首页 > 文章中心 > 计算机视觉研究领域

计算机视觉研究领域

开篇:润墨网以专业的文秘视角,为您筛选了八篇计算机视觉研究领域范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

计算机视觉研究领域范文第1篇

物体为什么会呈现出人们所看到的视觉效果?经过多重反射后,光线将怎样变化?如何让计算机把真实世界里的物理原理数字化表现出来?这些都是松下康之在微软亚洲研究院工作时要思考的问题,摄像机拍摄出的画面抖动看不清怎么办?松下康之也遇到过生活提出的小挑战。

松下康之用研究员的“专属语言”解释道,“低层视觉研究”和“满帧视频稳定技术”可以很好地回答和解决上面问题。“这也正是我所从事的两个研究方向:一个是光度学,另一个是视频分析,”微软亚洲研究院视觉计算组主管研究员松下康之说,“两者之间并没有十分紧密的联系,但这也正是有趣的地方。”

从东京大学的博士到微软亚洲研究院实习生、从日本东京到北京的希格玛大厦、从电气工程学专业到以物理学为基础的计算机视觉和视频分析与合成。事实上,这种“毫无关系”所带来的惊喜与巧合也贯穿于松下康之的经历之中。于是,松下康之给记者讲述了一个充满偶然与必然、选择与坚持的故事。言语间,流露出日本文化的严谨、美国式的活泼和与在微软亚洲研究院的中国研究员一样的亲切与随和。

邂逅未来

微软亚洲研究院院长洪小文曾说过:“创新更多的是意外”。而松下康之与微软亚洲研究院的缘分,正是充满着这种“必然的意外”。

在东京大学读书的时候,松下康之本科、硕士、博士的专业方向都是电气工程。那时,松下康之已经研究了智能交通系统。“但是,我意识到自己想做一些更加基础的研究,并且希望可以把这些研究应用到不同的事情上。”在博士毕业前两年,松下康之就发现了自己对计算机视觉领域的浓厚兴趣。而电气工程与计算机科学联系紧密,计算机系统结构和软件都有学习,所以对于松下康之来说,从电气工程转到计算机视觉并不是一个很大的跨越。

2002年,当时松下康之还在读博,在一次国际性的计算机视觉大会上,他见到了时任微软亚洲研究院副院长的沈向洋,“我之前就认识他,还知道他在计算机视觉领域非常有名。我希望能有机会与他一起工作,学到更多东西。”于是,松下康之向沈向洋毛遂自荐,“意外地”成了一名微软亚洲研究院的实习生,经过4个月的实习生活之后,松下康之发现自己已经喜欢上了这里的研究环境和生活,就这样,在微软亚洲研究院的工作开始了。

如何用科技来解决实际问题,从而改变更多人的生活,一直是微软亚洲研究院的初衷。生活也不断地给松下康之带来灵感和意外的收获。

其中,“满帧视频稳定技术”的“诞生”就源于松下康之的婚礼――用手持的摄像机拍摄的婚礼画面是摇晃的,看起来很不舒服,新婚妻子对婚礼录像效果很不满意,松下康之就想通过研究解决视频颤抖的问题。“现有的数字影像镶嵌技术可以对画面进行稳定性处理,但如果物体移动,这种在场景固定的情况下才能实现的方法就不可行了。而通过‘满帧视频稳定技术’,丢失掉的像素被自然的补充上了。”同理,还可以去除覆盖在视频上的文字、镜头上的污点,来补上丢失的像素。

科技的光影魔术

“视频分析在不久的将来将变得更加重要,因为图像和视频的界限已经越来越模糊,我相信最后一切都将变成视频。”松下康之对记者说。

微软亚洲研究院的计算机视觉包括:高层视觉(如人脸识别技术)和低层视觉(如光度学,即研究光线与物体的相互作用),松下康之的研究方向属于后者。

“光度学也非常重要,因为如果我们不明白‘低层’上发生了什么,就无法在‘高层视觉’研究上取得突破,所以‘低层视觉’研究是非常基础的。如果“低层视觉”发展了,那么“高层视觉”也会随之发展。”

虽然是“肉眼”难以察觉的变化,但是松下康之却给记者描述了光度学形象的应用――3D复原和现实物体数字化。而要实现上面的两项应用,很明显需要比普通人更特别的“视力”。

“计算机视觉里有一个传统的方法,叫多视角立体视觉法(multi-view stereo),通过不同视角拍摄的图片我们可以重现3D,但不能做细节的重现;还有另一种方法,叫立体光学法(photometric stereo),摄像机和物体都是固定的,但是光线是变化的,如果移动光源就可以得到物体的不同观察值,通过观察值可以得到表面方向(surface orientation)。”

前者可以得到整体的形状,但却无法得到细节,而后者不能给你整体的形状,因为它只能给你表面方向。如何把两个技术的优点结合起来得到最真实的3D图像呢?

“我们考虑如果把一个持续光源固定在摄像机上,这样我们就可以同时移动光源和摄像机。”于是,松下康之和他来自东京大学的实习生一起做出了看起来与普通家用数码产品没有太大差别的“3D摄像机”。“这个3D摄像机的相关的配件在市场上很容易就能买到,手持永远是简单的,人们不会想要拿着一个庞然大物。”松下康之向记者介绍研发背后的原因。

文化熔炉

作为美国电气电子工程师协会2009年计算机视觉与模式识别国际会议(CVPR)和2009年计算机视觉国际会议(ICCV)的区域主席、著名期刊International Journal of Computer Vision(IJCV)和Computer Vision Applications(CVA)的编委,松下康之坦言,微软亚洲研究院对研究员在专业领域的自由交流的支持,使得研究员对自己的研究领域“看得更远、更透彻”。

“通过这些职务,我对研究方向有了更高的认识,这种视野能够帮助我决定今后什么样的研究更有价值。此外,我能够认识计算机视觉界的很多人,这是另一个收获。”松下康之笑着说。

计算机视觉研究领域范文第2篇

关键词:目标跟踪技术;意义;问题;解决方法

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2015)02-0171-01

1.目标跟踪研究技术分类

1.1图像序列中目标跟踪技术

在图像中,根据点与点之间的关系,可以通过相邻两幅图像的点集中用以实现跟踪目标。同样的,根据线在目标跟踪中的使用,可以更加清晰的分解出图像的轮廓信息用以描述目标图像。更进一步,可以将面应用于目标跟踪,了解整个区域的外观信息,在经过后期的优化和分类处理实现目标跟踪。

在图像识别中,可以根据图像本身的空间位置相互依赖的关系以及图像块与图像块之间的关系在建立模型和构造置信度图的时候,融合空间的上下文信息。使得建立的目标跟踪的模型更加具有科学的根据,同时置信度图更加精确,更利于研究目标跟踪。

1.2视频序列中目标跟踪技术

目标跟踪可以通过对视频序列中正在运动的目标进行分析检测、提取数据、更进一步的进行识别和跟踪。这样的过程中,可以获得目标运动的参数,例如移动速度、加速度、运动的轨迹等,再将所得的结果进行下一步的分析处理,以此实现对目标的理解以完成任务跟踪的目的。

对于目标跟踪和测量可以分为三个阶段。首先,有目标的检测和特征提取,在这两个阶段中,需要一定的理论知识和灵活的应变能力,可以根据场合的不同进行不同的设计。第三个阶段就是目标的跟踪,简单来说可以理解为目标初始状态和特征提取从而得到目标视觉特征,以此为基础,进行时间和空间相结合对目标的状态进行估计。因此,一个良好的跟踪系统必须能满足顾客准确、实时、可靠的要求。“准确”顾名思义,就是要提高目标跟踪的精准度,最低的要求即要可以跟踪出目标的大致位置,高的要求下必须给出目标的准确方位。“实时”是指的跟踪目标信息的更新速度,数据的输出速度必须要在物体的实际运动速度内,满足控制系统的动态指标要求。“可靠”则是要求目标跟踪结果的真实可靠性,过程必须保证稳定,即使是在跟踪失败的情况下,也要求具有良好的恢复能力。只有满足以上三点,才能达到很好的综合性能。

2 目标跟踪研究技术意义

2.1 在民用领域的意义

在民用领域中,目标跟踪技术研究的新兴方向是拥有核心技术的智能化视频监控。智能化视频监控是高层计算机视觉技术,简单描述则是摄像机进行前期采样,通过视频序列图,对其中的信息进行更进一步的分析和理解,从而实现视频监控系统的智能化。例如有的视频监控中可以智能识别场景内人的行为和语言对话。从而可以甄别出危险的人员自动报警。在交通管理中,也可以通过智能检测实现对车辆的管理,实时监控道路车流量和对异常的车辆进行调查,可以很大程度上减少交通事故的发生,和更快速的进行事后处理。

2.2在军事领域的意义

在军事领域中,目标跟踪技术对于增强国防有很大的意义。视频监控可以及时掌握战争中的环境和更快速地对敌方的目标进行搜索和跟踪。对于环境的掌握和检测有利于寻找和提取目标和场景、还有摄像机的机位等信息来进行实时的反馈控制,可以了解敌方动态在战争中处于主导地位。还可以将目标跟踪技术和机器人技术结合,研究机器人视觉导航系统,安装在机器人体内的摄像机可以实现实时环境检测,获取更为详细的环境信息。同时,目标跟踪中的智能视频监控也有利于发现边防的不利状况和嫌疑人员,更大程度上保护我国军事机密。

3 目标跟踪研究技术应用

3.1在道路车辆监控上的应用

在现实生活中,可以利用目标跟踪技术实时监控道路上的车辆,在移动过程中,车辆在视窗中的大小和形状会发生特定的变化。例如我们可以选取一组在实际环境中拍摄的照片进行研究,车辆由近及远的移动过程中,车辆目标区域的形状会慢慢变小,目标形状变化不大会取得比较成功的跟踪效果。但是存在缺陷的是,目标变小时,跟踪的准确性也随之变小,有时所反应的结果已经偏离了目标所在的实际位置。导致目标跟踪出现问题,甚至错误的跟踪了其他目标。因此,在道路中车辆的监控方面,还要进一步改正,加强精准度,才能让科技更好为交通事业做出贡献。

3.2在矿井安全监控中的应用

在生活中,井下工作是安全风险最大的工作之一。可以利用目标跟踪技术,对井下危险区域运动目标进行检测和跟踪,在这样的检测下,可以提前得到风险预测,提前预警可以有效防止危险事故的发生。利用数学领域的利用背景建立模型和利用背景差法在线有效的调节速率,这种方法可以应对光线的变化和突变的环境下对移动目标的监控,利用目标跟踪技术在发生突发状况时可以准确的定位和实时的跟踪目标。可以提高突发事故的存活率,给矿工们的生命多一层保障。

3.3在社会生活中的作用

在社会工作中,未来发展的趋势电子化越来越普及于生活的任何角落,与现有阶段的键盘和鼠标表达思想不同,未来的人和计算机的交互影响应该会更加方便,科学家希望计算机能够像一个人一样善解人意,这就需要计算机能够读懂人类的语言、表情、手势、动作等。利用目标跟踪技术,实现视频的智能化,计算机可以通过采集人们的动作图像等进行分析,更理解场景中的人和事。例如在医疗领域,可以利用这个智能的电脑来监护生病的儿童和老人,他可以很快的明白病人的需求,所以可以更好的照顾从而促进医疗事业的革新;在教育领域中,利用视频智能的分析技术,比普通老师更快的了解学生对于知识的掌握了解情况,判断学生的学习兴趣,可以因材施教,更好更快的教好学生;在游戏时,智能的计算机能更快地了解游戏者的意图和兴趣,分析出更适合游戏者的游戏,让游戏者开心的融入氛围体验娱乐生活的乐趣。

参考文献:

[1] 丁业兵,王年,唐俊,等.基于颜色和边缘特征CAM Shift目标跟踪算法[J].华东理工大学学报:自然科学版,2012,38(l):69-74.

计算机视觉研究领域范文第3篇

关键词 计算机图形学 第三方演示 课程群 分组实践

Abstract At present, computer graphics has become an important part of undergraduate computer education, and it is also plays an important role to cultivate innovative talents to adapt to the information age. Based on the teaching of computer graphics course by the author as an example, analyzes the existing problems in the teaching of computer graphics, and put forward improvement ideas from three aspects: according to the different needs of students utilizing the third party demonstration teaching and cross curriculum interpretation, introducing course group to replace single course, employing group practice examination instead of individual, and other forms to improve the quality of teaching.

Keywords computer graphics; third party demonstration; course group; group practic

计算机图形学是一门介绍显示、生成和处理计算机图形的原理和方法的课程。它在计算机总体教学体系中属内容综合性较强且发展迅速的方向之一。该课程既有具体的图形软硬件实现,又有抽象的理论和算法,旨在为学生从事相关工作打下坚实基础。学生须以高等数学和线性代数的基本理论和较熟练的程序设计能力作为本课程学习的基础。课程的难点在于计算机图形学研究范围广,与其他学科交叉性强,且知识不断更新变化。在教学实施过程中,难点是理解和掌握相应的基础理论和算法,以及利用计算机图形学相关工具进行图形学实际问题的解决。

本课程对学生的培养学生围绕以下三个方面展开: (1)建立对计算机图形学的基本认识,理解图形的表示与数据结构、曲线曲面的基本概念。(2)理解并掌握基本图形的生成算法,并能对现有的算法进行改进,理解图形的变换和裁减算法。 (3)面向算机图形的程序设计能力,以底层图形生成算法为核心构建应用程序。相应的考查方式由理论授课、上机实习和课外作业三个单元构成。从近年的授课实践和考试情况分析,该教学内容难度设置合理,深入浅出且相互承接成为体系,学生总体反馈良好。但也存在一些矛盾和问题。以下将对几个问题进行重点阐述与思考,并提出课程改革思路。

1 计算机图形学与计算机辅助设计衔接问题

笔者所在院校是具有航空航天背景的工科院校,“CAD计算机辅助设计”是飞行器设计、机械设计与制造等多学科的重要课程。相关学科学生期望通过对计算机图形学知识的深入理解,促进CAD设计工具诸如Catia、Solidwork和Rhino等先进工具的运用能力。然而,目前的计算机图形学课程的教学和考察环节倚重低层算法讲解与基于OPENGL等的程序设计,除综述外并未具体引入CAD相关内容。产生的问题是,一方面,飞行器设计及机械设计与制造等专业的学生由于程序设计能力不足,难以驾驭较复杂的程序设计任务,在学习过程中心理压力较大;另一方面,由于授课均为教师为计算机相关专业背景,该课程的讲授并未衔接CAD相关技术,学生难以构建二者之间的联系。

解决方案:

本质上,该问题是由于选课学生的学习动机和基础不同造成的。以单一的教学和考查方式难以兼顾这类面向具体应用的学习需求。在教学方法上,采用第三方案例教学法和交叉讲解法相结合以解决此问题。具体的,将CAD等应用场合以具体案例形式讲解,授课教师邀请飞行器、机械设计相关教研组研究生以4~6学时的讲台演示的形式呈现CAD工具完整设计过程。授课教师则以交叉讲解方式为学生讲解运用到的计算机图形学知识点,同时与学生交互式的问答和探讨。在考查形式上,考虑到不同的学习动机和基础,采用多样化实践环节考查。计算机专业学生以OPENGL程序设计为考点,而外专业学生以CAD等面向应用的实践工具为考点,以兼顾各专业的学习需求。

2 计算机图形学与计算机视觉相结合的问题

当前,虚拟现实技术(VR)和人工智能技术(AI)两个最重要最热门的研究领域。虚拟现实的基础理论支撑是计算机图形学,例如三维场景的生成与显示。而人工智能的一个重要应用场景是计算机视觉,例如基于图像智能识别的自动驾驶技术和场景理解技术。很多学生对以计算机视觉为代表的人工智能技术怀有浓厚兴趣,同时,学生又难以区分计算机图形学和计算机视觉的关系。同时,二者在近年来的研究中呈现相互融合的趋势。如基于三维立体视觉的机器人与场景实时定位与重建。如何在计算机图形学课程中,很好地体现两门课程的不同,避免学生的混淆,拓展学生的知识面,都是具有现实意义的课题。

解决方案:

实际上,计算机图形学和计算机视觉可不失一般性的概括为互逆的关系:计算机图形学是由概念设计到模型生成,最终绘制图形图像的过程;而计算机视觉则是从原始图像中再加工并分析理解、以产生新图像(如二维到三维)或输出语义信息(如图像自动标注与理解、目标检测与识别)。将计算机图形学纳入“视觉处理课程群”框架,使学生首先掌握课程群中各课程的侧重点,着重理解图形学在课程群中的作用。精心选取2~3个计算机视觉和图形学交叉的当前主流研究方向,展开概念层面的演示讲解,不深究具体算法,着重阐述两种技术的相互依赖关系并对比二者的区别。相关领域的演示还包括增强现实、人机交互、计算机辅助诊断等等。鼓励学生自主学习,最终使学生在做中学、用中学,提高独立分析新问题和综合运用知识解决问题的能力。

3 如何平衡算法讲解和程序应用技能

计算机图形学涉及的算法多,核心算法是该课程的必讲内容,在算法细节的讲解过程中学生容易产生畏难厌学情绪,注意教学方法以调动学生的兴趣尤为重要。另一方面,对学生的考察方式最终是通过编程实践完成。学生在编程实践中常常遇到大量调试问题,同时要阅读大量文档以了解OPENGL接口函数的调用方法,这个过程占用了很大工作量。

解决方案:

在理论教学部分,着重讲清计算机图形学原理和概念、全面解析经典算法思想。课程强调对理论核心思想的阐述,用通俗易懂的语言,条例清晰的逻辑,进行简明透彻的阐述,附以直观、形象的动态演示系统,力图使学生在较短的时间内、有效地掌握基本理论。分析图形学各种经典算法的原理、可行性及几何复杂性,尽可能多地比较算法之间的思想差异,分别指出它们的优缺点和应用场合,并促进学生思考如何在保证算法的准确性、可靠性的前提下,提高算法的效率。同时注重接近国际前沿的研究内容,注重讲授经典知识和最新进展相结合,以激发学生的学习兴趣,提高课堂效率和活跃度,力争以较少的课时阐述计算机图形学的基本原理、基本方法,加大实践环节比重。通过往年学生完成的优秀课程作业作品的展示,激发学生的创造热情。改革实践环节的考查方式,以项目小组形式取代对个体的考查。原则上每组3~5人,自由组合。在课程结束前,采用小组现场演示讲解的方式,展示小组成员通过编程实践环节完成的一个项目。学生在项目小M中锻炼了团队协作能力,降低了个人工作强度,同时互相学习和督促的氛围使课程作业的质量得以大幅提高。以基础实验――目标性重建实验――自主性训练的层次化实践框架模式,逐步培养学生自主研究,独立解决问题、分析问题,确定解决方案的能力,树立正确的科学研究习惯,培养学生的科学研究能力。

总之,合理设计实践教学案例,进一步实现课程体系和实践内容的统一,建立一个多层次、立体化的实践教学体系,注重学生的参与性与实践性,引导和鼓励学生进行创新实践和课外研学。改革考核方式和考试形式,加大实践环节在成绩中的比重,强化实践能力培养,寓教于乐的同时引导学生追求卓越。此外,计算机图形学技术是发展非常快的一个研究及应用领域,且对编程要求较高,应注重实验室机房投入更新必要硬件,并保障软件编程环境的正常运行。

L鼙疚氖苤泄┦亢蠡YBA15035,江苏省教改项目JGLX13_008资助

参考文献

[1] 孙家广,胡事民.计算机图形学基础教程.北京:清华大学出版社,2005.2.

[2] 唐荣锡,汪嘉业,彭群生等.计算机图形学教程(修订版).北京:科学出版社,2000.

[3] LIU Hailan.On development and application of computer graphics[J].Computer Knowledge and Technology,2010(3):9551-9552.

[4] 娄凤伟.创造性思维与计算机基础教学[J].教育探索,2002.

计算机视觉研究领域范文第4篇

关键词:双目视觉;三维可视化;信息融合

1.引言

随着计算机软、硬件突飞猛进的发展,社会的各行各业对三维可视化技术的需求已经越来越突出。当前三维显示技术已在军事、航空、航天、医学、地质勘探、文化娱乐和艺术造型等方面得到广泛应用。

为实现变电站的三维可视化,需要对变电站进行三维建模,构建变电站的三维模型。监控摄像头采集现场数据之后,对视频进行智能处理,根据设备的状态和人员目标的状态,将设备与人员的状态融合入变电站的三维可视化系统中,通过采集的数据以及处理结果实时更新目标的状态和位置,并且实时显示到变电站三维系统中。

2.三维可视化技术研究现状

(1)研究现状

1)建模软件

目前应用较多的是欧特克(Autodesk) 公司的 3ds MAX 和Maya;Multigen 公司的 Creator;Google 公司的 Sketch Up;Microsoft旗下Caligari公司的trueSpace等。这些建模软件,几乎可以满足我们所见到的任何现实世界中的物体模型的建立,比如房屋、道路、管道、植物、动物、日常用品以及我们现实生活中见到的一切。

2)平台软件和应用软件

三维可视化软件大都依赖于计算机图形学和可视化技术的发展。人们对计算机可视化技术的研究已经历了一个很长的历程,而且形成了许多可视化工具,比如 Directx 和 OpenGL,尤其在地里信息系统领域,当前Arc/info,MapInfo,MAPGIS,SuperMap,GeoStar等国内外专业二维 GIS 软件都有自己专有的三维GIS 子系统。比较专业的三维可视化系统软件或平台有:美国 ERDAS 公司的 IMAGINE Virtual GIS;美国 Skyline 软件;国内适普软件有限公司的 IMAGIS Classic;国内灵图的VRMap。

另外,像国内的武汉吉奥公司的CCGIS、上海杰图三维展示系统、中视典的 VRP 产品体系,在三维可视化方面都有自己独特的功能。

(2)双目立体视觉与三维重建

双目立体视觉是计算机视觉的基础内容,它利用成像设备在不同角度获取目标物体的两幅图像,然后基于视差原理,计算两幅图像中对应点的位置偏差,获取物体空间信息的方法。

3.信息融合技术发展状况及方法

(1)发展状况

信息融合技术是智能信息处理的一个重要研究领域。1973年,美国国防部自主开发了声呐信号理解系统,数据融合技术在该系统中得到最早的体现。此后,数据融合技术蓬勃发展,不仅在人工系统中尽可能采用多种传感器来收集信息,而且在工业控制和管理等领域也朝着多传感器方向发展。20世纪70年代末,在公开的技术文献中开始出现基于多传感器信息整合意义的融合一词,并开始广泛应用与军事与民用领域。

在美国军用电子技术带动下,20世纪80年代后期以来西方其他先进技术国家也先后加强多传感器信息融合研究活动,而且很快向民用部门扩展。1987年2月,美国国家科学基金会(NSF)首次在犹他州召开了“制造自动化中的多传感器信息融合”学术研讨会。

同年10月,全美人工智能学会(AAL)在伊利诺斯州召开了“空间推进与多传感器融合”学术研讨会。1988年,美国摄影仪器工程师协会(SPIE)主办了两次有关信息融合的学术研讨会,一次主题为“空间推理与景物解释”,另一次主题为“传感器融合”。同年,美国国防部把信息融合技术列为90年代重点研究开发的二十项关进技术之一,且列为最优先发展的A类。1989年,北约组织也在巴黎召开了这方面的会议,主题是“计算机视觉中的多传感器融合”。美国一实验室理事会(JDL)下设的C3技术委员会(TPC3)专门成立了信息融合学术会议,并通过SPIE传感器融合专辑、IEEE Trans,On AES,AC等发表有关论著;为了进行广泛的国际交流,1998年成立了国际信息融合学会,总部设在美国,每年举行一次信息融合研究国际学术大会。

到目前为止,美、英、法、意、日等国已研究出上百个军用融合系统,取得了一定的成果,但还存在着一些难题没有完全解决。如传感器模型、融合过程的推理以及有关算法的研究等。

国内关于信息融合技术的研究起步相对较晚,到了20世纪80年代末才开始有关多传感器信息融合技术研究的报道。20世纪90年代初,这一领域在国内才逐渐形成。在政府、军方和各种基金部门的资助下,国内一批高校和研究所开始广泛从事这一技术的研究工作,出现了一大批理论研究成果。

20世纪90年代中期以来,信息融合技术在国内已发展成为多方关注的共性关键技术,出现了许多热门研究方向,许多学者致力于机动目标跟踪、分布监控融合、多传感器综合跟踪与定位、分布信息融合、目标识别与决策信息融合、姿态评价与威胁估计、图像融合、智能机器人等领域的理论及应用研究,相继出现了一批多目标跟踪系统和有初步综合能力的多传感器信息融合系统。

(2)信息融合技术方法

信息融合作为对多源信息的综合处理过程,具有本质的复杂性。传统的估计理论和识别算法,以及新兴的基于统计推断、人工智能和信息论的新方法,都可以用来解决信息融合问题。目前主要的信息融合方法可以分为以下几类:

1)信号处理与估计理论方法

这种方法包括小波变换技术、加权平均、最小二乘、卡尔曼滤波等线性估计技术,以及扩展卡尔曼滤波(EKF)、高斯和滤波(GSF)等非线性估计技术,以及近年来发展的 UKF滤波、粒子滤波和马尔科夫链蒙特卡洛(Markov Chain Monte Carlo, MCMC)等非线性估计技术。

2)统计推断方法

统计推断方法包括经典推理、贝叶斯推理、证据推理、随机集(random set)理论以及支持向量机理论等

3)信息论方法

信息论方法运用优化信息度量的手段融合多源数据。典型算法有熵方法、最小描述长度方法(MDL)等。

4)决策论方法

决策论方法往往应用与高级别的决策融合。

5)人工智能方法

人工智能方法包括模糊逻辑、神经网络、遗传算法、基于规则的推理,以及专家系统、逻辑模板法和品质因数法等。

6)几何方法

几何方法通过充分探讨环境以及传感器模型的几何属性来达到多传感器信息融合的目的。

4.总结

随着新技术的不断发展,未来还会应用到更多更新的领域中,本文对三维可视化技术和信息融合技术的研究现状及原理进行了分析,相信基于信息融合的三维可视化技术未来也将在电网建设中进一步深化应用。

参考文献

[1]郭玲. 智能视频监控中运动目标检测的算法研究[D]. 华南理工大学,2013.

[2]孙振宇. 双目视觉重构算法及其在变压器中的应用[D]. 东北电力大学,2015.

[3]余小欢,韩波,张宇等. 基于双目视觉的微型无人机室内3维地图构建[J]. 信息与控制,2014,43(4):392-397.

[4]常文凯,李恩,杨国栋等. 基于双目视觉的输电线路近距离三维位置测量[J]. 华中科技大学学报,2015,43:144-147.

计算机视觉研究领域范文第5篇

【关键词】平衡能力评估;OpenCV;运动轨迹;图像处理技术;位移方差

0 简介

人体平衡能力研究是当前国际学术界相对活跃的一个研究领域,已经涉及到医学、体育学、计算机等多个学科。为了维持人体站立姿势的平衡与稳定[1],中央神经系统就必需时时根据视觉系统、本体感觉系统和前庭系统提供的感觉信息对相应的关节与骨肉进行不断的调整[2]。随着社会进步,人人们日益关注自身的健康和生活质量,因而迫切的需要一种有效的方法来评估自身的平衡能力[3]。

1 方法

平衡能力评估系统由受力平台,CCD摄像头,上位机和VC++6.0软件系统组成,受力平台上安装激光头和摄像头,摄像头将屏幕上的激光点的图像传递给上位机进行识别与分析。

1.1 接收数据

为了能够接收到摄像机传过来的图像主要是利用OpenCV来完成这个过程,OpenCV是一个开放源代码的计算机视觉库,它由一系列C函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法[4]。

1.2 上位机处理

图像预处理主要目的是为了改善图像的质量,预处理操作主要包括:

1.2.1 灰度化

灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,一个像素点的变化范围为255种,所以在数字图象处理中一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些[5]。

1.2.2 高斯滤波

高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程,采用高斯滤波处理方式,即对图像进行核大小为param1×param2的高斯卷积[6],公式如下:

sigma=(n/2-1)?鄢0.3+0.8(1)

其中 n = param1 对应水平核,n = param2 对应垂直核。

1.2.3 图像减影

激光点的提取是整个图像处理部分的关键。点的提取过程实质是图像检测和分割的过程。采取图像减影的方法能很好的满足激光点分割的要求,其基本数学算法如下[7]:

gl■(x,y)=gl■(x,y)-gl■(x,y)(2)

(2)式中gl■(x,y)为点图,gl■(x,y)为背景图,gl■(x,y)为差影图。

1.3 检测与评估

cvPoint(r.x,r.y) 是OpenCV的基本数据类型之一,表示一个坐标为整数的二维点,系统取得点的坐标后。通过计算位移方差值来评估人体平衡性能。

s■=■(3)

其中,n表示某一半轴上投影点数目,x1…xn表示每个投影点的位移,m表示位移平均值。

2 实验与分析

2.1 仿真环境

仿真软件运行环境为WindowsXP下的Visual C++6.0,摄像头通过USB与上位通信。

2.2 仿真结果

在图1中,我们可以看到软件系统能够识别并且定位到每个激光点的坐标,之后在中央处中绘制出激光点的移动轨迹,在图中我们看见开始测试时重心的位移在较大范围内变动,待稳定姿态后,重心的位移量减小,并集中在原点附近。测试结束时,系统计算出每个方向上的重心位移方差值s2,即UP、DW、LT和RT。

图1 平衡能力测试系统用户界面

表1为实验在不同条件下对一个正常成年人测得的多组数据,数据中位移方差越小代表重心的摇晃程度越小,人体的姿态保持得就越稳定,即一个人的平衡能力就越好。

表2是四川省科委的重点项目《人体静态平衡功能测试仪及定量指标》中得出的数据指标,通过对比可以看出本实验的数据和标准数据在一定程度上比较接近,验证了本软件系统的理论上的可行性和实验上的正确性。

表1 在不同条件下测得的位置方差值

表2 四川省科委的重点项目得到的数据结论

3 总结

在本文中,我们设计出一个新的测试人体平衡能力的方法,即通过用激光点在屏幕上的位移来取代压力中心的位移,经过图像处理技术,将激光点提取,计算出4轴方向上的位移方差值以评估平衡能力,此平衡能力测试分析系统是针对于人体静态条件下的平衡力测试,是以压力中心位移(CoP)为基础的测量方法,通过一段时间的应用,其能满足一般大众对自身平衡能力评价的要求,也展现出其简单可靠的优点,相信未来在康复医学中与运动医学中也能有着广泛的应用。

【参考文献】

[1]刘海斌,元文学,孟昭莉.人体平衡能力测试仪器现状与发展趋势研究[J].吉林体育学院学报,2010(6):67-68.

[2]BODE RK, HEINEMANN AW. Course of functional improvement after stoke,spinal cord injury, and traumatic brain injury[J].Arch Phys Med Rehabil, 2002(83): 100-106.

[3]CAMICIOLI R, PANZER VP, KAYE J, Balance in the healthy elderly: posturography and clinical assessment[J]. Arch Neurol. 1997(54): 976-981.

[4]DALY JJ, RUFF RL, HAYCOOK K, et al, Feasibility of gait training for acute stroke patients using FNS with implanted electrodes[J].JNeurol Sci. 2000(179): 103-107.

[5]BERG KO, WOOD-DAUPHINEE S, WILLIAMS JI, The Balance Scale: reliability assessment with elderly residents and patients with acute stroke[J]. Scand J Rehabil Med. 1995(27): 27-36.

计算机视觉研究领域范文第6篇

关键词:遗传算法;GA;进化;最优化

中图分类号:TP18 文献标识码:A文章编号:1007-9599 (2010) 04-0000-01

Summary on Genetic Algorithm

Gao Ying

(Shandong Industry Vocational College,Zibo256414,China)

Abstract:This article has summarized the genetic algorithm basic principle and the characteristic, as well as in each domain application situation.

Keyword:Genetic algorithm;Evolution;Optimization

一、引言

在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准最优解。在计算此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。因此,研究能在搜索过程中自动获取和积累有关搜索空间的知识并自适应地控制搜索过程从而得到最优解的通用搜索算法一直是令人瞩目的课题[1]。遗传算法简称就是这类特别有效的算法之一。

二、遗传算法基本原理

遗传算法是建立在自然选择和群众遗传学机理基础上的,具有广泛适应性的搜索方法。遗传算法搜索结合了达尔文适者生存和随机信息交换的思想,适者生存消除了解中不适应因素,随机信息交换利用了原有解中已知的知识,从而有力地加快了搜索过程。

遗传算法的基本思想[2]:遗传算法是从代表问题可能潜在解集的一个种群开始的,一个种群由经过基因编码的一定数目的个体组成,初始种群产生之后,按照适者生存和优胜劣汰的原理,逐步演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小挑选个体,并借助自然遗传学的遗传算子进行交叉和变异,产生出代表新的解集的种群。这个过程将导致种群向自然进化一样的后代种群比前代更加适应环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。

三、遗传算法的主要特点及改进

随着问题种类的不同以及问题规模的扩大,要寻求一种能以有限的代价来解决搜索和优化的通用方法,遗传算法正是为我们提供的一个有效的途径,它不同于传统的搜索和优化方法。主要区别在于:

(1)自组织、自适应和自学习性。

(2)遗传算法的本质并行性。

(3)遗传算法不要求导或其他辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数。

(4)遗传算法强调概率转换规则,而不是确定的转换规则。

(5)遗传算法可以更加直接地应用。

(6)遗传算法对给定问题,可以产生许多的潜在解,最终选择可以由使用者确定。

其中对全局信息有效利用和隐含并行性是遗传算法的两大特点,同时遗传算法对问题本身的限制较少,因而具有很强的通用优化能力。但遗传算法容易过早收敛,这样就会使其他个体中的有效基因不能得到有效复制,最终丢失;而且在进化后期染色体之间的差别极小,整个种群进化停滞不前,搜索效率较低,这样就会导致搜索到的结果不是全局最优解。

自从1975年J.H.Holland系统地提出遗传算法的完整结构和理论以来,众多学者一直致力于推动遗传算法的发展,对编码方式、控制参数的确定、选择方式和交叉机理等进行了深入的探究,其基本途径概括起来有以下几个方面[3]:

(1)改变遗传算法的组成部分或使用技术;

(2)采用混合遗传算法;

(3)采用动态自适应技术,在进化过程中调整算法控制参数和编码粒度;

(4)采用非标准的遗传操作算子;

(5)采用并行遗传算法等。

四、遗传算法的应用领域

遗传算法经过几十年的发展,逐渐被人们接受和运用,遗传算法的应用研究比理论研究更为丰富,下面是遗传算法的一些主要应用领域[4]:

(1)优化问题:优化问题包括函数优化和组合优化两种。函数优化是遗传算法的经典领域,也是对遗传算法进行性能评价的常用算例。对于组合优化,随着问题规模的扩大,搜索空间急剧扩大,这类复杂问题,人们已经意识到把精力放在寻找其满意解上。实践证明,遗传算法对于组合优化中的NP完全问题非常有效。

(2)生产调度问题:生产调度问题在许多情况下所建立起来的数学模型难以精确求解,即使经过一些简化之后可以进行求解,也会因简化太多而使得求解结果与实际相差甚远。遗传算法已成为解决复杂调度问题的有效工具,在单件生产车间调度、流水线生产车间、生产规划、任务分配等方面遗传算法都得到了有效的应用。

(3)自动控制:在自动控制领域中许多与优化相关的问题需要求解,遗传算法的应用日益增加,并显示了良好的效果。例如用遗传算法进行航空控制系统的优化、基于遗传算法的参数辨识、利用遗传算法进行人工神经网络的结构优化设计和权值学习,都显示了遗传算法在这些领域中应用的可能性。

(4)机器人智能控制:机器人是一类复杂的难以精确建模的人工系统,而遗传算法的起源就来自于对人工自适应系统的研究。例如遗传算法已经在移动机器人路径规划、关节机器人运动轨迹规划、机器人逆运动学求解、细胞机器人的结构优化和行动协调等方面得到研究和应用。

(5)图像处理和模式识别:图像处理和模式识别是计算机视觉中的一个重要研究领域。在图像处理过程中,如扫描、特征提取、图像分割等不可避免地产生一些误差,这些误差会影响到图像处理和识别的效果。如何使这些误差最小是使计算机视觉达到实用化的重要要求。遗传算法在图像处理中的优化计算方面是完全胜任的。目前已在图像恢复、图像边缘特征提取、几何形状识别等方面得到了应用。

五、总结

遗传算法作为一种非确定性的模拟自然演化的学习过程的求解问题方法,在很多领域具有广泛的应用价值,但其在很多方面有待于进一步研究、探讨和完善。可以预期,随着计算机技术的进步和生物学研究的深入,遗传算法在操作技术和方法上将更通用、更有效。

参考文献:

[1]王煦法.遗传算法及其应用.小型微型计算机系统,1995,2

计算机视觉研究领域范文第7篇

1、人工智能的定义 

“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。 

2.人工智能的研究历史 

人工智能的发展也并不是一帆风顺的,人工智能的研究经历了以下几个阶段: 孕育阶段:古希腊的亚里士多德,给出了形式逻辑的基本规律。英国的哲学家、自然科学家培根,系统地给出了归纳法。“知识就是力量”德国数学家、哲学家布莱尼兹。提出了关于数理逻辑的思想,把形式逻辑符号化,从而能对人的思维进行运 算和推理。做出了能做四则运算的手摇计算机英国数学家、逻辑学家布尔实现了布莱尼茨的思维符号化和数学化的思想,提出了一种崭新的代数系统——布尔代数。 

第一阶段: 50 年代人工智能的兴起和冷落人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题求解程序LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。 

第二阶段: 60 年代末到70 年代,专家系统出现,使人工智能研究出现新DENDRAL 化学质谱分析系统、MYCIN 疾病诊断和治疗系统、PROSPECTIOR 探矿系统、Hearsay-II 语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969 年成立了国际人工智能联合会议。 

第三阶段: 80 年代,随着第五代计算机的研制,人工智能得到了很大发展日本1982 年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统K I P S”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。 

第四阶段: 80 年代末,神经网络飞速发展1987 年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。 第五阶段: 90 年代,人工智能出现新的研究由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。 

3. 人工智能的发展方向 

3.1人工智能的研究新课题。人工智能的长远目标是要创造人类智能的机器,用机器模拟人类的智能。这是一个十分漫长的过程,人工智能研究者将通过多种途径、从不同的研究课题入手进行探索。 在近期,有几方面的研究课题可供选择:更完善更新的人工智能理论框架;自动或半自动的知识获取工具;能实现海量高速存储并具有学习功能的联想知识库;新型推理机制和推理机;分布式人工智能与协同式专家系统;智能控制与智能管理;智能机器人;人工智能机;新一代的电脑模型。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,主要研究领域有专家系统,有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。其发展可以归纳为:人机融合、机器智能、智能机器。 

3.2人机融合。人工智能的近期研究目标在于建造智能计算机,用以代替人类从事脑力劳动,即使现有的计算机更聪明更有用。正是根据这一近期研究目标,我们才把人工智能理解为计算机科学的一个分支。人工智能还有它的远期研究目标,即探究人类智能和机器智能的基本原理,研究用自动机(automata)模拟人类的思维过程和智能行为。这个长期目标远远超出计算机科学的范畴,几乎涉及自然科学和社会科学的所有学科。在重新阐述我们的历史知识的过程中,哲学家、科学家和人工智能学家有机会努力解决知识的模糊性以及消除知识的不一致性。这种努力的结果,可能导致知识的某些改善,以便能够比较容易地推断出令人感兴趣的新的真理。 

3.3机器智能。 

计算机视觉研究领域范文第8篇

关键词:Gabor特征;SVM;嵌入式系统

中图分类号:TP311 文献标识码:A DoI: 10.3969/j.issn.1003-6970.2012.05.0010

人脸识别一直是目标识别领域当中最有挑战性的工作之一,它在监控、安全、通信、人机交互等方面均有着日益广泛的应用。自911事件后,各国对安保系统越发重视,自动人脸识别系统的研发亦显得尤为重要。随着嵌入式技术的突飞猛进,基于嵌入式平台的人脸识别系统有着越来越广泛的应用前景,可用于家居门禁系统,安全检测等场合。

同时,经过对人脸识别技术的多年研究,利用基于Gabor特征和支持向量机(Support Vector Machine)进行人脸识别的技术已经相对比较成熟[5,6],而嵌入式Linux系统以其自身的独特优势,已经成为了开发嵌入式人脸识别系统的良好平台,近年来对嵌入式平台上的人脸识别算法的研究也越来越多[4]。本文将基于OpenCV视觉库讨论在嵌入式平台上实现人脸识别算法。

高,可采用主成分分析(Principle Component Analysis)进行降维[3]。图3和图4分别为图2经过Gabor滤波以后的实部响应和幅值响应。

本实验选择ARM构架的PXA270微处理器。PXA270微处理器是奔腾公司生产的高性能、低功耗的微处理器,其CPU支持多种设备,支持双指令和多种嵌入式操作系统。PXA270微处理主要包括核心板和底板两大部分。核心板包括PXA270微处理器、PXA2700G图形加速卡、64MSDRAM、32M闪存、CPLD和底板实现连接的扩展接口;底板主要包括触摸屏、网口、USB口、串口、音频、MMC/SD电源与电池管理

等接口[7]。

OpenCV(Open Source Computer Vision Library)是由英特尔公司发起并参与开发的一个跨平台的计算机视觉库,可以在商业和研究领域中免费使用。在嵌入式系统上实现人脸识别算法,涉及把OpenCV视觉库的部分模块移植到嵌入式平台上的问题,其中涉及到要去除highgui模块,并在X86平台下进行交叉编译[8]等。

同时,Intel OpenCV是基于X86平台优化的,这种优化不一定适用于嵌入式系统,因而需要针对性地重新优化。由于嵌入式系统上的资源相对于通用PC要少得多,因此算法的编程实现虽然更多注意内存的使用与算法的时间复杂度。Gabor滤波过程实质是一个卷积的过程,因而需要使用高效的算法以避免速度太慢;滤波过程涉及多次高斯函数的计算,利用查表等方法能有效提升速度。

2.3 实验效果