首页 > 文章中心 > 量子计算的概念

量子计算的概念

开篇:润墨网以专业的文秘视角,为您筛选了八篇量子计算的概念范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

量子计算的概念范文第1篇

[关键词] 量子遗传算法 计算机辅助配餐 营养膳食

目前,随着社会生产力的发展,人民生活水平的不断提高,营养与膳食的话题越来越受到人们的关注。商场员工、购物顾客群体每日均有较大的就餐需求,如何为这些群体提供高质量、科学化的配餐是一项重要的研究课题。

一、量子遗传算法简介

量子遗传算法QGA(Quantum Genetic Algorithm)的概念1996年由英国Exter大学的Ajit Narayanan和Mark Moore提出,2000年Kuk-Hyun Han将量子遗传算法进一步完善,并首次将其应用于组合优化问题。QGA是基于量子计算原理的概率优化方法,结合了量子计算理论和进化算法理论。它用量子位编码来表示染色体,通过量子门的旋转来完成进化搜索,具有种群规模小、收敛速度快,全局寻优能力强的特点。

二、基于QGA的营养膳食优选程序

营养配餐问题是在菜品数据库中搜索满足配餐对象就餐需求目标的组合优化问题。配餐系统首先需要做配餐对象的营养分析,根据配餐用户的性别、年龄、身高、体重、劳动强度、体重指数、体型等自然情况,由计算机自动算出配餐对象热量及各种营养元素的每日需求量。

配餐系统根据配餐对象的热量及各营养元素需求标准,在菜谱表中进行菜品优选,组合各种菜品生成为一套或多套备选菜谱提供给配餐对象进行选择。基于量子遗传算法的配餐系统将菜品数据库中的菜品表示为染色体基因型。经量子崩塌后产生的解可以表示为最终优选生成的菜谱,假设某菜品库中有15道菜品,量子崩塌后产生的解为:001001001000001,从左至右的第3、6、9、15位为1,其他位为0,代表了要选择菜品数据库中第3、6、9、15号共4道菜品为配餐菜谱中的配餐菜品。菜谱更新采用量子旋转门,当前菜谱其基因型在被旋转门更新后,在下一代量子观测后得到的解就会更加倾向于全局最优解,经过逐代进化,系统最终可生成满足配餐对象的满意备选菜谱,实现全部配餐功能。量子遗传算法中的概念和营养配餐中的概念对应关系如表1所示。

三、试验结果

为了验证算法的性能,本文在一个包含40道菜品的数据库中进行了实验,并与现有的模拟退火算法解决方案进行了比较,对比实验结果如表2所示。经测试,基于量子遗传算法的营养膳食配餐系统可以很好地满足实际的配餐需要,在某商场餐饮部应用后,取得了较好的使用效果。

四、结论

量子遗传算法在解决组合优化问题时在搜索效果和搜索速度两方面具备优秀的均衡性,具备高可用性、健壮性和稳定性。采用量子遗传算法做为配餐核心算法在优选速度、优选效果等方面具有较大优势。

参考文献:

[1]陈艳秋 陈霞飞等:“营养膳食分析与配制”营养软件的设计及应用[J].计算机医学应用.2000,13(10):526~527

量子计算的概念范文第2篇

光子芯片和量子芯片是两个维度的概念,没有强弱之分。光子芯片运用的是半导体发光技术,产生持续的激光束,驱动其他的硅光子器件;量子芯片就是将量子线路集成在基片上,进而承载量子信息处理的功能。

光子芯片可以将磷化铟的发光属性和硅的光路由能力整合到单一混合芯片中,当给磷化铟施加电压的时候,光进入硅片的波导,产生持续的激光束,这种激光束可驱动其他的硅光子器件。这种基于硅片的激光技术可使光子学更广泛地应用于计算机中,因为采用大规模硅基制造技术能够大幅度降低成本。

量子芯片的出现得益于量子计算机的发展。要想实现商品化和产业升级,量子计算机需要走集成化的道路。超导系统、半导体量子点系统、微纳光子学系统、甚至是原子和离子系统,都想走芯片化的道路。从发展看,超导量子芯片系统从技术上走在了其它物理系统的前面;传统的半导体量子点系统也是人们努力探索的目标,因为毕竟传统的半导体工业发展已经很成熟,如半导体量子芯片在退相干时间和操控精度上一旦突破容错量子计算的阈值,有望集成传统半导体工业的现有成果,大大节省开发成本。

(来源:文章屋网 )

量子计算的概念范文第3篇

【关键词】超弦/M理论/圈量子引力/哲学反思

【正文】

本文分四部分。首先明确什么是量子引力?其次给出当代量子引力发展简史,更次概述当代量子引力研究主要成果,最后探讨量子引力的一些哲学反思。

一、什么是量子引力?

当代基础物理学中最大的挑战性课题,就是把广义相对论与量子力学协调起来[1]。这个问题的研究,将会引起我们关于空间、时间、相互作用(运动)和物质结构诸观念的深刻变革,从而实现20世纪基础物理学所提出的空间时间观念的量子革命。

广义相对论是经典的相对论性引力场理论,量子力学是量子物理学的核心。凡是研究广义相对论和量子力学相互结合的理论,就称为量子引力理论,简称量子引力。探讨量子引力卓有成效的理论,主要有两种形式。第一,是把广义相对论进行量子化,正则量子引力属于此种。第二,是对一个不同于广义相对论的经典理论进行量子化,而广义相对论则作为它的低能极限,超弦/M理论则属于这种。

圈(Loop)量子引力[2]是当前正则量子引力的流行形式。正则量子引力是只有引力作用时的量子引力,和超弦/M理论相比,它不包括其它不同作用。它的基本概念是应用标准量子化手续于广义相对论,而广义相对论则写成正则的即Hamiltonian形式。正则量子引力根据历史发展大体上可分为朴素量子引力和圈量子引力。粗略来说,前者发生于1986年前,后者发生于1986年后。朴素量子引力由于存在着紫外发散的重正化困难,从而圈量子引力发展成为当前正则量子引力的代表。

超弦/M理论的目的,在于提供己知四种作用即引力和强、弱、电作用统一的量子理论。理论的基本实体不是点粒子,而是1维弦、2维简单膜和多维brane(广义膜)的延展性物质客体。超弦是具有超对称性的弦,它不意味着表示单个粒子或单种作用,而是通过弦的不同振动模式表示整个粒子谱系列。

圈量子引力和超弦/M理论之外,当代量子引力还有其它不同方案。例如,Euclidean量子引力、拓扑场论、扭量理论、非对易几何等。

二、当代量子引力研究进展

我们主要给出超弦/M理论和圈量子引力研究的重大进展。

1.超弦/M理论方面[3]

弦理论简称弦论,虽然在20纪70年代中期,已经知道其中自动包含引力现象,但因存在一些困难,只是到80年代中期才取得突破性进展。

1)80年代超弦理论

弦论发展可粗略分为早期弦理论(70年代)、超弦理论(80年代)和M理论(90年代)三个时期。我们从80年代超弦理论开始,简述其研究进展。

1981年,M·Green和J.Schwarz提出一种崭新的超对称弦理论,简称超弦理论,认为弦具有超对称性质,弦的特征长度已不再是强子的尺度(~10[-13]厘米),而是Planck尺度(~10[-33]厘米)。

1984年,Green和Schwarz证明[4],当规范群取为SO(32)时,超弦I型的杨-Mills反常消失,4粒子开弦圈图是有限的。

1985年,D.Gross,J.Harvey[5]等4人提出10维杂化弦概念,这种弦是由D=26的玻色弦和D=10超弦混合而成。杂化弦有E[,8]×E[,8]和SO(32)两种。

同年,P.Candlas,G.Horowitz,A.Strominger和E.Witten[6]对10维杂化弦E[,8]×E[,8]的额外空间6维进行紧致化,最重要的一类为Calabi-丘流形。但是这类流形总数多到数百万个,应该根据什么原则来选取作为我们世界的C-丘流形,至今还不清楚,虽然近10多年来,这方面的努力从来未中断过。

1986年,提出建立超弦协变场论问题,促进了对非微扰超弦理论的探讨。在诸种探讨方案中,以E.Witten的非对易几何最为突出[7]。

同年,人们详细地研究了超弦唯象学,例如E[,6]以下如何破缺及相应的物理学,对紧致空间已不限于C-丘流形,还包括轨形(Orbifold)、倍集空间等。

人们常把1984-86年期间对超弦研究的突破,称为第一次超弦革命。在此期间建立了超弦的五种相互独立的10维理论,而且是微扰的。它们是I型、IIA型、IIB型、杂化E[,8]×E[,8]型和SO(32)型。

2)90年代M理论

经过80年代末期和90年代初期,对超弦理论的对偶性、镜对称及拓扑改变等的研究,到1995年五种超弦微扰理论的统一性问题获得重大突破,从此第二次超弦革命开始出现。

1995年,Witten在南加州大学举行的95年度弦会议上发表演讲,点燃起第二次超弦革命。Witten根据诸种超弦间的对偶性及其在不同弦真空中的关联,猜测存在某一个根本理论能够把它们统一起来,这个根本理论Witten取名为M理论。这一年内Witten、P.Horava、A.Dabhulkar等人,给出ⅡA型弦和M理论间的关系[8]、I型弦和杂化SO(32)型弦间的关系、杂化弦E[,8]×E[,8]型和M理论间的关系等。

1996年,J.Polchinski、P.Townscend、C.Baches等人认识到D-branes的重要性。积极进行D-branes动力学研究[9],取得一定成果。同年,A.Strominger、C.Vafe应用D-brane思想,计算了黑洞这种极端情形的熵和面积关系[10],得到了和Bekenstein-Hawking的熵-面积的相同表示式。G.Callon、J.Maldacena对具有不同角动量与电荷的黑洞所计算的结果指出,黑洞遵从量子力学的一般原理。G.Collins探讨了量子黑洞信息损失问题。

1997年,T.Banks、J.Susskind等人提出矩阵弦理论,研究了M理论和矩阵模型间的联系和区别。

同年,Maldacena提出AdS/CFT对偶性[11],即一种Anti-de Sitter空间中的IIB型超弦及其边界上的共形场论之间的对偶性假设,人们称为Maldacena猜测。这个猜测对于我们世界的Randall-Sundrum膜模型的提出及Hawking确立果壳中宇宙的思想,都有不少的启示。

2.圈量子引力方面[12]

1)二十世纪80年代

1982年,印度物理学家A.Sen在Phys.Rev.和Phys.Lett.上相继发表两篇文章,把广义相对论引力场方程表述成简单而精致的形式。

1986年,A.Ashtekar研究了Sen提出的方程,认为该方程已经表述了广义相对论的核心内容。一年后,他给出了广义相对论新的流行形式,从而对于在Planck标度的空间时间几何量,可以进行具体计算,并作出精确的数量性预言。这种表述是此后正则量子引力进一步发展的关键。

同年,T.Jacobson和L.Smolin求出Wilson圈解。在引进经典Ashtekar变量后,他们在圈为光滑且非自相交情形下,求出了正则量子引力的WDW方程解。此后,他们又找到了即使在圈相交情况下的更多解。

1987年,由于Hamiltonian约束的Wilson圈解的发现,C.Revolli和Smolin引进观测量的经典Possion代数的圈表示,并使微分同胚约束用纽结(knot)态完全解出。

1988年,V.Husain等人用纽结理论(knot theory),研究了量子约束方程的精确解及诸解间的关系,从而认为纽结理论支配引力场的物理量子态。同年,Witten引进拓朴量子场论(TQFT)的概念。

2)二十世纪90年代

1990年,Rovelli和Smolin指出,对于在大尺度几何近似变为平直时态的研究,可以预言Planck尺度空间具有几何断续性。对于编织的这些态,在微观很小尺度上具有“聚合物”的类似结构,可以看作为J.Wheeler时空泡沫的形式化。

1993年,J.Iwasaki和Rovelli探讨了量子引力中引力子的表示,引力子显示为时空编织纤维的拓朴修正。

1994年,Rovelli和Smolin第一次计算了面积算子和体积算子的本征值[13],得出它们的本征谱为断续的重大结论。此后不久,物理学者曾用多种不同方法证明和推广这个结论,指出在Planck标度,空间面积和体积的本征谱,确实具有分立性。

1995年,Rovelli和Smolin利用自旋网络基[14],解决了关于用圈基所长期存在的不完备性困难。此后不久,自旋网络形式体系,便由J.Baez彻底阐明。

1996年,Rovelli应用K.Krasnov观念,从圈量子引力基本上导出了黑洞熵的Bekenstein-Hawking公式[15]。

1998年,Smolin研究圈和弦间的相似性,开始探讨圈量子引力和弦论的统一问题。

三、当代量子引力理论主要成就

1.超弦/M理论方面

1)弦及brane概念的提出

广义相对论中的奇性困难、量子场论中的紫外发散本质、朴素量子引力中的重正化问题,看来都起源于理论的纯粹几何的点模型。超弦理论提出轻子、夸克、规范粒子等微观粒子都是延伸在空间的一个区域中,它们都是1维的广延性物质,类似于弦状,其特征长度为Planck长度。M理论更推广了弦的概念,认为粒子类似于多维的brane,其线度大小为Planck长度。为简单起见,我们把brane也称作膜。超弦/M理论中,用有限大小的微观粒子替代粒子物理标准模型中纯粹几何的点粒子,这是极为重要且富有成效的革命性观念。

2)五种微扰超弦理论

这五种超弦的不同在于未破缺的超对称荷的数目和所具有的规范群。I型有N=1超对称性,含有开弦和闭弦,开弦零模描述杨-Mills场,闭弦零模描述超引力。ⅡA型有N=2超对称性,旋量为Majorana-Weyl旋量,不具有手征性,自动无反常,只含有闭弦,零模描述N=2超引力。IIB型同样有N=2超对称性,具有手征性。杂化弦是由左旋D=10超弦和左旋D=26玻色弦杂化而成,只包含可定向闭弦,有手征性和N=1超对称性,可以描述引力及杨-Mills作用。

3)超弦唯象学

从唯象学角度来看,杂化弦型是重要的,E[,8]×E[,8]是由紧致16维右旋坐标场(26-10=16)而产生的,即由16维内部空间紧致化而得到,也就是说在紧致化后得到D=10,N=1,E[,8]×E[,8]的超弦理论。

但是迄今为止,物理学根据实验认定我们的现实空间是三维的,时间是一维的,把四维时空(D=4)作为我们的现实时空。因此我们必须把10维时空紧致化得到低能有效四维理论,为此人们认为从D=10维理论出发,通过紧致化有

M[10]M[4]×K

此中K为C-丘流形,此内部紧致空间维数为10-4=6,M[4]为Minkowski空间,从而得到4维Minkowski空间低能有效理论。其重要结论有:

(1)由D=10,E[,8]×E[,8]超弦理论(M[10]中规范群为E[,8]×E[,8])紧致化为D=4,E[,6]×E[,8]、N=1超对称理论。

(2)夸克和轻子的代数Ng完全由K流形的拓朴性质决定:为Euler示性数χ,系拓朴不变量。

(3)对称破缺问题。已知超弦四维有效理论为N=1,规范群为E[,6]×E[,8]的超对称杨—Mills理论,现实模型要求破缺。首先由第二个E[,8]进行超对称破缺,然后对大统一群E[,6]已进行破缺,从而引力作用在E[,8]中,弱、电、强作用在E[,6]中,实现了四种作用的统一。

4)T和S′对偶性

尽管五种超弦理论在广义相对论和量子力学统合上,取得了不少进展,但是五种超弦理论则是相互独立的,理论却是微扰的。尽管在超弦唯象学中,原则上-丘流形K一旦固定下来,在D=4时空中所有零质量费米子和玻色子(包括Higgs粒子)就会被确定下来,但是-丘真空态总数则可多到数百万个,应该根据什么原则来选取-丘真空态,目前还不清楚。T对偶性和S对偶性的提出,正是五种超弦理论融通的主要桥梁。

在M理论的孕育过程中,对偶性起了重要作用。弦论中存在着一种在大小紧致空间之间的对偶性。例如ⅡA型弦在某一半径为R[,A]的圆周上紧致化和ⅡB型在另一半径为R[,8]的圆周上紧致化,两者是等效的,则有关系R[,B]=(m[2,s]R[,A])[-1]。于是当R[,A]从无穷大变到零时,R[,B]从零变到无穷大。这给出了ⅡA弦和ⅡB弦之间的联系。两种杂化弦E[,8]×E[,8]和SO(32)也存在类似联系,尽管在技术性细节上有些差别,但本质上却是同样的。

A.Sen证明,在超对称理论中,必然存在着既带电荷又带磁荷的粒子。当这一猜测推广到弦论后,它被称作为S对偶性。S对偶性是强耦合与弱耦合间的对称性,由于耦合强度对应于膨胀子场,杂化弦SO(32)和I型弦可通过各自的膨胀子连系起来。

5)M理论和五种超弦、11维超引力间的联系

M理论作为10维超弦理论的11维扩展,包含了各种各样维数的brane,弦和二维膜只是它的两种特殊情况。M理论的最终目标,是用一个单一理论来描述已知的四种作用。M理论成功的标志,在于把量子力学和广义相对论的新理论框架中相容起来。

附图

上面给出五种超弦理论、11维超引力和M理论相容的一个框架示意图[16],即M理论网络。此网络揭示了五种超弦理论、11维超引力都是单一M理论的特殊情形。当然至今M理论的具体形式仍未给出,它还处于初级阶段。

6)推导量子黑洞的熵-面积公式。

在某些情形下,D-branes可以解释成黑洞,或者说是黑branes,其经典意义是任何物质(包括光在内)都不能从中逃逸出的客体。于是开弦可以看成是具有一部分隐藏在黑branes之内的闭弦。Hawking认为黑洞并不完全是黑的,它可以辐射出能量。黑洞有熵,熵是用量子态来衡量一个系统的无序程度。在M理论之前,如何计算黑洞量子态数目是没有能力的。Strominger和Vafa利用D-brane方法,计算了黑-branes中的量子态数目,发现计算所得的的熵-面积公式,和Hawking预言的精确一致,即Bekenstein-Hawking公式,这无疑是M理论的一个卓越成就。

对于具有不同角动量和电荷的黑洞所计算结果指出,黑洞遵从量子力学的一般原理,这说明黑洞和量子力学是十分融洽的。

2.圈量子引力方面

1)Hamiltonian约束的精确解。

圈量子引力惊人结果之一,是可以求出Hamiltonian约束的精确解。其关键在于Hamiltonian约束的作用量,只是在s-纽结的结点处不等于零。所以不具有结点的s-纽结,才是量子Einstein动力学求出的物理态。但是这些解的物理诠释,至今还是模糊不清的。

其它的多种解也已求得,特别是联系连络表示的陈-Simons项和圈表示中的Jones多项式解,J.Pullin已经详细研究过。Witten用圈变换把这两种解联系起来。

2)时间演化问题

人们试图通过求解Hamiltonian约束,获得在概念上是很好定义的、并排除冻结时间形式来描述量子引力场的时间演化。一种选择是研究和某些物质变量相耦合的引力自由度随时间演化,这种探讨会导致物理Hamiltonian的试探性定义的建立,并在强耦合微扰展开中,对S纽结态间的跃迁振幅逐级进行考查。

3)杨-Mills理论的重正化问题

T.Thiemann把含有费米子圈的量子引力,探索性地推广到杨-Mills理论进行研究。他指出在量子Hamiltonian约束中,杨-Mills项可以严格形式给出定义。在这个探索中,紫外发散看来不再出现,从而强烈支持在量子引力中引进自然切割,即可摆脱传统量子场论的紫外发散困难。

4)面积和体积量度的断续性

圈量子引力最著名的物理成果,是给出了在Planck标度的空间几何量具有分立性的论断。例如面积

此中lp是Planck长度,j[,i]是第i个半整数。体积也有类似的量子化公式。

这个结论表明对应于测量的几何量算子,特别是面积算子和体积算子具有分立的本征值谱。根据量子力学,这意味着理论所预言的面积和体积的物理测量必定产生量子化的结果。由于最小的本征值数量级是Planck标度,这说明没有任何途径可以观测到比Planck标度更小的面积(~10[-66]厘米[2])和体积(~10[-99]厘米[3])。从此可见,空间由类似于谐振子振动能量的量子所构成,其几何量本征谱具有复杂结构。

5)推导量子黑洞的熵-面积公式

已知Schwarzchild黑洞熵S和面积A的关系,是Bekenstein和Hawking所给出,其公式为:

附图

这里k是Boltzman常量,是Planck常量,G[,N]为牛顿引力常量,c为光速。对这个关系式的深层理解和由物理本质上加以推导,M理论已经作过,现在我们看下圈量子引力的结果。

应用圈量子引力,通过统计力学加以计算,Krasnov和Rovelli导出

附图

此处γ为任意常数,β是实数(~1/4π),显然如果取γ=β,则由式(3)即可得到式(2)。这就是说,从圈量子引力所得出的黑洞熵-面积关系式,在相差一个常数值因子上和Bekenstein-Hawking熵-面积公式是相容的。

Bekenstein-Hawking熵公式的推导,对圈量子引力理论是一个重大成功,尽管这个事实的精确含义目前还在议论,而且γ的意义也还不够清楚。

四、量子引力理论的哲学反思

我们从空间和时间的断续性、运动(相互作用)基本规律的统一性、物质结构基本单元的存在性三个方面进行哲学探讨。

1.空间和时间的断续性

当代基础物理学的核心问题,是在Planck标度破除空间时间连续性的经典观念,而代之以断续性的量子绘景。量子引力理论对空间分立性的揭示和论证,看来是最为成功的。

超弦/M理论认为,我们世界是由弦和brane构成的。根据弦论中给出的新的不确定性关系,弦必然有位置的模糊性,其线度存在一有限小值,弦、膜、或brane的线度是Planck长度,从而一维空间是量子化的。由此推知,面积和体积也应该是量子化的。二维面积量子的数量级为10[-66]厘米[2],三维体积量子的数量级为10[-99]厘米[3]等。

对于圈量子引力,其最突出的物理成果是具体导出了计算面积和体积的量子化公式。粗略说来,面积的数量级是Planck长度lp的二次方,体积的数量级是lp的三次方。这就令人信服地论证了在Planck标度,面积和体积具有断续性或分立性,从而根本上否定了空间在微观上为连续性的经典观念。

依据空间和时间量度的量子性,芝诺悖论就是不成立的,阿基里斯在理论上也完全可以追上在他前面的乌龟。类似的,《庄子·天下》篇中的“一尺之捶,日取其半,万世不竭”这个论断在很小尺度上显然也是不成立的。古代哲学中这两个难题的困人之处,从空间时间断续性来看,是由于预先设定了空间和时间的度量,始终是连续变化的经典性质。实际上在微观领域,空间和时间存在着不可分的基本单元。

2.运动(相互作用)基本规律的统一性

20世纪基础物理学巨大成功之一,就是建立了粒子物理学的标准模型,理论上它是筑基于量子规范场论的。这个模型给出了夸克、轻子层次强、弱、电作用的SU(3)×SU(2)×U(1)规范群结构,在一定程度上统一了强、弱、电三种相互作用的规律。但是它不含有引力作用。

超弦/M理论的探讨,在于构建包含引力在内的四种作用统一的物理理论。传递不同相互作用的粒子如光子(电磁作用)、弱玻色子(弱作用)、胶子(强作用)和引力子(引力作用),对应于弦的各种不同振动模式,夸克、轻子层次粒子间的作用,就是弦间的相互作用。在Planck标度,超弦/M理论是四种基本作用统一理论的最佳侯选者,也就是所说的万物理论(Theory of everything)的最佳侯选者。

在Planck时期,物质运动或四种作用基本规律的统一性,正是反映了我们宇宙在众多复杂性中所显现的一种基本简单性。

3.物质微观结构的基本单元的存在性[17]

世界是由物质构成的,物质通常是有结构的,但是物质结构在层次上是否具有基本单元,即德谟克利特式的“原子”是否存在?这是一个长期反复争论而又常新的课题。当代几种不同的量子引力,尽管对某些问题存在着不同的见解,但是关于这个问题从实质上来看,却给出了一致肯定的回答。

超弦/M理论认为,构成我们世界的物质微观基本单元是具有广延性的弦和brane,并非所谓的只有位置没有大小的数学抽象点粒子。粒子物理学标准模型中的粒子,都是弦或brane的激发。弦和brane的线度是有限短的Planck长度,它们正是构成我们世界的物质基本单元,即德谟克利特式的“原子”,这是超弦/M理论为现今所有粒子提供的本体性统一。

圈量子引力给出了在Planck标度面积和体积的量子化性质,即断续的本征值谱,面积和体积分别存在着最小值。由于在圈量子引力中,脱离引力场的背景空间是不存在的,而引子场是物质的一种形态,因此脱离物质的纯粹空间也就是不存在的。空间体积和面积的不连续性和基本单元的存在,正是物质微观结构的断续性和基本单元的存在性的最有力论据。

总之,超弦/M理论和圈量子引力从不同的侧面,对量子引力的本质和规律作出了一定的揭示,它们在Planck标度领域一致地得出了空间量子化和物质微观结构基本单元存在的结论。这无疑是人们在20世纪末期对我们世界空间时间经典观念的重大突破,也是广义相对论和量子力学统合的成果;同时更是哲学上关于空间和时间是物质存在的客观形式,没有无物质的空间和时间,也没有无空间和时间的物质学说的一曲凯歌!

【参考文献】

[1] G.Horowitz.Quantum gravity at the turn of the millennium.gr-qc/0011089.22.

[2] C.Rovelli.Loop quantum gravity.gr-qc/9710008 10.Oct.1997.

[3] M.Kaku.Introduction to superstring and M-theory.Second Editon.Springer.New York,1999.

[4] M.Green,J.Schwarz.Anomally cancellations in supersymmetric D=10 gauge theory and superstring theory.Phys.Lett.149B(1984)11.

[5] D.Gross,J.Horvey,E.Martine and R.Rohm.Heterotic string.Phys.Rev.Lett 54(1985)502.

[6] P.Candelas,G.Horowitz A.Strominger and E.Witten.Vacuum configurations for superstrings.Nucl.Phys.B258(1985)46.

[7] E.Witten.Non-commutative geometry and string field theory.Nucl.Phys.B276(1986)291.

[8] E.Witten.String-string duality conjecture in various.dimensions.Nucl.Phys.B443(1995)307.

[9] C.Baches.D-brane dynamics.Phys.Lett.B374(1996)37.

[10] A.Strominger,C.Vafa.Microscopic origin of the Bekenstein-Hawking entropy.Phys.Lett.B379(1996)99.

[11] J.Maldacena.The large-Nlimit of superconformal field theories and supergravity.hep-th/9711200.

[12] C.Rovelli.Notes for a brief history of quantum gravity.gr-qc/0006061.23Jan,2001.

[13] C.Rovelli,L.Smolin.Descreteness of area and volume in quantum gravity.gr-qc/9411005.

[14] C.Rovelli,L.Smolin.Spin networks and quantum gravity.Phys.Rev.D52(1995)5743.

[15] C.Rovlli,Black hole entropy from loop quantum gravity.Phys.Rev.Lett.74(1996)3288.

量子计算的概念范文第4篇

【摘要】 提出一个新概念总偏回归平方和(Pt, total partial regression sum of squares),将Pt定义为全部自变量Xi(i=1,2,…,m,m为自变量数目或个数)的偏回归平方和Pi之总和。根据Pi占Pt的比例Ri(Pi/Pt),进行m+1个回归方程计算后,可选择出“较优”自变量组合,从而得到一至数个“较优”多元线性回归模型,以供进一步分析。

【关键词】 偏回归平方和; 总偏回归平方和; 多元线性回归; 变量选择

1 问题的提出

多元线性回归在诸多学科中有广泛应用。在多元线性回归的实际应用中,考虑的自变量Xi(i=1,2,…,m,m为自变量数目或个数)经常包括所有可能影响因变量Y的因素。在众多的Xi中,有的对Y有显著影响,有的影响很小甚至基本无影响。如果把对Y影响小的Xi保留在回归模型中,不仅增加收集数据和分析数据的负担,使得回归方程不稳定,而且会因Xi的数目过多而不便于使用。因此,自变量选择在理论和应用上都十分重要。自变量选择通常有两类方法[1~4]:一是全局择优法,可选出全局“最优”回归模型。该法是对自变量各种不同的组合所建立的回归方程进行比较,进而从全部组合中挑出一个“最优”回归方程。挑选“最优”回归模型的指标一般有R2法、校正R2法、残差均方和或剩余标准差最小法、Cp统计量法、AIC、BIC及AICC信息量准则等。对于给定的方法和准则,“最优”回归方程应从所有可能回归子集(共有2m-1个)选出。问题是,根据不同的方法和准则,选出的“最优”回归模型不一定相同,真正哪个回归模型“最优”,同样面临选择的困难。而且,从所有可能回归子集中选择“最优”回归方程,计算量较大或极大(视m值而定)。二是逐步选择法(包括前进法、后退法和逐步回归法)。每一种逐步选择法选出的“最优”回归方程不一定相同。同一种方法,给定的检验水准α(0.10,0.05,0.01,0.001)不同,选出的“最优”回归方程亦不同。而且,在确定哪些变量应当添加或者剔除时,采用的统计规则(显著性水平或者方差统计值的大小)都有一定的武断性[5]。笔者认为,从统计学意义上说,真正的最优回归方程是不存在或不可能得到的。与其花费大量的时间和高计算成本而得不到“最优”回归方程,不如少些武断性,用少量的时间和低计算成本得到1至数个“较优”多元线性回归模型以供选择,在实践中发挥相似的效果和作用。基于上述考虑,本研究从偏回归平方和的概念出发,提出一个概念总偏回归平方和(Pt total partial regression sum of squares),Pt这个概念或术语,作者尚未见文献报道。借助Pt,我们提出简便实用的选择“较优”多元线性回归模型的总偏回归平方和法。

2 原理与方法

设1个应变量Y与m个自变量Xi(i=1,2,…,m,m为自变量个数)呈线性相关。从多元回归全模型中取消一个自变量Xi后,回归平方和U减少的部分,称为这个自变量Xi对Y的偏回归平方和(Pi),即这个自变量Xi对Y的回归贡献。关于每个自变量Xi在多元回归中所起的作用大小,可通过相应Xi的偏回归平方和Pi来衡量。Pi表明对Y的回归贡献。Pi越大,表示相应的Xi在回归中对Y的作用越大;当Pi很小时,表示相应的Xi在回归中所起的作用越小。总偏回归平方和(Pt)表示全部Pi之和,如能计算出每个Pi与Pt之比Ri(Pi/Pt,Ri∈[0,1]),根据Ri大小不同,可较快选择出“较优”自变量组合或子集。方法如下:① 估计全模型即包括所有自变量Xi回归方程的残差平方和Q:Q=Y’*Y-Y’*X*(X’*X)-1*X’*X② 计算每个自变量Xi的偏回归平方和Pi[2]:Pi=Qi-Q

(i=1,2,…,m)(1)式(1)中Qi表示自变量Xi不在回归模型时的残差平方和,即Y与m-1个自变量X1,…,Xi-1,Xi+1…,Xm的选模型的残差平方和。Q为包括所有自变量Xi回归方程即全模型的残差平方和。至此所计算回归方程总数为m+1个。③ 计算总偏回归平方和Pt :Pt=ΣPi (i=1,2,…,m)(2)④ 计算各Pi占Pt的比例:Ri=Pi/Pt (Ri∈[0,1])(3)根据各Ri大小选择自变量,选出“较优”回归方程。⑤ 将Ri按由大到小秩序排列,然后计算累积Ri。一般地,可选择使累积Ri≥095(或085,090,099,需按数据的实际情况而定)的自变量组合,作为“较优”回归模型的自变量组合,从而得到所求“较优”回归方程。

3 实例

实例1Hald水泥问题是一多元回归的经典实例,在诸多文献[4,6]中均有研究,说明存在一些不确定的模型。用本法作变量选择,结果见表1。

表1 各自变量的偏回归平方和、总偏回归平方和及其比例与累积比例(略)

由表1可知,X1和X2的累积Ri为0.9878,而X4与X3对回归的贡献是微不足道的,两者的Ri均不到001,故“较优”自变量子集应为X∈{X1,X2},这个结果与Cp统计量法选出的结果相同。如需选3个自变量进入回归方程,自变量子集应是X∈{X1,X2,X4},而不是X∈{X1,X2,X3},与用最小残差方差、最小残差标准差、R2及校正R2选出的结果相一致。但本法仅计算了m+1=5个回归方程子集便得到与用2m-1=15个回归方程子集相一致的结论,表明本法计算量明显减小。本法的结果亦与逐步选择法(包括前进法、后退法和逐步回归法)的结果相同。

实例2为了研究正常少年儿童心像面积Y与性别(X1),年龄(X2),身高(X3),体重(X4),胸围(X5)的关系,某单位调查了254名男性,267名女性,月龄在30月~178月的正常少年儿童,全部可能的回归方程的主要结果见文献[7],应用本法选择自变量子集的数据见表2。

表2 各自变量的偏回归平方和、总偏回归平方和及其比例与累积比例(略)

由表2可知,自变量子集{X1,X3,X4}的累积Ri为0.9795≥0.95,故较优自变量子集应为X∈{X1,X3,X4}。如限定选2个自变量,自变量子集应是X∈{X1,X3},其累积Ri为0.9100≥0.90。如限定选4个自变量,自变量子集应是X∈{X1,X3,X4,X5},其累积Ri为0.9939≥0.99。本法仅计算了m+1=6个回归方程子集便得到与用2m-1=31个回归方程子集相一致的结论,进一步表明本法计算量小,结果可靠。

4 讨论

本研究在提出总偏回归平方和(Pt)概念的基础上,用Pt法选择自变量子集,进而优选出所需多元回归模型。本法的变量选择结果与全局择优法及逐步选择法的结果基本一致。本法计算量小,简便实用。本法的不足之处是累积Ri的选择标准亦有一定的主观性,标准不同,选出的自变量子集相异。另外,变量较多时,本法虽能选出“较优”回归模型,但不一定是在某一准则下“最优”的。这些尚有待进一步研究。

【参考文献】

1 孙振球,徐勇勇医学统计学第1版北京:人民卫生出版社,2002,242~251

2 高惠璇统计计算第1版北京:北京大学出版社,2005,313~324

3 柳青,主编中国医学统计百科全书(多元统计分册)第1版北京:人民卫生出版社,2004,26~31.

4 黄小兰比较几种挑选“最优”回归模型的指标中国卫生统计,1988,5(4):23

5 Quinn GP, Keough MJ(蒋志刚,等译)生物实验设计与数据分析第1版北京:高等教育出版社,2003,142~148.

量子计算的概念范文第5篇

课程性质:专业基础

总学时:64

总学分:4

开课学期:第三学期

适用专业:物理学

一、课程描述

通过本课程的学习,应使学生掌握光现象的基本概念、基本规律以及基本分析计算方法。使学生熟悉光的波动性与粒子性的基本理论,掌握其规律,对一些基本的光的本性的问题能进行定性分析和定量计算。

二、考试内容及要求

考试内容

第一章  几何光学的基本原理  

1.1几何光学的基本定律

1.2费马原理

1.3全反射

1.4成像的基本概念

1.5光在球面上的折射

1.6 光在球面上的反射

1.7薄透镜

1.8理想光具组

考试要求

掌握光的传播的基本概念,如光线,波面和光速的实象和虚象,虚物等。理解光程的物理意义;理解费马原理的物理思想。掌握光的成像原理。

考试内容

第二章  眼睛 视觉与色觉  

2.1眼睛

2.2色与色觉

考试要求

了解眼睛构造的一般情况,眼睛的调节机能以及简化眼概念。掌握非正常眼了解光色与五色的由来,了解三基色原理。

考试内容

第三章 光学仪器的基本原理

3.1照相机与投影仪器

3.2放大镜目镜

3.3显微镜

3.3望远镜

3.4象差概念

考试要求

扼要介绍照相机,投影仪和电影放映机的基本构造与作用原理。理解阐明放大镜,目镜,显微镜的构造,原理和放大本领。理解光通量,发光强度和亮度基本概念。

考试内容

第四章  光的干涉

4.1光的电磁原理

4.2干涉的基本理论

4.3杨氏实验

4.4菲涅耳双面镜  劳埃德镜  半波损失

4.5空间相干性与时间相干性

4.6薄膜干涉概述

4.7等倾干涉

4.8等厚干涉

4.9迈克耳孙干涉仪

4.10干涉现象的应用

考试要求

掌握了解光的干涉现象,阑明光波的时空特性及其表达式。以杨氏双缝干涉为重点,分析双光束干涉形成的条件以及光强分布的特征。掌握在薄膜干涉中半波损失在光程差公式中体现的条件。重点掌握等厚干涉(劈尖和牛顿环),的规律机器应用。

考试内容

第五章   光的衍射

5.1光的衍射现象

5.2惠更斯一菲涅耳原理  

5.3夫琅和费单缝衍射

5.3夫琅和费双缝衍射

5.4光栅光谱

5.5夫琅和费圆孔衍射

5.6光学仪器的分辨本领

5.7晶体对X射线的衍射

考试要求

掌握光的衍射现象,惠更斯一菲涅耳原理的积分表达式的意义。 掌握利用半波带法,分析费涅耳圆孔衍射, 重点掌握夫琅和费单缝衍射,并用费涅耳积分公式定量计算光强分布。利用单缝衍射和双缝干涉从物理概念上会分析双缝衍射形成的原因,找出双缝衍射光强分布的规律,并说明干涉和衍射的区别与联系。

考试内容

第六章  光的偏振

6.1偏振现象与光的横波性

6.2线便振光与自然光

6.3二向色性与人造偏振片

6.4起偏与检偏,马吕斯定律

6.5反射与折射起偏布儒斯特定律

6.6双折射现象

6.7 晶体双折射仪器

6.8椭圆偏振光与圆偏振光 偏振光的检验

6.9偏振光的干涉

考试要求

掌握自然光,平面偏振光,部分偏振光,圆偏振光和椭圆偏振光的器方法。惠更斯波面作图法解释双折射现象

考试内容

第七章   光的量子性

7.1热辐射普郎克量子假设

7.2光电效应 光子 爱因斯坦方程

7.3康普顿效应

7.4波粒二象性

考试要求

理解量子论的早期发展过程和普郎克量子假设在微观领域的重要地位,适当介绍科学家的思维和实践活动,培养学生的思维能力和创新精神。 根据光电效应的实验定律,利用爱因斯坦量子概念解释光电效应,掌握爱因斯坦方程。介绍康普顿实验极其规律,进一步认识光的量子性。阐明光的波粒二象性的意义。

三、考试形式及要求

1.考试方式:本课程实行闭卷笔试、考勤、课堂笔记、作业、阶段测试等方式考核。命题以教学大纲为依据,考试内容反映大纲规定的深度和广度,注重考查基础知识、基本理论和基本技能,要有利于提高学生分析问题和解决问题的能力。

量子计算的概念范文第6篇

最吸引人的是美猴王。孙悟空有一个功能就是分身术,毫毛一拔,到处一扔,就变出好多个孙悟空。他还有另外一种非常强大的功能――筋斗云。翻一个筋斗,就可以从一个地方消失,在另一个非常遥远的地方出现。这有点像我们前阵子看到的科幻电影《星际穿越》里面的场景。

神话与现实:人可以在不同的时空生活

大家就问了,这些东西在我们现实生活当中到底能不能实现?大家都知道,得益于电动力学的建立,我们能进行无线电的通信。在1888年,赫兹在卡尔斯鲁厄――德国的小镇,做了一个实验来验证电磁波是不是存在。赫兹在这边一抖,那边即时的电火花就发生了。正因为有这些发明,后来有了电话,有了电视机,到现在我们用的手机,都可以现场实现千里眼、顺风耳这么神奇的功能了。所以我说,物理学真的非常有意思,它可以保证信息的有效传输。

狭义相对论和广义相对论都告诉了我们确实存在某种特殊的情况,有些地方时间过得慢一点,有的地方时间就过得快一点。比如在一个引力特别强的地方,一个小时甚至等于远处地方的七年。举个例子,如果有对双胞胎兄弟,有一个是宇航员,坐着宇宙飞船在宇宙中进行快速的旅行。等他回来之后,他双生的兄弟,已经变得很老了。这样的现象,在物理世界、在高速飞行的粒子里面,已经能看到了。确实是可以实现的。

因此形成了这样一种观点:我们在古代通过口口相传,进行信息的传递、交流和共享。随后我们有了文字,也可以通过书信来传递信息。到了后来,随着科技的发展,第一次工业革命热力学的发现,电动力学的运用,信息的传递效率变得越来越高。到了现代,因为有计算机和互联网的出现,整个地球都变成一个村子了。

有两个永恒主题将一直伴随着我们人类进化和社会发展:首先,怎样来加强信息交互的效率,把信息中有用的知识提取出来,进行传播、共享?这是非常重要的。同时,要加强隐私的保护,保证每个人思想的自由。比如说,如果可以非常方便地看到别人在想什么,可以控制他的思想的话,每个人都不可能进行自由的创造了。所以我觉得,隐私的保护是我们人类未来的一个基本保证。不然,我们就没办法继续进化下去了。

量子世界:事物可以同时在两个地方“存在”

我今天想跟大家分享的一个观点,就是量子力学在近百年的发展过程当中已经为解决这些重大的问题做好了准备。

量子力学认为:第一,在某些特殊的情况下,如果说你没有看这个客体到底是处于哪个位置的时候,在特定情况它可以同时处在两个位置。第二,就是客体的状态,只要观测一下,对它的影响就不可逆转了,而且是永久的、不可避免的、不可忽略的。

牛顿力学是一个非常美的理论。它告诉我们一个粒子和周围环境明确的话,它未来的运动状态,就可以计算出来了。如果所有的粒子都是由牛顿力学在控制的话,那么我们什么时候死、谁做生命学家、谁做物理学家,在宇宙大爆炸这个时候就已经确定了,个人的努力是毫无意义的。

从这个角度上讲,量子力学比经典牛顿力学哲学,要更加积极一些。量子力学告诉我们个人的行为、对体系的测量是可以影响世界的,从哲学上讲是非常积极的。

举个例子,我到北京来,送给朋友一个骰子,我事先做好了,送给他的这个骰子跟另一个骰子是纠缠态。然后我回到上海去了,就跟他说,你扔手中的那个骰子。他扔了好多次,把结果写下来,每次随机得到1到6里面的某一个点数。我就能跟他说你第一次扔的点数是多少,第二次是多少,我都可以猜得出来。这样的现象,我们把它叫作遥远地点之间的诡异互动。在2015年,这现象基本在物理角度被确证了,只剩一个很小的漏洞。这是我们正在做的一个研究。

量子通信:隐密、高速的信息交互

由此,新的科学就诞生了。有了量子的0加1之后,一些新的东西就诞生了。例如,可以利用它来保证原理上无条件的安全通信。如果将来立法,我们可以利用这种手段,保证我们的隐私。

利用这种量子计算手段,也可以算得非常地快,可以有效地揭示复杂物理体系的规律。就是说,可以把计算能力和信息安全两个问题都比较好地解决。

具体来说,比如说量子通信,我们可以用量子密钥分发。因为它是不可复制的,你去探测就会被发现。所以我们就可以有一种绝对安全的通讯方式。其实还有另外一种比较有意思的、利用这样的量子纠缠的概念。

因为时间关系,我只举一个例子。比如说要求解一个10的24次方的变量的线性方程组,用目前最快的天河2号超级计算机大概需要100年左右的时间。而利用万亿次的量子计算机,尽管计算的频率比天河2号要慢1万倍,但它只需要0.01秒就可以把这个方程给求解出来。所以它可以广泛地应用于药物设计、金融分析、气象预报、密码分析等等,用途是比较大的。

当然,也可以利用量子通讯,来构建一个非常好的网络,有城域网、城际网,利用卫星实现的这种广域的量子通信,可以比较好地保证我们的网络安全。

量子计算的概念范文第7篇

未来的计算机技术将向超高速、超小型、平行处理、智能化的方向发展。尽管受到物理极限的约束,采用硅芯片的计算机的核心部件CPU的性能还会持续增长。作为Moore定律驱动下成功企业的典范Inter预计2001年推出1亿个晶体管的微处理器,并预计在2010年推出集成10亿个晶体管的微处理器,其性能为10万MIPS(1000亿条指令/秒)。而每秒100万亿次的超级计算机将出现在本世纪初出现。超高速计算机将采用平行处理技术,使计算机系统同时执行多条指令或同时对多个数据进行处理,这是改进计算机结构、提高计算机运行速度的关键技术。

同时计算机将具备更多的智能成分,它将具有多种感知能力、一定的思考与判断能力及一定的自然语言能力。除了提供自然的输入手段(如语音输入、手写输入)外,让人能产生身临其境感觉的各种交互设备已经出现,虚拟现实技术是这一领域发展的集中体现。

传统的磁存储、光盘存储容量继续攀升,新的海量存储技术趋于成熟,新型的存储器每立方厘米存储容量可达10TB(以一本书30万字计,它可存储约1500万本书)。信息的永久存储也将成为现实,千年存储器正在研制中,这样的存储器可以抗干扰、抗高温、防震、防水、防腐蚀。如是,今日的大量文献可以原汁原味保存、并流芳百世。

新型计算机系统不断涌现

硅芯片技术的高速发展同时也意味着硅技术越来越近其物理极限,为此,世界各国的研究人员正在加紧研究开发新型计算机,计算机从体系结构的变革到器件与技术革命都要产生一次量的乃至质的飞跃。新型的量子计算机、光子计算机、生物计算机、纳米计算机等将会在21世纪走进我们的生活,遍布各个领域。

量子计算机

量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态,使信息沿着聚合物移动,从而进行运算。

量子计算机中数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前个人计算机的PentiumⅢ晶片快10亿倍。目前正在开发中的量子计算机有3种类型:核磁共振(NMR)量子计算机、硅基半导体量子计算机、离子阱量子计算机。预计2030年将普及量子计算机。

光子计算机

光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。

与电子计算机相比,光计算机的“无导线计算机”信息传递平行通道密度极大。一枚直径5分硬币大小的棱镜,它的通过能力超过全世界现有电话电缆的许多倍。光的并行、高速,天然地决定了光计算机的并行处理能力很强,具有超高速运算速度。超高速电子计算机只能在低温下工作,而光计算机在室温下即可开展工作。光计算机还具有与人脑相似的容错性。系统中某一元件损坏或出错时,并不影响最终的计算结果。

目前,世界上第一台光计算机已由欧共体的英国、法国、比利时、德国、意大利的70多名科学家研制成功,其运算速度比电子计算机快1000倍。科学家们预计,光计算机的进一步研制将成为21世纪高科技课题之一。

生物计算机(分子计算机)

生物计算机的运算过程就是蛋白质分子与周围物理化学介质的相互作用过程。计算机的转换开关由酶来充当,而程序则在酶合成系统本身和蛋白质的结构中极其明显地表示出来。

20世纪70年代,人们发现脱氧核糖核酸(DNA)处于不同状态时可以代表信息的有或无。DNA分子中的遗传密码相当于存储的数据,DNA分子间通过生化反应,从一种基因代玛转变为另一种基因代码。反应前的基因代码相当于输入数据,反应后的基因代码相当于输出数据。如果能控制这一反应过程,那么就可以制作成功DNA计算机。

蛋白质分子比硅晶片上电子元件要小得多,彼此相距甚近,生物计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。DNA分子计算机具有惊人的存贮容量,1立方米的DNA溶液,可存储1万亿亿的二进制数据。DNA计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于生物芯片的原材料是蛋白质分子,所以生物计算机既有自我修复的功能,又可直接与生物活体相联。预计10~20年后,DNA计算机将进入实用阶段。

纳米计算机

“纳米”是一个计量单位,一个纳米等于10[-9]米,大约是氢原子直径的10倍。纳米技术是从80年代初迅速发展起来的新的前沿科研领域,最终目标是人类按照自己的意志直接操纵单个原子,制造出具有特定功能的产品。

现在纳米技术正从MEMS(微电子机械系统)起步,把传感器、电动机和各种处理器都放在一个硅芯片上而构成一个系统。应用纳米技术研制的计算机内存芯片,其体积不过数百个原子大小,相当于人的头发丝直径的千分之一。纳米计算机不仅几乎不需要耗费任何能源,而且其性能要比今天的计算机强大许多倍。

目前,纳米计算机的成功研制已有一些鼓舞人心的消息,惠普实验室的科研人员已开始应用纳米技术研制芯片,一旦他们的研究获得成功,将为其他缩微计算机元件的研制和生产铺平道路。

互联网络继续蔓延与提升

今天人们谈到计算机必然地和网络联系起来,一方面孤立的未加入网络的计算机越来越难以见到,另一方面计算机的概念也被网络所扩展。二十世纪九十年代兴起的Internet在过去如火如荼地发展,其影响之广、普及之快是前所未有的。从没有一种技术能像Internet一样,剧烈地改变着我们的学习、生活和习惯方式。全世界几乎所有国家都有计算机网络直接或间接地与Internet相连,使之成为一个全球范围的计算机互联网络。人们可以通过Internet与世界各地的其它用户自由地进行通信,可从Internet中获得各种信息。

回顾一下我国互联网络的发展,就可以感受到互联网普及之快。近三年中国互联网络信息中心(CNNIC)对我国互联网络状况的调查表明我国的Internet发展呈现爆炸式增长,2000年1月我国上网计算机数为350万台,2001年的统计数为892万台,翻一番多;2000年1月我国上网用户人数890万;2001年1月的统计数为2250万人,接近于3倍;2000年1月CN下注册的域名数为48575,2001年1月的统计数为122099个,接近于3倍;国际线路的总容量目前达2799M,8倍于2000年1月的351M。

人们已充分领略到网络的魅力,Internet大大缩小了时空界限,通过网络人们可以共享计算机硬件资源、软件资源和信息资源。“网络就是计算机”的概念被事实一再证明,被世人逐步接受。

在未来10年内,建立透明的全光网络势在必行,互联网的传输速率将提高100倍。在Internet上进行医疗诊断、远程教学、电子商务、视频会议、视频图书馆等将得以普及。同时,无线网络的构建将成为众多公司竞争的主战场,未来我们可以通过无线接入随时随地连接到Internet上,进行交流、获取信息、观看电视节目。

移动计算技术与系统

随着因特网的迅猛发展和广泛应用、无线移动通信技术的成熟以及计算机处理能力的不断提高,新的业务和应用不断涌现。移动计算正是为提高工作效率和随时能够交换和处理信息所提出,业已成为产业发展的重要方向。

移动计算包括三个要素:通信、计算和移动。这三个方面既相互独立又相互联系。移动计算概念提出之前,人们对它们的研究已经很长时间了,移动计算是第一次把它们结合起来进行研究。它们可以相互转化,例如,通信系统的容量可以通过计算处理(信源压缩,信道编码,缓存,预取)得到提高。

移动性可以给计算和通信带来新的应用,但同时也带来了许多问题。最大的问题就是如何面对无线移动环境带来的挑战。在无线移动环境中,信号要受到各种各样的干扰和衰落的影响,会有多径和移动,给信号带来时域和频域弥散、频带资源受限、较大的传输时延等等问题。这样一个环境下,引出了很多在移动通信网络和计算机网络中未遇到的问题。第一,信道可靠性问题和系统配置问题。有限的无线带宽、恶劣的通信环境使各种应用必须建立在一个不可靠的、可能断开的物理连接上。在移动计算网络环境下,移动终端位置的移动要求系统能够实时进行配置和更新。第二,为了真正实现在移动中进行各种计算,必须要对宽带数据业务进行支持。第三,如何将现有的主要针对话音业务的移动管理技术拓展到宽带数据业务。第四,如何把一些在固定计算网络中的成熟技术移植到移动计算网络中。

量子计算的概念范文第8篇

未来的计算机技术将向超高速、超小型、平行处理、智能化的方向发展。尽管受到物理极限的约束,采用硅芯片的计算机的核心部件CPU的性能还会持续增长。作为Moore定律驱动下成功企业的典范Inter预计2001年推出1亿个晶体管的微处理器,并预计在2010年推出集成10亿个晶体管的微处理器,其性能为10万MIPS(1000亿条指令/秒)。而每秒100万亿次的超级计算机将出现在本世纪初出现。超高速计算机将采用平行处理技术,使计算机系统同时执行多条指令或同时对多个数据进行处理,这是改进计算机结构、提高计算机运行速度的关键技术。

同时计算机将具备更多的智能成分,它将具有多种感知能力、一定的思考与判断能力及一定的自然语言能力。除了提供自然的输入手段(如语音输入、手写输入)外,让人能产生身临其境感觉的各种交互设备已经出现,虚拟现实技术是这一领域发展的集中体现。

传统的磁存储、光盘存储容量继续攀升,新的海量存储技术趋于成熟,新型的存储器每立方厘米存储容量可达10TB(以一本书30万字计,它可存储约1500万本书)。信息的永久存储也将成为现实,千年存储器正在研制中,这样的存储器可以抗干扰、抗高温、防震、防水、防腐蚀。如是,今日的大量文献可以原汁原味保存、并流芳百世。

新型计算机系统不断涌现

硅芯片技术的高速发展同时也意味着硅技术越来越近其物理极限,为此,世界各国的研究人员正在加紧研究开发新型计算机,计算机从体系结构的变革到器件与技术革命都要产生一次量的乃至质的飞跃。新型的量子计算机、光子计算机、生物计算机、纳米计算机等将会在21世纪走进我们的生活,遍布各个领域。

量子计算机

量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态,使信息沿着聚合物移动,从而进行运算。

量子计算机中数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前个人计算机的PentiumⅢ晶片快10亿倍。目前正在开发中的量子计算机有3种类型:核磁共振(NMR)量子计算机、硅基半导体量子计算机、离子阱量子计算机。预计2030年将普及量子计算机。

光子计算机

光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。

与电子计算机相比,光计算机的“无导线计算机”信息传递平行通道密度极大。一枚直径5分硬币大小的棱镜,它的通过能力超过全世界现有电话电缆的许多倍。光的并行、高速,天然地决定了光计算机的并行处理能力很强,具有超高速运算速度。超高速电子计算机只能在低温下工作,而光计算机在室温下即可开展工作。光计算机还具有与人脑相似的容错性。系统中某一元件损坏或出错时,并不影响最终的计算结果。

目前,世界上第一台光计算机已由欧共体的英国、法国、比利时、德国、意大利的70多名科学家研制成功,其运算速度比电子计算机快1000倍。科学家们预计,光计算机的进一步研制将成为21世纪高科技课题之一。

生物计算机(分子计算机)

生物计算机的运算过程就是蛋白质分子与周围物理化学介质的相互作用过程。计算机的转换开关由酶来充当,而程序则在酶合成系统本身和蛋白质的结构中极其明显地表示出来。

20世纪70年代,人们发现脱氧核糖核酸(DNA)处于不同状态时可以代表信息的有或无。DNA分子中的遗传密码相当于存储的数据,DNA分子间通过生化反应,从一种基因代玛转变为另一种基因代码。反应前的基因代码相当于输入数据,反应后的基因代码相当于输出数据。如果能控制这一反应过程,那么就可以制作成功DNA计算机。

蛋白质分子比硅晶片上电子元件要小得多,彼此相距甚近,生物计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。DNA分子计算机具有惊人的存贮容量,1立方米的DNA溶液,可存储1万亿亿的二进制数据。DNA计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于生物芯片的原材料是蛋白质分子,所以生物计算机既有自我修复的功能,又可直接与生物活体相联。预计10~20年后,DNA计算机将进入实用阶段。

纳米计算机

“纳米”是一个计量单位,一个纳米等于10[-9]米,大约是氢原子直径的10倍。纳米技术是从80年代初迅速发展起来的新的前沿科研领域,最终目标是人类按照自己的意志直接操纵单个原子,制造出具有特定功能的产品。

现在纳米技术正从MEMS(微电子机械系统)起步,把传感器、电动机和各种处理器都放在一个硅芯片上而构成一个系统。应用纳米技术研制的计算机内存芯片,其体积不过数百个原子大小,相当于人的头发丝直径的千分之一。纳米计算机不仅几乎不需要耗费任何能源,而且其性能要比今天的计算机强大许多倍。

目前,纳米计算机的成功研制已有一些鼓舞人心的消息,惠普实验室的科研人员已开始应用纳米技术研制芯片,一旦他们的研究获得成功,将为其他缩微计算机元件的研制和生产铺平道路。

互联网络继续蔓延与提升

今天人们谈到计算机必然地和网络联系起来,一方面孤立的未加入网络的计算机越来越难以见到,另一方面计算机的概念也被网络所扩展。二十世纪九十年代兴起的Internet在过去如火如荼地发展,其影响之广、普及之快是前所未有的。从没有一种技术能像Internet一样,剧烈地改变着我们的学习、生活和习惯方式。全世界几乎所有国家都有计算机网络直接或间接地与Internet相连,使之成为一个全球范围的计算机互联网络。人们可以通过Internet与世界各地的其它用户自由地进行通信,可从Internet中获得各种信息。

回顾一下我国互联网络的发展,就可以感受到互联网普及之快。近三年中国互联网络信息中心(CNNIC)对我国互联网络状况的调查表明我国的Internet发展呈现爆炸式增长,2000年1月我国上网计算机数为350万台,2001年的统计数为892万台,翻一番多;2000年1月我国上网用户人数890万;2001年1月的统计数为2250万人,接近于3倍;2000年1月CN下注册的域名数为48575,2001年1月的统计数为122099个,接近于3倍;国际线路的总容量目前达2799M,8倍于2000年1月的351M。

人们已充分领略到网络的魅力,Internet大大缩小了时空界限,通过网络人们可以共享计算机硬件资源、软件资源和信息资源。“网络就是计算机”的概念被事实一再证明,被世人逐步接受。

在未来10年内,建立透明的全光网络势在必行,互联网的传输速率将提高100倍。在Internet上进行医疗诊断、远程教学、电子商务、视频会议、视频图书馆等将得以普及。同时,无线网络的构建将成为众多公司竞争的主战场,未来我们可以通过无线接入随时随地连接到Internet上,进行交流、获取信息、观看电视节目。

移动计算技术与系统

随着因特网的迅猛发展和广泛应用、无线移动通信技术的成熟以及计算机处理能力的不断提高,新的业务和应用不断涌现。移动计算正是为提高工作效率和随时能够交换和处理信息所提出,业已成为产业发展的重要方向。

移动计算包括三个要素:通信、计算和移动。这三个方面既相互独立又相互联系。移动计算概念提出之前,人们对它们的研究已经很长时间了,移动计算是第一次把它们结合起来进行研究。它们可以相互转化,例如,通信系统的容量可以通过计算处理(信源压缩,信道编码,缓存,预取)得到提高。

移动性可以给计算和通信带来新的应用,但同时也带来了许多问题。最大的问题就是如何面对无线移动环境带来的挑战。在无线移动环境中,信号要受到各种各样的干扰和衰落的影响,会有多径和移动,给信号带来时域和频域弥散、频带资源受限、较大的传输时延等等问题。这样一个环境下,引出了很多在移动通信网络和计算机网络中未遇到的问题。第一,信道可靠性问题和系统配置问题。有限的无线带宽、恶劣的通信环境使各种应用必须建立在一个不可靠的、可能断开的物理连接上。在移动计算网络环境下,移动终端位置的移动要求系统能够实时进行配置和更新。第二,为了真正实现在移动中进行各种计算,必须要对宽带数据业务进行支持。第三,如何将现有的主要针对话音业务的移动管理技术拓展到宽带数据业务。第四,如何把一些在固定计算网络中的成熟技术移植到移动计算网络中。