首页 > 文章中心 > 量子计算意义

量子计算意义

开篇:润墨网以专业的文秘视角,为您筛选了八篇量子计算意义范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

量子计算意义范文第1篇

论文摘要:将量子化学原理及方法引入材料科学、能源以及生物大分子体系研究领域中无疑将从更高的理论起点来认识微观尺度上的各种参数、性能和规律,这将对材料科学、能源以及生物大分子体系的发展有着重要的意义。

量子化学是将量子力学的原理应用到化学中而产生的一门学科,经过化学家们的努力,量子化学理论和计算方法在近几十年来取得了很大的发展,在定性和定量地阐明许多分子、原子和电子尺度级问题上已经受到足够的重视。目前,量子化学已被广泛应用于化学的各个分支以及生物、医药、材料、环境、能源、军事等领域,取得了丰富的理论成果,并对实际工作起到了很好的指导作用。本文仅对量子化学原理及方法在材料、能源和生物大分子体系研究领域做一简要介绍。

一、 在材料科学中的应用

(一)在建筑材料方面的应用

水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。

钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1 ,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca 钙矾石、含Ba 钙矾石和含Sr 钙矾石的Al -O键级基本一致,而含Sr 钙矾石、含Ba 钙矾石中的Sr,Ba 原子键级与Sr-O,Ba -O共价键级都分别大于含Ca 钙矾石中的Ca 原子键级和Ca -O共价键级,由此认为,含Sr 、Ba 硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。

将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。

(二) 在金属及合金材料方面的应用

过渡金属(Fe 、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。

量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。

二、在能源研究中的应用

(一)在煤裂解的反应机理和动力学性质方面的应用

煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。

量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子, 如低级芳香烃作为碳/ 碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian 98 程序中的半经验方法UAM1 、在UHF/ 3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3L YP/ 3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。 转贴于

(二)在锂离子电池研究中的应用

锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。

锂离子电池又称摇椅型电池,电池的工作过程实际上是Li + 离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago 等[8] 用半经验分子轨道法以C32 H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago 等[9 ] 用abinitio 分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li - C 和具有共价性的Li - Li 的混合物。Satoru 等[10] 用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。

随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。

三、 在生物大分子体系研究中的应用

生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘, 进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。

综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。

参考文献:

[1]程新. [ 学位论文] .武汉:武汉工业大学材料科学与工程学院,1994

[2]程新,冯修吉.武汉工业大学学报,1995,17 (4) :12

[3]李北星,程新.建筑材料学报,1999,2(2):147

[4]闵新民,沈尔忠, 江元生等.化学学报,1990,48(10): 973

[5]程新,陈亚明.山东建材学院学报,1994,8(2):1

[6]闵新民.化学学报,1992,50(5):449

[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1

[8]Ago H ,Nagata K, Yoshizaw A K, et al. Bull.Chem. Soc. Jpn.,1997,70:1717

[9]Ago H ,Kato M,Yahara A K. et al. Journal of the Electrochemical Society, 1999, 146(4):1262

量子计算意义范文第2篇

【关键词】药品;量子;信息系统;数据挖掘;设计

1 药品信息量子化

量子的概念源自物理学,普朗克是“量子物理学”的开创者和奠基人。1900年普朗克抛弃“能量是连续的”这一传统经典物理学观念,证明了物质辐射的能量是不连续的,只能是某一最小能量的整数倍,普朗克把这一最小能量单位称为“能量子”,简称“量子” [1]。

药品信息“量子化”是指将纷繁复杂的、模糊有噪声的药品信息合理解析成具有独立内涵的、不可再分的最小信息单位,即“量子”。将药品原始数据“量子化”的方法,使药品复杂数据简洁化、精确化、规范化,提高了计算机的数据处理速度,为数据库知识发现奠定基础。

2 医院药品量子信息数据库系统的分析

2.1系统的功能分析

2.1.1智能化检索功能 为方便医护人员等查找需要的药品信息,系统检索功能必不可少,本系统不仅可以通过输入关键词进行普通检索和高级检索,还可通过下拉列表选择相关“量子”进行智能化检索。

2.1.2 辅助实现数据挖掘功能 药品数据最大的特点是“数据海量,信息缺乏”。如何从海量的、有噪声的、模糊的医药学数据中,提取出隐含其中的、人们事先未知又潜在有用、能辅助临床用药决策的信息,是数据挖掘(DM)最终解决的问题。而数据挖掘过程中一个关键步骤就是数据的预处理,即数据的清洗、集成、转化和消减等。本文提出的药品信息“量子化”即是数据的预处理过程,它为医药学数据挖掘的实现迈出关键性的一步。

2.1.3 数据维护功能 包括数据更新、备份和恢复功能。数据更新包括药品数据的修改、删除、添加等,以便保证当前药品信息的实时性和准确性。对于一个完整的系统而言,备份和恢复功能也是必不可少的组成部分,当应用系统发生灾难性错误时,备份和恢复功能可使系统避免数据丢失带来的巨大损失。而即便系统没有数据丢失或破坏,备份和恢复功能仍具有重大意义,它为我们进行历史数据的查询、统计和分析,以及重要信息归档保存提供了可能[2]。

2.2 系统的优势分析

2.2.1更快捷的计算机处理速度 国内大多数医院药品信息数据库仅是药品说明书等的简单堆砌,并未对药品信息进行有效的预处理,这显然会影响计算机的处理速度。本系统将这些复杂模糊、不规范的药品信息经专业人员处理成简洁、精确、规范的“量子”,并归类编码建立量子数据库后,计算机便可对这些“量子”进行快速处理。药品量子信息数据库系统较普通数据库系统有更快捷的处理速度。

2.2.2更智能的客户端检索模式 普通客户端检索模式不能满足信息多元化检索需求,本系统除一般数据库系统所具有的普通检索和高级检索外,还特别设计了量子检索模块。这种量子检索模块不仅能帮助用户迅速检索出同时满足多种条件的精确信息,且由于各种药品信息均已进行精确的量子归类,便于计算机处理。

2.2.3更前瞻性的为数据挖掘服务 数据挖掘技术的应用对临床用药决策及医药学研究等具有重要的意义。如,根据病人反馈使用某些药品后产生的不良反应数据,通过数据挖掘技术发现,联合用药可能导致某些不良反应,或联合用药可能减少某些不良反应,或者同一种药品由不同性别、年龄、体质的患者使用可能产生不同的反应等,这些将为医师指导患者临床用药提供重要帮助。药品信息“量子化”为医药学数据挖掘的实现奠定基础。

3 医院药品说明书数据库系统的设计

3.1系统的总体架构设计本系统采用分布式多层体系结构。实现分布式应用的成熟技术主要有COM/DCOM和CORBA ,由于本系统在Windows平台上运行,所以选用COM/DCOM为实现系统的标准。采用多层结构后,为了避免在WEB应用程序中进行直接数据库操作和事务管理,将数据库操作和事务管理转移到中间件中处理。即第一层是客户层,客户可以通过使用GUI与应用程序进行交互;第二层是中间层,通常由一个和多个应用服务器组成。应用服务器处理客户的请求,然后将结果返回客户层;第三层是数据层,用于驻留业务数据的地方,在处理业务数据时,由中间层访问数据层[3]。

3.2系统的功能模块设计

本系统的主要构成模块,如图1所示。

参考文献

[1]赵凯华,罗蔚茵.量子物理[M].北京:高等教育出版社,2006:1-10.

量子计算意义范文第3篇

[关键词] 网络支付 信息安全 量子计算 量子密码

目前电子商务日益普及,电子货币、电子支票、信用卡等综合网络支付手段已经得到普遍使用。在网络支付中,隐私信息需要防止被窃取或盗用。同时,订货和付款等信息被竞争对手获悉或篡改还可能丧失商机等。因此在网络支付中信息均有加密要求。

一、量子计算

随着计算机的飞速发展,破译数学密码的难度也在降低。若能对任意极大整数快速做质数分解,就可破解目前普遍采用的RSA密码系统。但是以传统已知最快的方法对整数做质数分解,其复杂度是此整数位数的指数函数。正是如此巨额的计算复杂度保障了密码系统的安全。

不过随着量子计算机的出现,计算达到超高速水平。其潜在计算速度远远高于传统的电子计算机,如一台具有5000个左右量子位(qubit)的量子计算机可以在30秒内解决传统超级计算机需要100亿年才能解决的问题。量子位可代表了一个0或1,也可代表二者的结合,或是0和1之间的一种状态。根据量子力学的基本原理,一个量子可同时有两种状态,即一个量子可同时表示0和1。因此采用L个量子可一次同时对2L个数据进行处理,从而一步完成海量计算。

这种对计算问题的描述方法大大降低了计算复杂性,因此建立在这种能力上的量子计算机的运算能力是传统计算机所无法相比的。例如一台只有几千量子比特的相对较小量子计算机就能破译现存用来保证网上银行和信用卡交易信息安全的所有公用密钥密码系统。因此,量子计算机会对现在的密码系统造成极大威胁。不过,量子力学同时也提供了一个检测信息交换是否安全的办法,即量子密码技术。

二、量子密码技术的原理

从数学上讲只要掌握了恰当的方法任何密码都可破译。此外,由于密码在被窃听、破解时不会留下任何痕迹,用户无法察觉,就会继续使用同地址、密码来存储传输重要信息,从而造成更大损失。然而量子理论将会完全改变这一切。

自上世纪90年代以来科学家开始了量子密码的研究。因为采用量子密码技术加密的数据不可破译,一旦有人非法获取这些信息,使用者就会立即知道并采取措施。无论多么聪明的窃听者在破译密码时都会留下痕迹。更惊叹的是量子密码甚至能在被窃听的同时自动改变。毫无疑问这是一种真正安全、不可窃听破译的密码。

以往密码学的理论基础是数学,而量子密码学的理论基础是量子力学,利用物理学原理来保护信息。其原理是“海森堡测不准原理”中所包含的一个特性,即当有人对量子系统进行偷窥时,同时也会破坏这个系统。在量子物理学中有一个“海森堡测不准原理”,如果人们开始准确了解到基本粒子动量的变化,那么也就开始丧失对该粒子位置变化的认识。所以如果使用光去观察基本粒子,照亮粒子的光(即便仅一个光子)的行为都会使之改变路线,从而无法发现该粒子的实际位置。从这个原理也可知,对光子来讲只有对光子实施干扰才能“看见”光子。因此对输运光子线路的窃听会破坏原通讯线路之间的相互关系,通讯会被中断,这实际上就是一种不同于传统需要加密解密的加密技术。在传统加密交换中两个通讯对象必须事先拥有共同信息――密钥,包含需要加密、解密的算法数据信息。而先于信息传输的密钥交换正是传统加密协议的弱点。另外,还有“单量子不可复制定理”。它是上述原理的推论,指在不知道量子状态的情况下复制单个量子是不可能的,因为要复制单个量子就必须先做测量,而测量必然会改变量子状态。根据这两个原理,即使量子密码不幸被电脑黑客获取,也会因测量过程中对量子状态的改变使得黑客只能得到一些毫无意义的数据。

量子密码就是利用量子状态作为信息加密、解密的密钥,其原理就是被爱因斯坦称为“神秘远距离活动”的量子纠缠。它是一种量子力学现象,指不论两个粒子间距离有多远,一个粒子的变化都会影响另一个粒子。因此当使用一个特殊晶体将一个光子割裂成一对纠缠的光子后,即使相距遥远它们也是相互联结的。只要测量出其中一个被纠缠光子的属性,就容易推断出其他光子的属性。而且由这些光子产生的密码只有通过特定发送器、吸收器才能阅读。同时由于这些光子间的“神秘远距离活动”独一无二,只要有人要非法破译这些密码,就会不可避免地扰乱光子的性质。而且异动的光子会像警铃一样显示出入侵者的踪迹,再高明的黑客对这种加密技术也将一筹莫展。

三、量子密码技术在网络支付中的发展与应用

由于量子密码技术具有极好的市场前景和科学价值,故成为近年来国际学术界的一个前沿研究热点,欧洲、北美和日本都进行了大量的研究。在一些前沿领域量子密码技术非常被看好,许多针对性的应用实验正在进行。例如美国的BBN多种技术公司正在试验将量子密码引进因特网,并抓紧研究名为“开关”的设施,使用户可在因特网的大量加密量子流中接收属于自己的密码信息。应用在电子商务中,这种设施就可以确保在进行网络支付时用户密码等各重要信息的安全。

2007年3月国际上首个量子密码通信网络由我国科学家郭光灿在北京测试运行成功。这是迄今为止国际公开报道的惟一无中转、可同时任意互通的量子密码通信网络,标志着量子保密通信技术从点对点方式向网络化迈出了关键一步。2007年4月日本的研究小组利用商业光纤线路成功完成了量子密码传输的验证实验,据悉此研究小组还计划在2010年将这种量子密码传输技术投入使用,为金融机构和政府机关提供服务。

随着量子密码技术的发展,在不久的将来它将在网络支付的信息保护方面得到广泛应用,例如获取安全密钥、对数据加密、信息隐藏、信息身份认证等。相信未来量子密码技术将在确保电子支付安全中发挥至关重要的作用。

参考文献:

[1]王阿川宋辞等:一种更加安全的密码技术――量子密码[J].中国安全科学学报,2007,17(1):107~110

量子计算意义范文第4篇

随着信息技术发展与应用,信息安全内涵在不断延伸,从最初的信息保密性发展到信息的完整性、可用性、可控性和不可否认性,进而又发展为“攻(攻击)、防(防范)、测(检测)、控(控制)、管(管理)、评(评估)”等多方面基础理论和实施技术。

密码技术是信息安全技术中的核心技术,密码技术涉及信息论、计算机科学和密码学等多方面知识,它的主要任务是研究计算机系统和通信网络内信息的保护方法以实现系统内信息的安全、保密、真实和完整。密码理论与技术主要包括两部分,即基于数学的密码理论与技术包括公钥密码、分组密码、序列密码、认证码、数字签名、Hash函数、身份识别、密钥管理、PKI技术等)和非数学的密码理论与技术(包括信息隐形,量子密码,基于生物特征的识别理论与技术)。

目前,我国在密码技术应用水平方面与国外还有一定差距。因此,我们必须要自主创新,加速发展,要有我们自己的算法,自己的一套标准,自己的一套体系,来应对未来挑战。

公钥密码

项目简介:自从公钥加密问世以来,学者们提出了许多种公钥加密方法,它们安全性都是基于复杂数学难题。根据基于数学难题来分类,有以下三类系统目前被认为是安全和有效的:大整数因子分解系统(代表性的有RSA)、椭园曲线离散对数系统(ECC)和离散对数系统 (代表性的有DSA)。

当前最著名、应用最广泛的公钥系统RSA是由Rivet、Shamir、Adelman提出的(简称为“RSA系统”),它的安全性是基于大整数素因子分解的困难性,而大整数因子分解问题是数学上的著名难题,至今没有有效方法予以解决,因此可以确保RSA算法的安全性。RSA系统是公钥系统的最具有典型意义的方法,大多数使用公钥密码进行加密和数字签名的产品和标准使用的都是RSA算法。RSA方法的优点主要在于原理简单,易于使用。但是,随着分解大整数方法的进步及完善、计算机速度的提高以及计算机网络的发展,作为RSA加解密安全保障的大整数要求越来越大。为了保证RSA使用的安全性,其密钥的位数一直在增加,比如,目前一般认为RSA需要1024位以上的字长才有安全保障。但是,密钥长度的增加导致了其加解密的速度大为降低,硬件实现也变得越来越难以忍受,这对使用RSA的应用带来了很重的负担,对进行大量安全交易的电子商务更是如此,从而使得其应用范围越来越受到制约。

安全性更高、算法实现性能更好的公钥系统椭圆曲线加密算法ECC(Elliptic Curve Cryptography)是基于离散对数的计算困难性。椭圆曲线加密方法与RSA方法相比,具有安全性更高,计算量小,处理速度快,存储空间占用小,宽带要求低等特点,ECC的这些特点使它必将取代RSA,成为通用的公钥加密算法。比如SET协议的制定者已把它作为下一代SET协议中缺省的公钥密码算法。

意义:公钥密码的快速实现是当前公钥密码研究中的一个热点,包括算法优化和程序优化。另一个人们所关注的问题是椭圆曲线公钥密码的安全性论证问题。

序列密码

项目简介:序列密码作用于由若干位组成的一些小型组,通常使用称为密钥流的一个位序列作为密钥对它们逐位应用“异或”运算。有些序列密码基于一种称作“线形 反馈移位寄存器(Linear Feedback Shift Register,LFSR)”的机制,该机制生成一个二进制位序列。

序列密码是由一种专业的密码,Vernam密码(也称为一次性密码本(one-time pad)),发展而来的。序列密码的示例包括 RC4 和“软件优化加密算法(Software Optimized Encryption Algorithm SEAL)”,以及 Vernam 密码或一次性密码本的特殊情形。

序列密码主要用于政府、军方等国家要害部门,尽管用于这些部门的理论和技术都是保密的,但由于一些数学工具(比如代数、数论、概率等)可用于研究序列密码,其理论和技术相对而言比较成熟。从八十年代中期到九十年代初,序列密码的研究非常热,在序列密码的设计与生成以及分析方面出现了一大批有价值的成果,我国学者在这方面也做了非常优秀的工作。虽然,近年来序列密码不是一个研究热点,但有很多有价值的公开问题需要进一步解决,比如自同步流密码的研究,有记忆前馈网络密码系统的研究,混沌序列密码和新研究方法的探索等。另外,虽然没有制定序列密码标准,但在一些系统中广泛使用了序列密码比如RC4,用于存储加密。

意义:目前,欧洲的NESSIE计划中已经包括了序列密码标准的制定,这一举措有可能导致序列密码研究热。

身份认证

项目简介:身份认证是指计算机及网络系统确认操作者身份的过程。身份认证技术从是否使用硬件可以分为软件认证和硬件认证,从认证需要验证的条件来看,可以分为单因子认证和双因子认证。从认证信息来看,可以分为静态认证和动态认证。身份认证技术的发展,经历了从软件认证到硬件认证,从单因子认证到双因子认证,从静态认证到动态认证的过程。现在计算机及网络系统中常用的身份认证方式主要有以下几种:用户名/密码方式,IC卡认证,动态口令,生物特征认证,USB Key认证等。

基于USB Key的身份认证方式是近几年发展起来的一种方便、安全、经济的身份认证技术,它采用软硬件相结合一次一密的强双因子认证模式,很好地解决了安全性与易用性之间的矛盾。USB Key是一种USB接口的硬件设备,它内置单片机或智能卡芯片,可以存储用户的密钥或数字证书,利用USB Key内置的密码学算法实现对用户身份的认证。基于USB Key身份认证系统主要有两种应用模式:一是基于冲击/相应的认证模式,二是基于PKI体系的认证模式。由于USB Key具有安全可靠,便于携带、使用方便、成本低廉的优点,加上PKI体系完善的数据保护机制,使用USB Key存储数字证书的认证方式已经成为目前以及未来最具有前景的主要认证模式。

意义:身份安全是信息安全的基础,身份认证是整个信息安全体系最基础的环节,是信息安全的第一道关隘。

数字签名

所谓数字签名就是附加在数据单元上的一些数据,或是对数据单元所作的密码变换。这种数据或变换允许数据单元的接收者用以确认数据单元的来源和数据单元的完整性并保护数据,防止被人(例如接收者)进行伪造。它是对电子形式的消息进行签名的一种方法,一个签名消息能在一个通信网络中传输。基于公钥密码体制和私钥密码体制都可以获得数字签名,目前主要是基于公钥密码体制的数字签名。包括普通数字签名和特殊数字签名。普通数字签名算法有RSA、ElGamal、Fiat-Shamir、Guillou- Quisquarter、Schnorr、Ong-Schnorr-Shamir数字签名算法、Des/DSA,椭圆曲线数字签名算法和有限自动机数字签名算法等。特殊数字签名有盲签名、签名、群签名、不可否认签名、公平盲签名、门限签名、具有消息恢复功能的签名等,它与具体应用环境密切相关。显然,数字签名的应用涉及到法律问题,美国联邦政府基于有限域上的离散对数问题制定了自己的数字签名标准(DSS)。

数字签名(Digital Signature)技术是不对称加密算法的典型应用。数字签名的应用过程是,数据源发送方使用自己的私钥对数据校验和或其他与数据内容有关的变量进行加密处理,完成对数据的合法“签名”,数据接收方则利用对方的公钥来解读收到的“数字签名”,并将解读结果用于对数据完整性的检验,以确认签名的合法性。数字签名技术是在网络系统虚拟环境中确认身份的重要技术,完全可以代替现实过程中的“亲笔签字”,在技术和法律上有保证。在公钥与私钥管理方面,数字签名应用与加密邮件PGP技术正好相反。在数字签名应用中,发送者的公钥可以很方便地得到,但他的私钥则需要严格保密。

数字签名包括普通数字签名和特殊数字签名。普通数字签名算法有RSA、ElGmal、Fiat-Shamir、Guillou-Quisquarter、Schnorr、Ong-Schnorr-Shamir数字签名算法、Des/DSA,椭圆曲线数字签名算法和有限自动机数字签名算法等。特殊数字签名有盲签名、签名、群签名、不可否认签名、公平盲签名、门限签名、具有消息恢复功能的签名等,它与具体应用环境密切相关。

数字签名技术是将摘要信息用发送者的私钥加密,与原文一起传送给接收者。接收者只有用发送的公钥才能解密被加密的摘要信息,然后用HASH函数对收到的原文产生一个摘要信息,与解密的摘要信息对比。如果相同,则说明收到的信息是完整的,在传输过程中没有被修改,否则说明信息被修改过,因此数字签名能够验证信息的完整性。

数字签名主要的功能是:保证信息传输的完整性、发送者的身份认证、防止交易中的抵赖发生。

意义:目前数字签名的研究内容非常丰富,包括普通签名和特殊签名。特殊签名有盲签名,签名,群签名,不可否认签名,公平盲签名,门限签名,具有消息恢复功能的签名等,它与具体应用环境密切相关。

PKI技术

项目简介:工程学家对PKI是这样定义的:“PKI是一个用公钥概念与技术来实施和提供安全服务的普遍适用的安全基础设施。换句话说,PKI是一个利用非对称密码算法(即公开密钥算法)原理和技术实现的并提供网络安全服务的具有通用性的安全基础设施”。它遵循标准的公钥加密技术,为电子商务、电子政务、网上银行和网上证券业,提供一整套安全保证的基础平台。用户利用PKI基础平台所提供的安全服务,能在网上实现安全地通信。PKI这种遵循标准的密钥管理平台,能够为所有网上应用,透明地提供加解密和数字签名等安全服务所需要的密钥和证书管理。

还有一种是学者们对PKI的定义:“PKI是硬件、软件、策略和人组成的系统,当安全并正确地实施后,能够提供一整套的信息安全保障,这些保障对保护敏感的通信和交易是非常重要的”。换句话说,PKI是创建、颁发、管理和撤消公钥证书所涉及到的所有软件、硬件系统,以及所涉及到的整个过程安全策略规范、法律法规以及人员的集合。安全地、正确地运营这些系统和规范就能提供一整套的网上安全服务。

目前最为人们所关注的实用密码技即是PKI技术。国外的PKI应用已经开始,开发PKI的厂商也有多家。许多厂家,如Baltimore,Entrust等推出了可以应用的PKI产品,有些公司如VerySign等已经开始提供PKI服务。网络许多应用正在使用PKI技术来保证网络的认证、不可否认、加解密和密钥管理等。尽管如此,总的说来PKI技术仍在发展中。按照国外一些调查公司的说法,PKI系统仅仅还是在做示范工程。

意义:IDC公司的Internet安全资深分析家认为:PKI技术将成为所有应用的计算基础结构的核心部件,包括那些越出传统网络界限的应用。B2B电子商务活动需要的认证、不可否认等只有PKI产品才有能力提供这些功能。

IBE技术

项目简介:PKI技术虽然是目前比较成熟的安全解决方案,但是它本身并不是为了解决企业之间进行安全通信而设计的,所以没有考虑持续增长的互联设备之间通信越来越频繁的问题,使得PKI技术在实际应用中日益凸现出很多问题。IBE是最近几年提出来的一种基于身份的加密(Identity-based Encryption)通信机制,不但加密机制简单易用,而且形成了数据加密和身份认证相互独立的一个安全的通信环境。IBE可以解决与数字证书有关的复杂问题(用户注册、证书管理及证书撤销),又能提供公钥加密系统具有的安全性和保密性,因此可以结合到很多的应用中。IBE机制同样也可以和指纹认证技术相结合,如果使用指纹识别来实现身份认证,可以加强IBE的身份认证机制,同时利用IBE本身具有的特性又能克服PKI的弊端。利用指纹对用户进行身份认证,同时基于PKI技术,将数字签名、身份认证、文件加密和证书管理等信息安全技术植入现有的电子商务、电子政务系统,以此保证可靠身份认证和可靠信息传输。

意义:指纹认证技术与IBE技术的结合将具有非常好的应用前景。

量子密码

项目简介:量子密码术用我们当前的物理学知识来开发不能被破获的密码系统,即如果不了解发送者和接受者的信息,该系统就完全安全。

近年来,英、美、日等国的许多大学和研究机构竞相投入到量子密码的研究之中,更大的计划在欧洲进行。到目前为止,主要有三大类量子密码实现方案:一是基于单光子量子信道中测不准原理的;二是基于量子相关信道中Bell原理的;三是基于两个非正交量子态性质的。但有许多问题还有待于研究。比如,寻找相应的量子效应以便提出更多的量子密钥分配协议,量子加密理论的形成和完善,量子密码协议的安全性分析方法研究,量子加密算法的开发,量子密码的实用化等。

意义:目前,量子密码的全部研究还在实验室中,没有进入实用阶段。科学家已经在量子密码的相关研究中得到了一定进展,能在光纤中传递量子密码。但在长距离的光纤传输中,光子的偏振特性会退化,造成误码率的增加。实验中的量子密码的最大传输距离没有超过100公里。一旦这个瓶颈被突破,量子密码将迎来大发展。科学家们表示,保密与窃密就像矛与盾一样形影相随,它们之间的斗争已经持续了几千年,量子密码的出现,将成为这场斗争的终结者。

信息隐藏

项目简介:信息隐藏技术(Information Hiding),也称作数据隐藏(Data Hiding),主要是指将特定的信息嵌入(embedding)数字化宿主信息(如文本、数字化的声音、图像、视频信号等)中,以不引起检查者的注意,并通过网络传递出去。特定的信息一般就是保密信息。

信息加密是隐藏信息的内容,而信息隐藏是隐藏信息的存在性。信息隐藏的目的不在于限制正常的信息存取和访问,而在于保证隐藏的信息不引起监控者的注意和重视,从而减少被攻击的可能性,在此基础上再使用密码术来加强隐藏信息的安全性。因此信息隐藏比信息加密更为安全。应该注意,密码术和信息隐藏技术不是互相矛盾、互相竞争的技术,而是相互补充的技术,他们的区别在于应用的场合不同,对算法的要求不同,但可能在实际应用中需要互相配合。

信息隐藏的方法主要有隐写术、数字水印、可视密码、潜信道、隐匿协议等。

隐写术

(Steganography):隐写术就是将秘密信息隐藏到看上去普通的信息(如数字图像)中进行传送。现有的隐写术方法主要有利用高空间频率的图像数据隐藏信息、采用最低有效位方法将信息隐藏到宿主信号中、使用信号的色度隐藏信息的方法、在数字图像的像素亮度的统计模型上隐藏信息的方法、Patchwork方法等等。

数字水印(Digital Watermark):数字水印就是向被保护的数字对象嵌入某些能证明版权归属或跟踪侵权行为的信息。目前主要有两类数字水印,一类是空间数字水印,另一类是频率数字水印。空间数字水印的典型代表是最低有效位(LSB)算法,其原理是通过修改表示数字图像的颜色或颜色分量的位平面,调整数字图像中感知不重要的像素来表达水印的信息,以达到嵌入水印的目的。频率数字水印的典型代表是扩展频谱算法,其原理是通过时频分析,根据扩展频谱特性,在数字图像的频率域上选择那些对视觉最敏感的部分,使修改后的系数隐含数字水印的信息。

可视密码技术:可视密码技术是Naor和Shamir于1994年首次提出的,其主要特点是恢复秘密图像时不需要任何复杂的密码学计算,而是以人的视觉即可将秘密图像辨别出来。其做法是产生n张不具有任何意义的胶片,任取其中t张胶片叠合在一起即可还原出隐藏在其中的秘密信息。其后,人们又对该方案进行了改进和发展。主要的改进办法有:使产生的n张胶片都有一定的意义,这样做更具有迷惑性;改进了相关集合的构造方法;将针对黑白图像的可视秘密共享扩展到基于灰度和彩色图像的可视秘密共享。

信息隐藏技术的另一重要应用是匿名通信(Anonymity Communication):是指设法隐藏消息的来源。网络匿名划分为发送方匿名和接收方匿名,如网上浏览关心的是接收方的匿名,而电子邮件则关心发送方的匿名,包括匿名重发(Anonymous Remailers)和网络技术。

意义:信息隐藏学是一门新兴的交叉学科 ,在计算机、通讯、保密学等领域有着广阔的应用前景 。

生物特征认证

项目简介:现代社会对于人类自身的身份识别的准确性、安全性与实用性提出了更高的要求。传统的身份识别方法已经远远不能满足这种要求,生物特征认证技术(又称生物识别技术)就是在这种背景下应运而生的身份识别技术。生物特征识别技术是指通过计算机利用人体所固有的生理特征或行为特征来进行个人身份鉴定。生理特征与生俱来,多为先天性的;行为特征则是习惯使然,多为后天性的。我们将生理和行为特征统称为生物特征。常用的生物特征包括: 指纹、掌纹、虹膜、脸像、声音、笔迹、步态等。而其中以指纹识别为代表的生物特征识别技术凭借其独特的优势正在被越来越多地应用到新的领域。基于生物特征的身份认证技术的大发展既是近年来市场需求扩大带来的结果,本质上也是身份认证技术的回归,即依靠人体固有的特征鉴别身份。

意义:利用生物特征的惟一性、稳定性等特点和密码技术相结合,能为信息安全提供更高层次的保障。

指纹认证技术和PKI技术的结合

指纹认证技术和PKI技术的结合应用主要体现在两个方面:

1.强身份认证和安全传输的结合: PKI实现第一重认证,一方面认证数字证书和密钥的统一性和合法性,另一方面建立信息传输安全通道; 指纹认证在此安全通道内进一步确定使用当前证书的用户身份的合法性,即实现数字身份和物理身份的统一。

量子计算意义范文第5篇

关键词:

量子阱红外探测器; 表面等离激元效应; 二维光栅; 耦合效率

中图分类号:

TN 362

文献标志码: A

Grating Optimization of QWIP for Midwave Based on Surface Plasmon

NI Lu1, TIAN Li2

(1.School of Electrical Engineering and Automation, Henan Polytechnic University,

Jiaozuo 454000, China; 2.Henan Pingyuan Optics Electronics Co., Ltd., jiaozuo 454000, China)

Abstract:

A study was made on the near field and coupling efficiency of midwave quantum well infrared detectors under the surface Plasmon effect through modeling and simulation.The optimal parameters in the SP effect of twodimensional grating can be obtained using the FDTD algorithm.Calculation results show that the electric field along the Z direction reached its maximum in the XY plane when the grating parameters are taken as P=1.3 μm、h=0.4 μm and d=0.8.

Keywords:

QWIP; SPPs; 2D grating; coupling efficiency

0引言

红外探测器是一种对于红外辐射进行高灵敏度感应的光电转换器件,是红外探测系统中的核心元件.量子阱红外探测器(QWIP)自从20世纪80年代被验证后,得到了广泛积极的研究[1].目前国外量子阱红外焦平面器件发展已趋成熟,中等规模256×256、320×240、512×480和640×512规格的单色焦平面器件以及相关热成像系统在美、德和法国等先进国家已商品化[2].随着量子阱红外探测器(QWIP)的快速发展,以GaAs为基础的QWIP在材料生长和工艺加工方面已十分成熟,可以形成高灵敏度、低功率、低成本和高均匀性的红外成像系统,因此成为第三代红外探测器的优选技术方案之一[3-7].但是,由于QWIP对正入射的红外光不敏感,在双色焦平面器件中必须制作耦合光栅来实现对正入射红外光的探测,而且根据量子阱子带跃迁选择定则,只有电场方向平行于量子阱生长方向的光波才能激发子带跃迁,而耦合光栅过低的耦合效率使得焦平面器件的量子效率及探测灵敏度较低,这在很大程度上限制了QWIP性能的进一步提升[8-10].

因此,为了提高器件的量子效率和探测灵敏度,可以采用表面等离激元效应(SPPs)来提高QWIP对正入射光的吸收效率.表面等离激元是光与金属表面的自由电子相互作用所引起的一种电磁波模式.在这种相互作用中,自由电子在与其共振频率相同的光波照射下发生集体震荡.研究表明,采用SP效应对中波QWIP整体性能的提高有很大的意义[11-13].

本文采用三维时域有限差分算法(3D-FDTD),详细分析了在SP调制下中波量子阱红外探测器中光栅的耦合效率,并给出光栅的优化参数.

1三维仿真建模

FDTD算法是把Maxwell方程组在时间和空间领域上进行差分化,对空间领域的电场和磁场进行交替计算,通过时间领域上的更新来模仿电磁场的变化,达到计算的目的,能够直接模拟场的分布,精度比较高,是目前使用比较多的数值模拟的方法之一[14].本文采用的量子阱红外探测器的模型如图1所示,从顶部至底部分别为光栅层(栅孔深度为h)、n-GaAs上接触层衬底、QWIP有源区、n-GaAs下接触层衬底、GaAs衬底.红外光自底部垂直入射,经QWIP有源区后到达光栅.

2计算与分析

沿Z方向入射的红外光只有垂直于Z方向的电矢量才能被QWIP有源区直接吸收.光通过如图2所示的周期性金属薄膜(光栅层)可以产生TM模式的表面等离激元,其存在Z方向的电矢量,可以被QWIP有源区吸收.图3为距离光栅层底部Z=0.12 μm处Z方向电矢量的分布图.从图3中可以看出,垂直入射的红外光的传播方向明显改变,且光场集中在与光栅孔对应的位置上.图中采用的计算参数为:光栅周期1.55 μm,孔直径0.775 μm,栅孔深度0.32 μm.

为了研究光栅层参数对光耦合效率的影响,我们分析了不同周期、不同栅孔深度、不同占空比下光的耦合效率.此处占空比是指栅孔直径与周期的比值,即:d=D/P.如图4所示,给出了5个Z取不同值时光耦合效率随周期P变化的曲线图,从图中可以看出周期P取1.3 μm左右时,光栅相对耦合效率最高.图中孔直径取D=0.65 μm,栅孔的占空比d=0.5,以此设定参数进行以下分析.

取周期P=1.3 μm,改变孔的深度h进行分析,得到如图5所示的结果.从图中可以看出当栅孔深度h=0.4 μm时,光栅相对耦合效率达到最大值.因此,可以在此基础上分析其他参数对耦合效率的影响.

在前两步分析的基础上,取以下参数:P=1.3 μm,h=0.4 μm,d=0.8分析占空比对相对耦合效率的影响,得到的结果如图6所示.从图中可以看出当占空比在0.7~0.8时,光耦合效率达到最优,且变化不大;占空比大于0.8以后,光栅耦合效率急剧下降.

综上分析,可以得到光栅的最佳参数,即当P=1.3 μm、h=0.4 μm、d=0.8时,在表面等离激元激发下的Z方向电场达到最大值,光栅耦合效率最高.

3结论

为了提高量子阱红外探测器的光探测率及灵敏度,采用3D-FDTD算法,详细分析了表面等离激元作用下光栅参数对垂直入射光相对耦合效率的影响.对于4 μm的入射光,当光栅周期P=1.3 μm,栅孔深度h=0.4 μm,占空比d=0.8时,X-Y平面内Z方向电场值最大,光栅的耦合效率最高.该结果对于中波量子阱红外探测器的优化设计和探测率的提高具有一定的指导意义.

参考文献:

[1]邢伟荣,李杰.量子阱红外探测器最近进展[J].激光与红外,2013,43(2):144-147.

[2]赵永林,李献杰,刘英斌,等.中波-长波双色量子阱红外探测器[J].纳米器件与技术,2008,45(12):689-693.

[3]Mani S,Axel R,Richard D,et al.Status of quantum well infrared photodetector technology at QmagiQ today[J].Infrared Physics & Technology,2011,54(3):194-198.

[4]贺明,王新赛,路建方,等.一种新的红外焦平面阵列非均匀性代数校正算法[J].应用光学,2011,32(6):1217-1221.

[5]LU W,LI L,ZHENG H L,et al.Development of an infrared detector:quantum well infrared photodetector[J].Science in China Series G:Physics,Mecanics & Astronomy,2009,52(7):969-977.

[6]Chang C Y,Chang H Y,Chia Y C,et al.Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays[J].Applied Physices Letters,2007,91(16):163101-163107.

[7]Wei W,Alireza B,Ryan G,et al.A normalincident quantum well infrared photodetector enhanced by surface plasmon resonance[J].Proceedings of the SPIE,2010,7780:77801A-1.

[8]王科,郑婉华,任刚,等.双色量子阱红外探测器顶部光子晶体耦合层的设计优化[J].物理学报,2008,57(3):1730-1735.

[9]陆卫,李宁,甄红楼,等.红外光电子学中的新族――量子阱红外探测器[J].中国科学G辑:物理学・力学・天文学,2009,39(3):336-343.

[10]金巨鹏,刘丹,王建新,等.320×256 GaAs/AlGaAs长波红外量子阱焦平面探测器[J].红外与激光工程, 2012,41(4):833-837.

[11]项立,张衡阳.基于表面等离子激元波导透射性能的环形滤波器设计[J].光学技术,2014,40(4):295-301.

[12]WU W,Bonakdar A,Mohseni H.Plasmonic enhanced quantum well infrared photodetector with high detectivity[J].Applied Physics Letters,2010,96(16):161101-161107.

量子计算意义范文第6篇

多年以前,高科技最牛的美国就已不把电子计算机列为高科技产品了。

但巨高性能计算机仍是信息时代的高科技标志物件之一。2012年诺贝尔物理学奖发给了法国人塞尔日·阿罗什和美国人大卫·维恩兰德,这两位科学家的研究成果为新一代超级量子计算机的诞生提供了可能性。

恶搞一下:法国人浪漫,而简称美国人为美人,那么,浪漫人美人=?

文艺范儿的信息

不往滥俗里想,那么,答案就是很文艺化的表达了。其实,“信息”最初是相当文艺范儿的,而不是20世纪中期才开始热门起来的科技词汇。

一般认为,中文的“信息”一词出自南唐诗人李中《暮春怀故人》:“梦断美人沉信息,目穿长路倚楼台。”—— “美眉音信消息全无啊,梦里也梦不到你,我独自上楼倚栏,望眼欲穿望到长路尽头也不见你。”这么拙劣地意译,也让人感觉到深深的思念。

其实,在李中之前一百多年,与李商隐齐名的唐朝大诗人杜牧《寄远》里就有“信息”了:“塞外音书无信息,道旁车马起尘埃。”还有比小杜更早的,唐朝诗人崔备的《清溪路中寄诸公》:“别来无信息,可谓井瓶沉。”

宋朝的婉约派大词人柳永、李清照也用过“信息”这个词。因金兵入侵而流离失所的李清照思念当年安乐的故乡,心理上把信息的价格定成了真正的天价:“不乞隋珠与和璧,只乞乡关新信息。”——千年前的唐宋中国,其高科技虽是世界第一,但信息技术还是跟现在没法比的,要靠驿马、鸿雁甚至人步行来传递信息,速度慢而效率低,信息珍贵啊。

在地球的西方呢?虽然香农1948年就划时代地把信息引为数学研究的对象,赋予其新的科学的涵义;至1956年,“人工智能”术语也出现了。可最早讨论数据、信息、知识与智慧之间关系的,却是得过诺贝尔文学奖的大诗人艾略特(T. S. Eliot;钱钟书故意译为“爱利恶德”)。他在1934年的诗歌“The Rock”中写道:

Where is the Life we have lost in living?

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

Where is the information we have lost in data?

我们迷失于生活中的生命在哪里?

我们迷失于知识中的智慧在哪里?

我们迷失于信息中的知识在哪里?

我们迷失于数据中的信息在哪里?

尽管第四句是好事者后加的,但诗人还是直指本质地提出了信息暴炸时代最困扰人的难题:如何不让我们的生命和智慧都迷失在数据中?

量子计算机和量子信息技术,提供了一种让生命和智慧不要淹没在数据的海洋中的途径、工具和可能。

量子与量子计算机

量子理论是现代物理学的两大基石之一,为从微观理解宏观提供了理论基础。客观世界有物质、能量两种存在形式,物质和能量可以互相转换(见爱因斯坦的质能方程),量子理论就是从研究极度微观领域物质的能量入手而建立起来的。

我们知道,微观世界中有许多不同于宏观世界的现象和规则。经典物理学理论中的能量是连续变化的,可取任意值,但科学家们发现微观世界中的很多物理现象无法解释。1900年12月14日,普朗克在解释“黑体辐射”时提出:像原子是一切物质的构成单元一样,“能量子(量子)”是能量的最小单元,原子吸收或发射能量是一份一份地进行的。这是量子物理理论的诞生。

1905年,爱因斯坦把量子概念引进光的传播过程,提出“光量子(光子)”的概念,并提出光的“波粒二象性”。1920年代,德布罗意提出“物质波”概念,即一切物质粒子均有波粒二象性,海森堡等建立了量子矩阵力学,薛定谔建立了量子波动力学,量子理论进入了量子力学阶段。1928年,狄拉克完成了矩阵力学和波动力学之间的数学转换,对量子力学理论进行了系统的总结,成功地将相对论和量子力学两大理论体系结合起来,使量子理论进入量子场论阶段。

“量子”词源拉丁语quantum,意为“某数量的某事物”。现代物理学中,某些物理量的变化是以最小的单位跳跃式进行的,而不是连续的,这个最小的基本单位叫做量子;或者说,一个物理量如果有不可连续分割的最小的基本单位,则这个物理量(所有的有形性质)是“可量子化的”,或者说其物理量的数值会是特定的数值而非任意值。例如,在(休息状态)的原子中,电子的能量是可量子化的,这能决定原子的稳定和一般问题。

虽然量子理论与我们日常经验感觉的世界大不一样,但量子力学已经在真实世界应用。激光器工作的原理,实际上就是激发一个特定量子散发能量。现代社会要处理大量数据和信息,需要计算的机器(计算机)。量子力学的突破,使瓦格纳等于1930年发现半导体同时有导体和绝缘体的性质,后来才有了用于电子计算机的同时作为电子信号放大器和转换器的晶体管,再有了集成电路芯片,今天的一个尖端芯片可集聚数十亿个微处理器。

随着计算机科技的发展,发现能耗导致发热而影响芯片集成度,限制了计算速度;能耗源于计算过程中的不可逆操作,但计算机都可找到对应的可逆计算机且不影响运算能力。既然都能改为可逆操作,在量子力学中则可用一个幺正变换来表示。1969年,威斯纳提出“基于量子力学的计算设备”,豪勒夫等于1970年代论述了“基于量子力学的信息处理”。1980年代量子计算机的理论变得很热闹。费曼发现模拟量子现象时,数据量大至无法用电子计算机计算,在1982年提出用量子系统实现通用计算以减少运算时间;杜斯于1985年提出量子图灵机模型。1994年,数学家彼得·秀尔提出量子质因子分解算法,因其可破解现行银行和网络应用中的加密,许多人开始研究实际的量子计算机。

在物理上,传统的电子计算机可以被描述为对输入信号串行按一定算法进行变换的机器,其算法由机器内部半导体集成逻辑电路来实现,其输入态和输出态都是传统信号(输入态和输出态都是某一力学量的本征态),存储数据的每个单元(比特bit)要么是“0”要么是“1”,即在某一时间仅能存储4个二进制数(00、01、10、11)中的一个。而量子计算机靠控制原子或小分子的状态,用量子算法运算数据,输入态和输出态为一般的叠加态,其相互之间通常不正交,其中的变换为所有可能的幺正变换;因为量子态有叠加性(重叠)和相干性(牵连、纠缠)两个本质特性,量子比特(量子位qubit)可是“0”或“1”或两个“0”或两个“1”,即可同时存储4个二进制数(00、01、10、11),实现量子并行计算(量子计算机对每一个叠加分量实现的变换相当于一种传统计算,所有传统计算同时完成,并按一定的概率振幅叠加,给出量子计算机的输出结果),从而呈指数级地提高了运算能力——一台未来的量子计算机3分钟就能搞定当今世界上所有电子计算机合起来100万年才能处理完的数据。用量子力学语言说,传统计算机是没有用到量子力学中重叠和牵连特性的一种特殊的量子计算机。从理论上讲,一个250量子比特(由250个原子构成)的存储器,可能存储2的250次方个二进制数,比人类已知宇宙中的全部原子数还多。而且,集成芯片制造业很快将步入16纳米的工艺,而量子效应将严重影响芯片的设计和生产,又因传统技术的物理局限性,硅芯片已到尽头,突破的希望在于量子计算。

量子世界的死猫活猫与粒子控制

喜好科技的文艺青年可能看过美剧《生活大爆炸》,其中有那只著名的“薛定谔猫”:一只被关在黑箱里的猫,箱里有毒药瓶,瓶上有锤子,锤子由电子开关控制,电子开关由一个独立的放射性原子控制;若原子核衰变放出粒子触动开关,锤落砸瓶放毒,则猫死。薛定谔构想的这个实验,被引为解释量子世界的经典。而量子理论认为,单个原子的状态其实不是非此即彼,或说箱里的原子既衰变又没有衰变,表现为一种概率;对应到猫,则是既死又活。若我们不揭开盖子观察,永远也不知道猫的死活,它永远处于非死非活的叠加态。

宏观态的确定性,其实是亿万微观粒子、无数种概率的宏观统计结果。微观粒子通常表现为两种截然不同的状态纠缠一起,一旦用宏观方法观察这种量子态,只要稍一揭开箱盖,叠加态立即就塌缩了(扰破坏掉),薛定谔猫就突然由量子的又死又活叠加态变成宏观的确定态。用实验研究量子,首先要捕获单个的量子。即若不分离出单个粒子,则粒子神秘的量子性质便会消失。科学家们长期以来头疼的是,未找到既不破坏量子态,又能实际观测它的实验方法,他们只能在头脑中进行思想实验,而无法实际验证其预言。

而阿罗什和维恩兰德的研究,发明了在保持个体粒子的量子力学属性的情况下对其进行观测和操控的方法,则可实证地说出薛定谔猫究竟是死猫还是活猫,而且为研制超级量子计算机带来了更大可能,因为量子计算机中最基础的部分——得到1个量子比特已获成功。

光子和原子是量子世界中的两种基本粒子,光子形成可见光或其他电磁波,原子构成物质。他们研究光与物质间的基本相互作用,方法大同小异:维因兰德利用光或光子来捕捉、控制以及测量带电原子或者离子。他平行放置两面极精巧的镜子,镜间是真空空腔,温度接近绝对零度(约-273℃)。一个光子进入空腔后,在两镜面间不断反射。阿罗什则通过发射原子穿过阱,控制并测量了捕获的光子或粒子。他用一系列电极营造出一个电场囚笼,粒子像是被装进碗里的玻璃球;然后用激光冷却粒子,最终有一个最冷的粒子停在了碗底。阿罗什在捕获单个光子后,引入了特殊的里德伯原子,作为观测工具,从而得到光子的数据。维因兰德向碗中发射激光,通过观测光谱线而得到碗底粒子的数据。

2007年以来,加拿大、美国、德国和中国的科学家都说自己研制出了某种级别的量子计算机,但到今天却仍无一个投入实用。光钟更接近现实,因为可操控单个量子,就能按意愿调控量子的振荡(相当于钟摆)频率,越高越精;目前实验的光钟,若从宇宙产生起开始计时,至今只误差5秒。光钟可使卫星定位和计算太空船的位置更精确……

神话般的量子信息技术

科幻作家克莱顿(著有《侏罗纪公园》、《失去的世界》等)在科幻小说《时间线》中,曾文艺化地描述量子计算,用了“量子多宇宙”、“量子泡沫虫洞”、“量子运输”、“量子纠缠态”、“电子的32个量子态”等让常人倍感高深的说法。其中一些如今正在证实或变现。

如果清朝政府的通信密码不被日本破译,那么李鸿章后去日本谈判时就很可能是另外一种结局,今天也不会有的问题了。目前世界的密码系统大都采用单项数学函数的方式,应用了因数分解等数学原理,例如目前网络上常用的密码算法。秀尔提出的量子算法利用量子计算的并行性,能轻松破解以大数因式分解算法为根基的密码体系。量子算法中,量子搜寻算法等也能分分钟攻破现有密码体系。可说量子这种技术在现代军事上的意义不亚于核弹。但同时,量子信息技术也将发展出一种理论上永远无法破译的密码——量子密码。

保密通信分为加密、接收、解密三个过程,密钥的保密和不被破解至为关键。量子密码采用量子态作为密钥,是不可复制的,至少在理论上是无破译的可能。量子通信是用量子态的微观粒子携带的量子信息作为加密和解密用的密钥,其密钥安全性不再由数学计算,而是由微观粒子所遵循的物理规律来保证,窃密者只有突破物理法则才有可能盗取密钥(根据海森堡的测不准原理,任何测量都无法穷尽量子的所有信息)。而且量子通信中,量子纠缠态(有共同来源的两个粒子存在着纠缠关系,似有“心灵感应”,无论距离多远,一个粒子的状态发生变化,另一个粒子也发生变化,速度远远超过光速,一旦受扰即不再纠缠。爱因斯坦称这种发生机理至今未解的量子纠缠为“幽灵般的超距作用”)被用于传输和保证信息安全,使任何窃密行为都会扰乱传送密钥的量子状态,从而留下痕迹。

量子计算意义范文第7篇

为什么说量子通信能实现“绝对安全”?

传统的信息安全都是依赖于复杂的算法,只要计算能力足够强大,再复杂的保密算法原理上都能够被破解。而量子通信到底有什么“诀窍”,可以“防破译”,实现绝对安全呢?

这就要从量子的特殊性“量子叠加”说起。量子,是构成物质能量的基本单元,是能量的最小携带单位,所有的微观粒子(包括分子、原子、电子、光子)都是量子的一种表现形态。在经典物理世界里,物质的状态可以用0和1来描述,非0即1;而在量子世界里,物质的状态可以同时处于0和1的叠加状态。

奥地利物理学家薛定谔曾经用著名的“薛定谔的猫”这一思想实验来解释量子的叠加性。实验是这样的:在一个盒子里有一只猫,以及少量放射性物质。之后,有50%的概率放射性物质将会衰变并释放出毒气杀死这只猫,同时有50%的概率放射性物质不会衰变,而猫将活下来。根据经典物理学,尽管外部观测者只有打开盒子才能知道里面的结果,但是,在盒子里必将发生这两个结果之一。在量子的世界里,当盒子处于关闭状态,整个系统则一直保持不确定性的状态。

量子叠加状态导致了量子力学的不确定原理,即如果事先不知道单个量子状态,就不可能通过测量把状态的信息完全读取,也就不能复制。对任意一个未知的量子态进行完全相同的复制过程是不可实现的,这被称为“量子不可克隆原理”,从理论上保证了量子密码的绝对安全。

“墨子号”升空有何重大意义?

先来看两则曾经震动世界的新闻:2013年的棱镜门事件,2015年《纽约时报》爆出美国国家安全局监听谷歌、雅虎用户通信信息一事,充分暴露出信息安全领域存在的隐患。然而这只是众多信息安全泄露事件中暴露出的冰山一角,随着计算能力的飞速提升,破译数学密码的难度也逐渐降低,信息安全隐患就像悬在各国安全领域的达摩克利斯之剑。

“墨子号”量子科学实验卫星,顾名思义,就是用于量子实验研究的卫星。当其他国家的量子实验研究还只是停留在地面范围时,中国的量子实验研究已经“搬上太空”,率先跨入了“星地时代”。

澳大利亚《卫报》在报道“墨子号”成功发射的文章中指出,此次中国发射量子卫星将进行广域量子密钥网络实验、长距离的量子纠缠分发实验,将有望实现远距离的“防破译”的通信,保证数字信息传输的安全性。

也就是说,一方面,从国家战略层面来说,率先发射量子科学实验卫星,意味着中国或将先于欧美拥有量子通信覆盖全球的能力,从而实现量子通信技术的全球领跑,使我国在国际竞争中占领制高点,保障国家信息安全;另一方面,量子科学实验卫星的发射也是我国综合国力提升的具体体现,并将进一步对我国经济发展产生巨大影响。

它的市场化应用前景如何?

实践证明,此前量子力学的发展已经给人类生产生活带来极大的好处,比如激光、半导体、核能等技术的利用与普及。

量子计算意义范文第8篇

8月16日1时40分,备受瞩目的以“墨子号”命名的全球首颗量子科学实验卫星在酒泉成功发射升空。“墨子号”量子卫星成为浩瀚夜空中最亮的“星”,开启为期两年的太空科学旅程。

星地高速量子密钥分发、广域量子通信网络、星地量子纠缠分发以及地星量子隐形传态等多项科学实验任务是“墨子号”量子卫星的主要任务。业内人士指出,此次发射任务的圆满成功,将使我国在世界上首次实现卫星和地面之间的量子通信,构建天地一体化的量子保密通信与科学实验体系。有媒体称,在这场“特殊的太空竞赛”中,中国“迈出了一大步”。

科学之路任重道远,量子世界迷雾重重,“第一颗量子卫星”的头衔来之不易。从最初的研制到发射,量子卫星承载了太多关注的目光与期许。那么,这颗举世瞩目的“新星”到底有多牛?技术实现难度又有多高?

信息安全的“终极武器”

量子科学对绝大多数人来说十分高冷。但当它与信息技术相连,就与我们每个人息息相关。当今社会,信息的海量传播背后也充斥着信息泄露的风险。而量子科学则为信息安全提供了“终极武器”。

在物理王国里,量子理论是一个“百岁的幽灵”,爱因斯坦也曾被它的“诡异”所困扰。在量子世界中,一个物体可以同时处在多个位置,一只猫可以处在“死”和“活”的叠加状态上;所有物体都具有“波粒二象性”,既是粒子也是波;两个处于“纠缠态”的粒子,即使相距遥远也具有“心电感应”,一个发生变化,另一个会瞬时发生相应改变……

正是由于量子具有这些不同于宏观物理世界的奇妙特性,才构成了量子通信安全的基石。在量子保密通信中,由于量子的不可分割、不可克隆和测不准的特性,所以一旦存在窃听就必然会被发送者察觉并规避。

“传统的信息安全都依赖于复杂的算法,只要计算能力足够强大,再复杂的保密算法都能被破解。量子通信能做到绝对安全,是由量子自身的特性所决定的,计算能力再强也破解不了,因此它是革命性的,可从根本上、永久性解决信息安全问题。”量子科学实验卫星首席科学家潘建伟院士说。

潘建伟形象地比喻,量子通信的基本特征就是利用微光世界的最小单元,比如15瓦的灯泡,每秒都会发射一些能量,如果用放大镜来看它是由小颗粒组成,大概每秒钟可以释放百亿个小颗粒。如果在量子通信中将这种小颗粒用来做信号,就不能被分割成半个小颗粒,就像水分子一样,不能分成1/2个水分子。

量子保密通信能从三个方面保障信息安全。第一,发送者和接收者之间的信息交互是安全的,不会被窃听或盗取。第二,“主仆”身份能自动确认,只有“主人”才能使唤“仆人”,而其他人无法指挥“仆人”。第三,一旦发送者和接收者之间的传递口令被恶意篡改,使用者会立刻知晓,从而重新发送和接收指令。

“四种武器”挑战四大实验任务

8月17日,中科院遥感与数字地球研究所所属中国遥感卫星地面站密云站,在第二十三圈次成功跟踪、接收到了量子卫星“墨子号”的首轨数据。“墨子号”首轨任务时长约7分钟,接收到的数据量约为202MB,经验证,卫星数据质量良好。

据悉,“墨子号”量子卫星上搭载了自主研发的“四种武器”:量子密钥通信机、量子纠缠发射机、量子纠缠源和量子试验控制与处理机。同时,在地面建设了科学应用系统,包括1个中心――合肥量子科学实验中心;4个站――南山、德令哈、兴隆、丽江量子通信地面站;1个平台――阿里量子隐形传态实验平台。

这颗量子卫星的寿命为两年,将完成四大任务:星地高速量子密钥分发实验、广域量子通信网络实验、星地量子纠缠分发实验和地星量子隐形传态实验。

潘建伟介绍,实验大致分为三类:第一类是进行卫星和地面之间的量子密钥分发,实现天地之间的安全通信;第二类相当于把量子实验室搬到太空,在空间尺度检验量子理论;第三类是实现卫星和地面千公里量级的量子态隐形传输。

但要完成“作业”并不轻松。目前,国际上还没有一个国家将量子科学实验送入空间,量子卫星的研制没有任何经验可循,过程充满了困难和挑战。 科研人员模拟地面望远镜向量子卫星发射信标光(新华社 刘坤 摄) 在酒泉卫星发射中心,量子科学实验卫星在与运载火箭适配器对接(图/新华社)

天地一体化连通:

从太空向地面存钱罐扔硬币

在量子通信中,最大的难点在于如何实现天地一体化的量子联通。这就好比在太空往地面的一个存钱罐里扔硬币,需要准确地将硬币投掷于储蓄罐的狭小入口。如果出现一点偏差,信息的传递便会功亏一篑。

“量子的编码就像计算机编码0101一样,有正负、垂直、水平等不同状态,要把量子的偏振方向检测出来,才能变成密码。”量子科学实验卫星常务副总设计师、卫星总指挥王建宇介绍,量子里面有两组状态,一组是正交的,一组是倾斜45度的,所以,一共有四个不同的偏正状态。

不仅如此,地面上的“存钱罐”(接收装置)和天空中的“投掷者”(量子卫星)也不安分,它们都在不停地旋转运动。

“这就是瞄准和检测偏正的最大难度所在,我们要在双方都处于运动状态的情况下完成信息传递。”王建宇强调,稍微对不上都不行,如果这样,地面上收到的就是误码。

据王建宇介绍,一旦误码率高于3.5%,信息传输就没有意义。“3.5%是个底线,通常我们会把误码率控制在1%至2%之间。”

探测器灵敏度:

在地球上看到月球的火柴光

如果说从太空向地面存钱罐扔硬币已经让人咋舌,那接下来的技术则更让人惊叹。

量子卫星采用的是单光子探测器,目的是实现对每一个光子的捕捉。这是一个什么概念?

“一个60瓦的灯泡每秒发射的光子数大约是1021,而一根火柴的最大光亮大约是3瓦至5瓦。”王建宇说,量子卫星探测器灵敏度相当于在月球上点根火柴,我们在地球上用望远镜可以看到它的亮光。

如果考虑到火柴点燃后光的扩散效应,其观测难度可想而知。“探测器的灵敏度必须达到这种程度,才能捕获来自太空中的一颗颗光子。否则,天上的量子卫星就没有存在的意义了。”王建宇说。

时间同步设置:

一秒钟给一亿个光子排排队

在太空中,量子卫星每秒钟大约向地面发射一亿个光子,需要地面接收装置对所有光子进行接收。然而,这个接收过程并非来者不拒,而是要讲究先来后到。

“我们必须知道每个光子是第几个发出来,信息传递要求发送端和接收端能对得上,要有一个完整的序列。”王建宇说。

将光子们一一对接的办法就是时间同步。“我们现在的接收频率能做到一个纳秒,也就是在一秒钟之内,把一亿个光子全都排列好。”王建宇介绍。

为何取名为 “墨子”

对于很多人来说,量子科学非常神秘,而世界首颗量子科学实验卫星命名为“墨子号”也让很多人迷惑不解――墨子不是先秦诸子百家中墨家的创始人吗,他跟量子有什么关系?

“墨子号”之得名,是为了纪念墨子在早期物理光学方面的成就,他最早提出过光线沿直线传播的观点,进行了小孔成像实验。“关于这颗卫星的命名,我们考虑了好久。”潘建伟说,最终命名为“墨子号”,缘起于已故著名教育家、中国科学技术大学教授钱临照。

钱临照作为老一辈光学、科技史研究者,早年对墨家经典著作《墨经》有过深入研究,他对《墨经》的研究发现被英国学者李约瑟获悉,后者对此惊叹不已。钱临照发现《墨经》中有不少与现代科学知识相通的记载,比如墨子在《墨经》中提出的“光学八条”。

“墨家逻辑是全球三大古老逻辑体系之一,而逻辑体系是科学的基础。”潘建伟说,墨子在两千多年前就发现了光线沿直线传播,并设计了小孔成像实验,奠定了光通信、量子通信的基础。

墨子的贡献还远不止于此,用一代宗师、中国思想史研究专家杨向奎先生的话来说:“墨子在自然学上的成就,绝不低于古希腊的科学家和哲学家,甚至高于他们。他个人的成就就等于整个希腊。”

“就像国外有伽利略卫星、开普勒望远镜一样,以中国古代伟大科学先贤的名字来命名全球首颗量子卫星,将提升我国的文化自信。”潘建伟说。

“量子星群”引领量子互联网时代

据专家介绍,量子卫星发射后,天地一体化量子科学实验系统将投入正式运行,而“京沪干线”大尺度光纤量子通信骨干网工程预计今年下半年交付。 在酒泉卫星发射中心,星罩组合体在转运至发射塔架(图/中科院微小卫星创新研究院)

“大规模推广量子通信应用后,将极大提高人们信息传输的私密性和安全性。”潘建伟说,建好“量子互联网”后,人们不用再担心任何信息泄露,从而避免恶意攻击和欺诈行为。

信息安全从根本上需要解决的就是传输内容不被别人知道、保证接收者是和发送者对话,以及信息不被篡改。潘建伟说,仅仅发射一颗卫星是不够的,只有形成星座才能建构起网络,而且需要地面配置相应基础设施,确保网络联接到千家万户。