部土层已进行搅拌加固,土性被改良,综合分析此工程弱冻胀情况。冻结帷幕的外侧没有受限,冻胀力可以得到及时释放,不会产生较大的冻胀力。为安全起见,在冻结帷幕布置若干泄压孔,当冻胀力产生时,通过泄压孔直接向地面释放地层过高压力,以减少可能对隧道的挤压影响。

3.5 对运营地铁隧道进行自动化监测

为了连续监测工程施工影响下隧道结构的几何变形情况,及时掌握隧道变形的规律,科学合理地指导工程施工,并将施工对隧道的变形控制在较小范围内,在受工程施工影响的地铁隧道范围内建立了全自动的无线传输监测系统。具体的监测方案为:在受施工影响的地铁隧道局部区段左、右线各布设13个监测断面,每个监测断面布设5个监测点(分别位于左、右钢轨旁的道床上,左、右拱腰部位和拱顶部位)。每条地铁隧道的13个监测断面中,7个断面在下穿公路暗埋隧道正下方,另6个布设在暗埋隧道边线两侧。在基坑支护阶段及主体结构施工期间,地铁隧道监测频率均为1天/3次,地下结构施工完成后再保持1个月的监测,频率则调整为3天/次。经过施工期间的跟踪监测,一直到该行车隧道主体结构全部完成,运营地铁隧道各监测点的累计变化量均在2mm以内,变形量较小,本工程的施工对地铁隧道结构的影响不大。

4 结语

通过对本工程施工对地铁隧道的影响进行分析,并提前采取了相应的保护措施,该公路隧道顺利完成,施工期间地铁隧道变形量较小,说明采取的措施对于地铁隧道的保护是成功的。本工程由于基坑距离地铁结构较近,除了在基坑支护阶段提高施工中的精度外,还应做好对隧道结构的动态观测,及时掌握隧道结构变化规律,同时指导工程的施工,本工程的经验可供以后类似的地铁保护项目参考。

隧道安全监测方案范文第6篇

【关键词】水底大直径盾构隧道 健康监测系统 工程案例 结构健康监测 纵断面稳定性 横断面计算

1结构健康监测的概况

结构健康监测是指通过现场无损传感技术的合理运用,对其结构系统特性进行分析,其包含结构响应等,并调查研究结构损伤位置、程度,以此对结构损伤、退化进行准确检测。实施结构健康监测的目的就是为了进行实时监测系统的建立,以此为管理人员实时监测重大结构损伤提供便利,并对结构性能变化与剩余年限做出预测及提供科学有效的养护策略。

2工程案例

某水底大直径盾构隧道工程全长5853米,属于“左汊盾构隧道选取复合式泥水盾构机2台施工,其直径为14.93米,2895米为盾构段隧道总长度,14.5米为其外径,13.3米为内径,―51米为隧道最深位置。该工程施工地层主要以第四系全新统冲积层,粉质粘土、淤泥质粉质粘土等为其主要岩性。砂卵石透水性地层为隧道主要穿越区域,具有丰富的地下水及过大的水压力,60米为江中段隧道顶部和长江最高水位之间的差距。

3水底大直径盾构隧道健康监测系统的应用

3.1隧道结构纵断面稳定性分析

在运营过程中为对盾构隧道的受力情况进行准确有效地反映,对综合研究盾构隧道所在地质、地形条件、埋设深度、水压变化等,并根据对称性原则进行该工程研究,其关键部位应包括:盾构始发、大堤、变坡等,以此获取盾构隧道结构最大受力部位,为隧道结构健康监测纵向断面布设提供可靠保证。

选取三维有限元研究,将具体土层情况作为前提条件,对地质、地层与水压影响隧道结构安全性进行模拟。按照具体地质情况、土层计算参数,对基本假设进行计算,具体内容如下:

第一,选取摩尔―库伦准则计算;

第二,当具有较长纵向长度,管片混凝土衬砌可选取板单元模拟。根据弹性材料计算,需对刚度折减情况进行充分考虑,0.8为折减系数。

第三,在弹塑性范围内控制地层、材料应力应变。

第四,对地下水荷载作用充分考虑。

3.2模型与边界条件计算

按照隧道纵向对称性与模型规模等,选取1900米作为模型纵向长度,横向选取隧道左右2侧长度为53.05米,50米为纵向隧道底部选取长度,82到112米为模型高度。模型可进行194326个单元划分,节点数量为30686个。

3.3横断面计算结果

完成隧道工程后在隧道正上方部位极易出现地层变形情况,同时,相比水域地层沉降,陆域沉降较大并具有广阔的分布范围。与地层、管片结果纵向变形规律充分结合与研究,如变坡(X)为5160毫米时,横断面管片外侧计算结果如表1所示,其结论如下:

第一,管片顶部与底部的管片外侧压应力值较大,拱顶可产生2.25MPa最大压应力。相比拱顶、隧道受力情况,隧道衬砌环左右侧受力呈相反趋势,在衬砌环右侧可产生0.75Mpa最大拉应力。

第二,压应力同时存在于管片拱顶、隧底内侧,隧底将产生0.51Pma最大压应力。相比衬砌外侧应力,其内侧2侧应力呈现相反趋势,一般在衬砌右侧出现3.52Mpa最大压应力。

序号

测点位置

外侧最小应力值(kpa)

外侧最大应力值(kpa)

内侧最小应力值(kpa)

内侧最大应力值(kpa)

1

-473.8

-2254.4

-436.9

-167.6

2

45°

-282.3

-824.7

-401.2

-1396.4

3

90°

558.5

109.5

-882.2

-3234.9

4

135°

-54.8

-144.8

-532.3

-2306.7

5

180°

-263

-1840

-359.5

-513

6

225°

721

-22.2

147.5

-742.9

7

270°

754.3

232.1

-984.9

-3515.4

8

315°

140.0

-158.4

-610.7

-2594.9

表1 横断面最大、最小应力值

3.4确定监测断面

因隧道具有较长的线路及较大的洞径,需从不同地层穿越,进而增加了施工难度。隧道施工中需在结构、地层内埋设大量仪器,以此监测施工环节变形、位移、应力与水压,实现信息化作业。隧道通车使用阶段通过以上仪器与设备可实时监控隧道结构变形、受力情况,确保隧道运行的安全性。

据分析,本工程隧道健康监测方案,要求左右线需分别进行5到8个断面布设。其中5个分别为盾构始发位置、2个变坡点、江中心与大堤位置,除此之外,与双线隧道施工先后特点相结合,施工隧道可进行3个断面的增设,如表2所示。

里程

先施工隧道

后施工隧道

K3+600~k4+000

LK3+610(出洞)LK3+770(大堤)

-----

K4+200~k6+050

LK5+100(变坡)LK5+400

RK5+160(变坡) RK5+800

K6+050~k6+614

LK6+600(进洞)

LK6+300(大堤)

合计

5个

3个

表2 纵向监测断面里程表

3.5健康监测内容与监测数据采集

管片接缝张开度、隧道外侧水压力、轴向力、弯矩等为健康监测的主要内容,柔性土压力计、光纤光栅钢筋应变传感器等为监测材料与设备。本文主要分析该工程隧道左右线第一个监测断面相关数据,根据结构健康监测系统大量监测数据采集情况,并与使用期间环境因素相结合,得出各监测断面结构健康情况如下。土、水压力监测值在监测期间因汛期控制因素影响,将产生上升现象,并逐步呈现稳定状态。管片纵向、环向变形与受力情况因汛期控制,将增加管片压力,并增加管片结构及出现变形情况,但外界压力却始终在控制值以下,同时需在理论值范围内对位移、应变情况进行有效控制,结构响应也需控制在安全范畴内。

3.6盾构隧道安全评估

(1) 工况计算。因多方面因素对结构横断面受力规律的影响,在软土层内为对隧道受力与变形规律进行准确半段,需进行5处断面的选取与分析,如陆上覆土最小位置、覆土最大位置等,其断面特征计算如表3所示。

工况

里程

特征

埋深m

水深m

计算模式

工况1

K3+600

陆上覆土最小处

6.9

/

水土合算

工况2

K3+762

防洪大堤

18.0

/

水土合算

工况3

K5+100

江中冲刷最大处

18.5

31.5

水土分算

工况4

K5+350

江中覆土最小处

15.1

33.7

水土分算

工况5

K6+190

覆土最大处

32.8

1.1

水土分算

注:砂性土采用水土分算,粘性土采用水土合算,水深按300年一遇。

表3 工况断面特征计算

(2)参数计算与荷载计算。14.5米为盾构隧道管片外径长度,13.3米为其内径长度,6.95米为衬砌管片环中心半径长度,600毫米为管片厚度,10片为衬砌各环管片数量,2米为管片宽度,C60为混凝土等级。

管片在梁弹簧计算模型中可看做简单的直梁单元计算,管片间与管片环间螺栓的具体效应模拟以旋转弹簧与剪切弹簧为主,模拟地基弹簧单元时可选取地层、管片间的互相作用。

根据国内外盾构隧道设计要求,确定管片接头弹簧参数,在此过程中续对螺栓特点选取经验值进行充分考虑。每环分10块管片,前后相近环管片纵向M30需4个螺栓连接,总数为42个。每环的10片管片连接可选取M36规格(3个),总数为30个。选取M36规格的环向螺栓;选取M30规格的纵向螺栓。地质条件不同,其选取的螺栓机械性能等级也不尽相同,一般环向螺栓选取6.8级机械性能,纵向螺栓选取8.8级机械性能。

3.7健康监测系统软件实现

工控机(1台)与其运行的相应软件为该工程隧道健康监测系统的仪器集成和预警报警子系统。其利用网络接口可由MOI光纤量解调仪(6台)进行光纤传感器监测数据(738个)的获取,利用工控机Access数据库接口进行振弦式渗压计、土压计监测数据(120个)的获取,其监测的物理量共有858个,针对收集的监测数据,子系统可进行解算、显示,根据相应格式进行数据库存写,并按照给定预警报警值进行声光报警。

4结语

综上所述,随着社会经济发展速度的不断提升,公路建设已无法满通运输需求量,通过扩大隧道工程建设,可有效扩大通行能力、减缓交通压力。水底大直径盾构隧道健康监测系统的建立与完善,对隧道工程建设安全性提高具有至关重要的作用。本文通过工程案例分析,对其健康监测系统各项内容进行了分析,并做出了相应的措施,以期有效提升盾构隧道工程建设质量、延长使用寿命。

参考文献:

隧道安全监测方案范文第7篇

关键词:高瓦斯隧道 非煤系地层 治理 施工技术

0 引言

隧道工程瓦斯灾害属于极具危害性的突发事故,具有分散性特点。近几年隧道工程中因瓦斯爆炸事故虽然不多,但其危害相当严重,因而逐渐成为社会焦点。国内曾发生过严重的隧道瓦斯爆炸事故,造成巨大人员伤亡。非煤系地层区瓦斯涌出比较分散,且都是随即发生,隧道施工过程中,若不提前做好防治瓦斯的设计规划,施工中很可能引发瓦斯灾害。鉴于此,研究非煤系地层隧道瓦斯的形成机制以及施工对策具有重要的实际意义。

1 工程简介

某高瓦斯隧道最大埋深248m。隧道开挖采用台阶法施工。全隧穿越岩性为砂岩、泥岩互层;构造位于税家槽背斜西翼,构造简单,岩层倾角4°~5°,节理、裂隙发育一般。

2 瓦斯形成机理分析

综合分析设计提供地质资料,某隧道是由于浅层天然气沿地层的岩体裂隙上逸进入隧道。天然气源自隧道下方2800m三叠系上统须家河煤系地层,它在储存过程中不断随着地质构造的衍变逐渐上移,在侏罗系上统蓬莱镇组地层局部储存封闭或孤立残留在岩石裂隙中,形成以裂隙型游离瓦斯为主的天然气。这类天然气因流量小而相对稳定,但是压力低,分布不均,多数情况下随机涌出,具有良好圈闭条件的与储气层相同且张裂隙或裂隙发育的砂岩透镜体的分布情况对瓦斯储量起着决定性的影响。施作隧道工程时,可能发生瓦斯泄漏的情况通常有三个特点,一是天然气储量大,二是砂岩层厚且孔隙率较大,三是裂隙呈网络系统发育。部分地段的封盖具有良好的圈闭条件,大裂隙发育过程中延伸到了储气层,如果直接挖开封盖,储气层内的瓦斯就会顺着裂隙发育喷涌而出,严重时造成爆炸事故。

3 施工技术

高瓦斯隧道施工管理的重点是防止瓦斯燃烧和爆炸的灾害性事故的发生。根据笔者的经验,当隧道施工现场有充足氧气、一定温度的引火源和一定浓度的甲烷时,发生瓦斯爆炸事故的可能性最大。施工对策的制定就是从这3个条件出发,高瓦斯隧道的瓦斯防治手段主要从4个方面考虑,即:隧道瓦斯的超前预测、通风设备的选定及管理、确定检测和监控系统、施工用机械和电气设备的选用和管理。施工中采取超前钻孔探测、预测隧道前方瓦斯的发育情况,通过加强通风降低瓦斯的浓度,采用有效的瓦斯检测监控系统监控瓦斯的浓度,控制隧道各个不同作业面内的瓦斯浓度在安全作业许可条件内,选用防爆的电气设备控制火源等手段,确保了隧道的安全施工。

3.1 瓦斯的超前预测

隧道施工中瓦斯涌出量与所在工区的围岩性质、地质情况有密切的联系。通过超前水平钻孔探测和预测隧道前方瓦斯的发育情况,为采用合理的施工措施提供依据,防止瓦斯突涌及爆炸事故的发生。瓦斯隧道安全控制的要点即是在隧道正洞开挖前采用超前水平钻孔对前方地质进行探测验证。

超前地质钻孔采用φ89mm多功能轻型钻机水平钻孔进行探测验证,每25m一循环,孔身长度为30m,搭接长度不小于5m,隧道正洞每个断面设置5个探测孔,分别在拱顶一孔,拱腰两孔,拱底两孔。

3.2 通风设备选定及管理

3.2.1 通风设备选定

通风设备选定是结合隧道各工区任务量划分,并根据瓦斯涌出量、爆破排烟、同时间洞内工作的最多人数、洞内施工机械排放废气量等分别计算通风所需风量,并按允许风速进行检验,采用其中的最大值,以确保风量和风速满足瓦斯防治要求。

全隧采用压入式主导通风方式。依据风量计算要求正洞单口选用的型号为: 2台SDF(c)-NO.13(2×132KW)型轴流风机(1台备用)通过2道管路同时供风,可满足隧道需求风量要求,斜井采用一台SDF-NO.11(2×110KW)轴流风机。隧道掘进超过1200m时,在正洞回风区增设SDS-Ⅱ-NO.10射流风机,并在瓦斯易聚集作业面增设局扇以降低瓦斯浓度。正洞通风管选用抗静电阻燃风管,直径为1.5m。风管利用φ1500mm钢筒通过衬砌模板台车。

3.2.2 通风管理

①在隧道开挖阶段,集合通风系统管理的技术工人组成通风班组,建立设备巡检制度,督促技术人员每天坚持检查和记录设备运行情况,按要求进行故障检修,确保管路顺直,无死弯、无漏洞;

②建立瓦斯通风监控机制,负责风量、风速等技术参数的检测工作。指派专人指挥风机系统的启停和变速,全程跟踪记录并签认操控流程。移动模板台车时风机转为低档位连续供风;

③隧道回风风速按0.25m/s设计,在避车洞、模板台车、塌腔和加宽段加设局扇以避免瓦斯积聚。为解决风速低时回风流瓦斯的层流问题,一般地段可用射流风机卷吸升压来提高风速。

3.3 瓦斯检测、监控体系

应用互补互验型监测系统进行瓦斯监测,一方面提高监测精度,另一方面有效弥补单一检测方式的缺陷,提高隧道施工安全系数。全套瓦斯检测、监控体系由KJ90自动监控系统、CJG10型光干涉瓦斯检测仪两种仪器相结合方法检测,以保证瓦斯检测数据的准确,确保施工安全。

3.3.1 人工瓦斯检测

人工瓦斯检测采用光干涉式瓦斯检测仪和便捷式甲烷检测报警仪。CJG10型光干涉瓦斯检测仪精度高,测量瓦斯浓度误差为±0.1%。特点是携带方便,操作简单,检测地点灵活,主要为瓦检员配备。

3.3.2 瓦斯自动监控系统

瓦斯自动监控系统使用KJ90声、光连动自动监控系统,其探头悬挂位置应能反映隧道即时风流中瓦斯的最高浓度。在检测到瓦斯浓度≥0.4%时报警,瓦斯浓度≥0.5%时切断电源实施瓦电闭锁。瓦斯探测器主要设置在掌子面处(开掘处)、衬砌处、加宽带和回风口四类易引起瓦斯发生积聚、且位置相对固定、重要的地方。

3.4 施工机械和电气设备的选用与管理

《铁路瓦斯隧道技术规范》规定:隧道内高瓦斯工区和瓦斯突出工区的电气设备和作业机械必须采用防爆型。瓦斯隧道作业设备选用防爆型不仅装、运机械成本太高,而且对施工工效有较大影响。瓦斯隧道施工设备配置方案是否要全部采用防爆型,不能仅取决于是否为高瓦斯类或瓦斯突出类来定性地决定,而应取决于施工中实测的瓦斯浓度大小来做出科学的选择。

考虑到本隧道瓦斯属于深地层天然气溢出,产量低、而且突出几率小,经充分研究,在加强超前探测、瓦斯检测,加强通风,设立施工许可条件基础上,采用普通的装、运机械完全可以保证作业安全。此外,为杜绝瓦斯燃烧爆炸的条件形成,洞内其他所有电气设备、线路均采用防爆型。

4 瓦斯治理效果

该隧道施工管理采取了上述治理措施,根据KJ90自动检测系统显示,爆破后掌子面的瓦斯浓度和一氧化碳、氮氧化合物浓度在通风5min~8min就降到规范要求的限值以下。洞内环境良好,检测到的瓦斯和有害气体均在允许浓度以下,连续作业8个月,未发生因瓦斯超限造成人身伤亡和设备损坏事故。平均单口月成洞进尺达到了126m/月,说明治理措施是有效的。

5 结语

非煤系瓦斯隧道瓦斯赋存的随机性导致隧道开挖面出现瓦斯没有规律,隧道施工瓦斯的防治应对隧址区地层岩性、地质构造进行全面认识,尽可能掌握潜在的瓦斯来源及运移通道,从而采取排放、稀释、监控等综合措施进行治理。本方法可以起到同类隧道的借鉴作用。

参考文献:

[1]张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005.

[2]铁建设[2008]105号铁路隧道超前地质预报技术指南[S].北京:中国铁道出版社,2008.

[3]TB 10121-2007,铁路隧道监控量测技术规程[S].北京:中国铁道出版社,2007.