首页 > 文章中心 > 量子计算的特点

量子计算的特点

开篇:润墨网以专业的文秘视角,为您筛选了八篇量子计算的特点范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

量子计算的特点范文第1篇

关键词:计算机技术;智能化;网络化;趋势研究

一、计算机技术的发展特点

(一)网络化。所谓计算机网络化是指利用计算机技术和现代通信技术把位于不同地方的计算机连接起来,共同构建一个多功能、大规模以及随时随地相互传递信息的网络,通过大力提高信息资源的整合程度这种方式,使网络中丰富的优质资源得以共享。目前,在全球范围内随着网络技术的迅速发展,各大公司、各级政府机构以及部分家庭中计算机已近全面普及,加之网络技术的连接,使各类信息的收集、处理变得更为方便快捷。

(二)多极化。不同的行业对计算机的要求提出了不同的要求,特别是一些大型、巨型计算机在航天航空、现代军事等领域发挥着不可替代的作用,人们对计算机的要求不再局限在小型个人计算机上,一些微型、小型、大型、巨型计算机都有自己的发展领域,逐渐呈现出多极化的形势。

(三)智能化。在第五代计算机中,计算机智能化是指通过既定的程序指使计算机模拟人的思维和感觉过程,使更加精确和快速地处理各类信息。在现实生活中,关于计算机智能化的研究领域非常广泛,其中计算机机器人技术更具有代表性。

(四)多媒体化。在计算机领域的多媒体化是指充分利用通信技术、计算机技术以及大众传播技术,综合处理视频、图像、文本、图形、文字、声音等多种媒体信息的计算机,使计算机技术中的各种信息资源成为一个相互交叉的整体,突破人机之间矛盾的关系,采取最为适宜的方法处理各种信息。

二、未来计算机的发展趋势

计算机技术主要的发展成果为巨型计算机、神经网络计算机、量子计算机、分子计算机、纳米计算机和光计算机等。下面将从这几方面对计算机技术的发展趋势进行深刻阐述。

(一)巨型计算机。运算速度极快、存储空间巨大、功能强是巨型计算机的主要特点,通常情况下,巨型计算机内存容量可达几百兆,运算速度可以达到每秒百亿次,已经在航空航天、地质勘测、卫星、气象、国防等领域里得到广泛应用,对其技术的进一步研究能够有力推动计算机软硬件的应用技术发展。

(二)神经网络计算机。神经网络计算机是一种模仿人体大脑神经脉络所构建的计算机网络系统,在人脑总体运行速度远远高于电脑功能所能达到速度的前提下,神经网络计算机能够处理数量繁多的信息,并且能够进行正确的判断和相应的处理,进而得到有效的结论,由于神经网络计算机内的信息存储在神经元之间的联络网中,所以,一旦发生神经元结点断裂,计算机还可以通过重新组建信息,最大限度地保证计算机内信息不丢失或被泄露。

(三)量子计算机。量子计算机是按照量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的一种新型计算机。如果计算机处理和计算的是量子信息,运行的是量子算法时,它就认为是量子计算机,由于量子计算机的存储量远远大于普通计算机的存储量,所以,其量子计算机的计算速度远远快于个人计算机。

(四)分子计算机。分子计算机是指利用分子计算处理信息的一种新型计算机,其技术原理是利用分子晶体吸收以电荷形式存在的信息,并以更加有效的方式进行组织排列,由于分子计算机耗能少、体积小、存储信息量大、存储信息时间长以及运算速度快等特点,会使分子计算机在未来发展中普遍存在。

(五)纳米计算机。纳米技术从开始研究之时,就受到全世界科学研究者们的高度关注,作为一种新兴技术,纳米技术的诞生也为计算机未来的发展提供了新的技术导向,在不久的将来,具有众多优势的纳米计算机将逐渐取代芯片计算机,推动计算机行业快速发展。

(六)光计算机。光计算机是由光代替电流或电子,实现高速处理大容量信息的计算机,它具有运算速度极高、耗电极低的特点,空间光调制器是光计算机的基础部件,采用光内连技术,在存储部分与运算部分之间进行光连接,运算部分可直接对存储部分进行并行存取。与电子相比,光传播速度更快,同时光子计算机在一般室温下就可以使用,不易出现错误。光计算机的构想使计算机接连体系结构方面实现了创新和突破,但是现阶段光计算机还处于研制阶段。

三、结语

综上所述,计算机已经渗透到社会的每一个角落,其计算机技术的不断发展就代表着社会中人类智慧的不断进步和创新,因此,未来计算机的发展趋势将会是更深入、更广泛、更高端的,其中巨型计算机、神经网络计算机、纳米计算机、分子计算机、光计算机和量子计算机将会突破传统的计算机模式,并在社会各行各业中得到广泛运用。

参考文献:

量子计算的特点范文第2篇

量子纠缠在量子信息处理过程中的角色至关重要,尤其是在远距离量子通信过程中,量子纠缠经常被用做量子通道连接远距离的两个节点.然而,在量子纠缠通道的分配设置过程中和通道建立后,纠缠不可避免地会受到通道和周围环境噪声的影响而降低,这就降低了远距离量子通信的保真度和安全性.为了获得高品质的量子纠缠通道来实现远距离量子通信,需要用到纠缠浓缩方案[1−4].纠缠浓缩就是从纠缠程度较低的部分纠缠态中提取出纠缠程度较高的纠缠态甚至是最大纠缠态的方法.1996年,第一个纠缠浓缩方案被提出[1],这个方案是利用Schmidt投影方法实现的,而且要求两个参与者获得部分纠缠态的系数,也要用到联合非破坏测量技术.之后,人们提出了很多的纠缠态浓缩方法.文献[5,6]分别利用线性光学元件发展了Schmidt投影方法.Bose等[7]提出了基于纠缠交换的纠缠浓缩,这种方法需要用到联合Bell态测量.2008年,Sheng等提出了一个高效的纠缠浓缩方法,可以通过重复纠缠浓缩过程提高成功率[8],并在2012年将这个方案做了改进[9].随后,更多的纠缠浓缩方案相继出现,例如多粒子纠缠态浓缩,包括Greenberger-Horne-Zeilinger(GHZ)态[10,11],W态[12],团簇态[13]等,以及多维度的超纠缠浓缩[14−16].自从1998年Loss和DiVinoenz[17]提出在半导体量子点中利用电子自旋作为量子比特以来,自旋半导体量子点系统就由于它容易操作和扩展,并且有较长的相干时间,成为最有希望实现量子计算机的方案之一.人们己经提出了非常多的基于自旋半导体量子点来实现量子通信和量子计算的方案[18−23],量子点结构还可以用作单光子源和纠缠光子源等[24,25].Wang等[26]在2011年利用量子点和光学微腔的耦合系统构建了电子自旋态的宇称检测门,并在此基础上实现了自旋纠缠态的提纯和浓缩.随后,他们简化了这个方案,用一个量子点和一个单光子作为辅助来实现自旋纠缠态的浓缩[27].2013年,Sheng等[28]进一步简化了自旋纠缠态浓缩的方案,他们只用一个辅助单光子就可以得到最大纠缠态.同时,基于量子点-腔系统也可以实现光子态的纠缠浓缩.在量子点-腔系统中实现的超纠缠光子态浓缩在2014年被提出.Ren和Long[29]利用单边光学微腔中的量子点自旋实现了光子偏振和空间模自由度的宇称检测,并以此对光子偏振和空间模两个自由度上的纠缠态进行浓缩.这个方案的成功概率可以通过重复执行纠缠浓缩来进一步地提高,而且它可以推广到n光子超纠缠GHZ态的纠缠浓缩.然而,以上的纠缠浓缩方案需要知道部分纠缠态的系数或者需要重复纠缠浓缩过程,这些都降低了纠缠浓缩的效率.本文探讨如何利用量子点-腔系统实现更加高效的光子偏振态纠缠浓缩.第2部分介绍量子点和双边光学微腔的相互作用;第3部分详细介绍光子偏振态的纠缠浓缩方案;第4部分讨论方案的保真度问题;第5部分是本文的总结.

2量子点和双边腔的相互作用

将一个单电子的量子点嵌入光学微腔中,用抽运光对系统进行激发可以产生带负电的激子X−,这个激子是由两个电子的自旋和一个空穴的自旋共同组成的.根据泡利不相容原理,X−的跃迁由过剩电子的自旋态控制.这样会导致两种圆偏振光经过量子点系统时的透射和反射呈现不同的性质,透射和反射系数也会有不同的相位和振幅.双边腔是指光学谐振腔的两端都可以作为光子的输出端,量子点被嵌在腔的中心.在双边腔系统中,光子的自旋是沿着腔的轴方向(z轴)的.根据光子自旋的不同,量子点-腔系统会产生两种典型的跃迁.根据选择定则,当过剩电子处于自旋向上的|⟩态,只有|L⟩态的左旋圆偏振光子被吸收,激子处于|⇑⟩态.如果过剩电子处于自旋向下的|⟩态,只有右旋圆偏振光子被吸收,激子处于|⇓⟩态.其中,|⇑⟩和|⇓⟩分别代表重穴自旋态|+3/2⟩和|−3/2⟩.如图1所示,双边光学腔有两个输出端口.

3光子偏振态的纠缠浓缩

下面介绍偏振态纠缠浓缩的原理.假设两个距离很远的光子处于较低的纠缠态:可以看到,根据两个量子点自旋态和辅助光子偏振态的测量结果,可以通过相应的单光子操作使光子A和B处于最大纠缠态(|R⟩A|R⟩B+|L⟩A|L⟩B)/√2.现在,测量两个量子点的自旋态和辅助光子的偏振态,如果得到|R⟩1|⟩s1|⟩s2,|R⟩1|⟩s1|⟩s2,|L⟩1|⟩s1|⟩s2,|L⟩1|⟩s1|⟩s2,|L⟩2|⟩s1|⟩s2,|L⟩2|⟩s1|⟩s2,|R⟩2|⟩s1|⟩s2,或者|R⟩2|⟩s1|⟩s2,则光子A和B都处于(|R⟩A|R⟩B+|L⟩A|L⟩B)/√2,即最大纠缠态.如果得到其他测量结果,则光子A和B都处于(|R⟩A|R⟩B−|L⟩A|L⟩B)/√2,这也是最大纠缠态,并且可以通过简单的单光子操作变成(|R⟩A|R⟩B+|L⟩A|L⟩B)/√2.所以在理想情况下,得到最大偏振纠缠态的概率为P=4|γ|2|α+β|2/8+4|δ|2|α+β|2/8+4|γ|2|α−β|2/8+4|δ|2|α−β|2/8=1,本文的方案是确定性的.通道噪声并不会影响方案的成功概率,但是影响在通道1或者通道2测量得到辅助光子的概率。

4讨论

以上成功概率是在理想条件下计算的,没有考虑量子点-腔系统的耦合强度以及腔的泄漏对方案的影响.如果将耦合强度和腔泄漏率考虑进来,则需要计算系统量子态的保真度F=|⟨Ψf|Ψ⟩|2.这里,|Ψf⟩是包含外部环境影响时系统的最终态,而|Ψ⟩是理想条件下的最终态.本文以|R⟩1|⟩s1|⟩s2的测量结果为例,来说明不同的因素对纠缠浓缩的保真度的影响.

5结论

量子计算的特点范文第3篇

量子力学完美地解释了在各种尺度之下物质的行为,在所有物质科学中是最成功的理论,但也是最诡异的理论。

在量子领域里,粒子似乎可以同时出现在两个地方,信息传递速度可以比光速快,而猫可以同时既是死的又是活的!物理学家已经对这些量子世界中吊诡的事情困惑了90年,但他们现在还是一筹莫展。当演化论和宇宙论已经成为一般知识时,量子理论仍然让人认为是奇特的异常事物;尽管在设计电子产品时,它是很棒的操作手册,此外就没什么用处了。由于人们对于量子理论的意义有着深度混淆,便继续加深一种印象:量子理论想急切传达的深奥道理,与日常生活无关,而且因为过于怪异,以至于一点也不重要。

在2001年,有个研究团队开始发展一种模型,或许可以去除量子物理的吊诡之处,至少也会让这些吊诡不那么令人不安。这个模型被称为量子贝氏主义,它重新思考波函数的意义。

在正统量子理论中,一个物体(例如电子)可用波函数来表示,也就是说波函数是一种用来描述物体性质的数学式子。如果你想预测电子的行为,只需推导出它的波函数如何随时间变化,计算的结果可以给你电子具有某种性质(例如电子位于某处)的概率。但是如果物理学家进一步假设波函数是真实的事物,麻烦就来了。

量子贝氏主义结合了量子理论与概率理论,认为波函数不是客观实在的事物;反之,它主张把波函数作为使用手册,是观察者对于周遭(量子)世界做出适当判断的数学工具。明确一点讲,观察者了解一件事:自己的行为与抉择会无可避免地以无法预测的方式影响被观测系统,因此用波函数来指明自己判断量子系统具有某种特定性质的概率大小。另一个观察者也用波函数来描述他所看到的世界,对于同一量子系统而言,可能会得到完全不同的结论。观察者的人数有多少,一个系统(一个事件)可能拥有不同的波函数就有多少。在观察者相互沟通、并且修正了各自的波函数以涵盖新得到的知识之后,一个有条理的世界观就浮现了。

最近才转而接受量子贝氏主义的美国康奈尔大学理论物理学家摩明这么说:“在此观点之下,波函数或许是‘我们所发现最有威力的抽象概念’。”

波函数不是真实的事物,这种想法早在20世纪30年代就出现了,那时量子力学创建者之一的尼尔斯·波尔在其文章中已经这么说。他认为量子理论仅仅是计算工具,即量子论只是“纯符号性”的架构而已,而波函数是工具的一部分。量子贝氏主义是第一个为波耳的主张找到数学基础的模型,它把量子理论与贝氏统计结合起来。贝氏统计是一门有200年历史的统计学,这门学问把“概率”定义成某种类似“主观信念”的事物。一旦新信息出现,我们的主观信念也必须跟着更新。针对如何更新,贝氏统计定下了明确的数学规则。量子贝氏主义把波函数解释成一种会依据贝氏统计规则来更新的主观信念,如此一来,量子贝氏主义的鼓吹者相信神秘的量子力学吊诡就消失了。

以电子为例,每当我们侦测到一个电子,就会发现它一定是位于某个位置;但是当我们不去看它,则电子的波函数可能是散开的,代表了电子在某一时刻处于不同地方的可能性;如果我们再去看它,又会看到电子出现在某一个位置。根据标准说法,观测促使波函数在一瞬间“崩陷”而集中于某一个位置之上。

空间各处的崩陷发生于同一时刻,这种情形似乎违背了“局域性原理”(即物体的任何改变一定是由其附近的另一物体所引起的),如此一来就会引发一些如爱因斯坦称为“鬼魅般的超距作用”的困惑。

量子力学一诞生,物理学家就知道“波函数的崩陷”是这个理论深深困扰人的一项特点。这个令人不安的谜促使物理学家发展出各种量子力学的诠释,但是都没能完全成功。

然而量子贝氏主义说量子力学根本没有任何诡异之处。波函数崩陷只是表示观察者依据新信息,忽然且不连续地更新了他原先分配的概率,就好像医生依据新的计算机断层扫描结果,而修正了对癌症病人病况的判断。量子系统并没有经历什么奇怪、不可解释的变化,改变的是(观察者选用的)波函数,波函数呈现的是观察者个人的期待。

量子计算的特点范文第4篇

关键词:计算科学计算工具图灵模型量子计算

1计算的本质

抽象地说,所谓计算,就是从一个符号串f变换成另一个符号串g。比如说,从符号串12+3变换成15就是一个加法计算。如果符号串f是x2,而符号串g是2x,从f到g的计算就是微分。定理证明也是如此,令f表示一组公理和推导规则,令g是一个定理,那么从f到g的一系列变换就是定理g的证明。从这个角度看,文字翻译也是计算,如f代表一个英文句子,而g为含意相同的中文句子,那么从f到g就是把英文翻译成中文。这些变换间有什么共同点?为什么把它们都叫做计算?因为它们都是从己知符号(串)开始,一步一步地改变符号(串),经过有限步骤,最后得到一个满足预先规定的符号(串)的变换过程。

从类型上讲,计算主要有两大类:数值计算和符号推导。数值计算包括实数和函数的加减乘除、幂运算、开方运算、方程的求解等。符号推导包括代数与各种函数的恒等式、不等式的证明,几何命题的证明等。但无论是数值计算还是符号推导,它们在本质上是等价的、一致的,即二者是密切关联的,可以相互转化,具有共同的计算本质。随着数学的不断发展,还可能出现新的计算类型。

2远古的计算工具

人们从开始产生计算之日,便不断寻求能方便进行和加速计算的工具。因此,计算和计算工具是息息相关的。

早在公元前5世纪,中国人已开始用算筹作为计算工具,并在公元前3世纪得到普遍的采用,一直沿用了二千年。后来,人们发明了算盘,并在15世纪得到普遍采用,取代了算筹。它是在算筹基础上发明的,比算筹更加方便实用,同时还把算法口诀化,从而加快了计算速度。

3近代计算系统

近代的科学发展促进了计算工具的发展:在1614年,对数被发明以后,乘除运算可以化为加减运算,对数计算尺便是依据这一特点来设计。1620年,冈特最先利用对数计算尺来计算乘除。1850年,曼南在计算尺上装上光标,因此而受到当时科学工作者,特别是工程技术人员广泛采用。机械式计算器是与计算尺同时出现的,是计算工具上的一大发明。帕斯卡于1642年发明了帕斯卡加法器。在1671年,莱布尼茨发明了一种能作四则运算的手摇计算器,是长1米的大盒子。自此以后,经过人们在这方面多年的研究,特别是经过托马斯、奥德内尔等人的改良后,出现了多种多样的手摇计算器,并风行全世界。

4电动计算机

英国的巴贝奇于1834年,设计了一部完全程序控制的分析机,可惜碍于当时的机械技术限制而没有制成,但已包含了现代计算的基本思想和主要的组成部分了。此后,由于电力技术有了很大的发展,电动式计算器便慢慢取代以人工为动力的计算器。1941年,德国的楚泽采用了继电器,制成了第一部过程控制计算器,实现了100多年前巴贝奇的理想。

5电子计算机

20世纪初,电子管的出现,使计算器的改革有了新的发展,美国宾夕法尼亚大学和有关单位在1946年制成了第一台电子计算机。电子计算机的出现和发展,使人类进入了一个全新的时代。它是20世纪最伟大的发明之一,也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。

在电子计算机和信息技术高速发展过程中,因特尔公司的创始人之一戈登·摩尔(GodonMoore)对电子计算机产业所依赖的半导体技术的发展作出预言:半导体芯片的集成度将每两年翻一番。事实证明,自20世纪60年代以后的数十年内,芯片的集成度和电子计算机的计算速度实际是每十八个月就翻一番,而价格却随之降低一倍。这种奇迹般的发展速度被公认为“摩尔定律”。

6“摩尔定律”与“计算的极限”

人类是否可以将电子计算机的运算速度永无止境地提升?传统计算机计算能力的提高有没有极限?对此问题,学者们在进行严密论证后给出了否定的答案。如果电子计算机的计算能力无限提高,最终地球上所有的能量将转换为计算的结果——造成熵的降低,这种向低熵方向无限发展的运动被哲学界认为是禁止的,因此,传统电子计算机的计算能力必有上限。

而以IBM研究中心朗道(R.Landauer)为代表的理论科学家认为到21世纪30年代,芯片内导线的宽度将窄到纳米尺度(1纳米=10-9米),此时,导线内运动的电子将不再遵循经典物理规律——牛顿力学沿导线运行,而是按照量子力学的规律表现出奇特的“电子乱窜”的现象,从而导致芯片无法正常工作;同样,芯片中晶体管的体积小到一定临界尺寸(约5纳米)后,晶体管也将受到量子效应干扰而呈现出奇特的反常效应。

哲学家和科学家对此问题的看法十分一致:摩尔定律不久将不再适用。也就是说,电子计算机计算能力飞速发展的可喜景象很可能在21世纪前30年内终止。著名科学家,哈佛大学终身教授威尔逊(EdwardO.Wilson)指出:“科学代表着一个时代最为大胆的猜想(形而上学)。它纯粹是人为的。但我们相信,通过追寻“梦想—发现—解释—梦想”的不断循环,我们可以开拓一个个新领域,世界最终会变得越来越清晰,我们最终会了解宇宙的奥妙。所有的美妙都是彼此联系和有意义的。”

7量子计算系统

量子计算最初思想的提出可以追溯到20世纪80年代。物理学家费曼RichardP.Feynman曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中,相互作用的光子每增加一个,有可能发生的情况就会多出一倍,也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了,不过,在费曼眼里,这却恰恰提供一个契机。因为另一方面,量子力学系统的行为也具有良好的可预测性:在干涉实验中,只要给定初始条件,就可以推测出屏幕上影子的形状。费曼推断认为如果算出干涉实验中发生的现象需要大量的计算,那么搭建这样一个实验,测量其结果,就恰好相当于完成了一个复杂的计算。因此,只要在计算机运行的过程中,允许它在真实的量子力学对象上完成实验,并把实验结果整合到计算中去,就可以获得远远超出传统计算机的运算速度。

在费曼设想的启发下,1985年英国牛津大学教授多伊奇DavidDeutsch提出是否可以用物理学定律推导出一种超越传统的计算概念的方法即推导出更强的丘奇——图灵论题。费曼指出使用量子计算机时,不需要考虑计算是如何实现的,即把计算看作由“神谕”来实现的:这类计算在量子计算中被称为“神谕”(Oracle)。种种迹象表明:量子计算在一些特定的计算领域内确实比传统计算更强,例如,现代信息安全技术的安全性在很大程度上依赖于把一个大整数(如1024位的十进制数)分解为两个质数的乘积的难度。这个问题是一个典型的“困难问题”,困难的原因是目前在传统电子计算机上还没有找到一种有效的办法将这种计算快速地进行。目前,就是将全世界的所有大大小小的电子计算机全部利用起来来计算上面的这个1024位整数的质因子分解问题,大约需要28万年,这已经远远超过了人类所能够等待的时间。而且,分解的难度随着整数位数的增多指数级增大,也就是说如果要分解2046位的整数,所需要的时间已经远远超过宇宙现有的年龄。而利用一台量子计算机,我们只需要大约40分钟的时间就可以分解1024位的整数了。

8量子计算中的神谕

人类的计算工具,从木棍、石头到算盘,经过电子管计算机,晶体管计算机,到现在的电子计算机,再到量子计算。笔者发现这其中的过程让人思考:首先是人们发现用石头或者棍棒可以帮助人们进行计算,随后,人们发明了算盘,来帮助人们进行计算。当人们发现不仅人手可以搬动“算珠”,机器也可以用来搬动“算珠”,而且效率更高,速度更快。随后,人们用继电器替代了纯机械,最后人们用电子代替了继电器。就在人们改进计算工具的同时,数学家们开始对计算的本质展开了研究,图灵机模型告诉了人们答案。

量子计算的出现,则彻底打破了这种认识与创新规律。它建立在对量子力学实验的在现实世界的不可计算性。试图利用一个实验来代替一系列复杂的大量运算。可以说。这是一种革命性的思考与解决问题的方式。

因为在此之前,所有计算均是模拟一个快速的“算盘”,即使是最先进的电子计算机的CPU内部,64位的寄存器(register),也是等价于一个有着64根轴的二进制算盘。量子计算则完全不同,对于量子计算的核心部件,类似于古代希腊中的“神谕”,没有人弄清楚神谕内部的机理,却对“神谕”内部产生的结果深信不疑。人们可以把它当作一个黑盒子,人们通过输入,可以得到输出,但是对于黑盒子内部发生了什么和为什么这样发生确并不知道。

9“神谕”的挑战与人类自身的回应人类的思考能力,随着计算工具的不断进化而不断加强。电子计算机和互联网的出现,大大加强了人类整体的科研能力,那么,量子计算系统的产生,会给人类整体带来更加强大的科研能力和思考能力,并最终解决困扰当今时代的量子“神谕”。不仅如此,量子计算系统会更加深刻的揭示计算的本质,把人类对计算本质的认识从牛顿世界中扩充到量子世界中。

如果观察历史,会发现人类文明不断增多的“发现”已经构成了我们理解世界的“公理”,人们的公理系统在不断的增大,随着该系统的不断增大,人们认清并解决了许多问题。人类的认识模式似乎符合下面的规律:

“计算工具不断发展—整体思维能力的不断增强—公理系统的不断扩大—旧的神谕被解决—新的神谕不断产生”不断循环。

无论量子计算的本质是否被发现,也不会妨碍量子计算时代的到来。量子计算是计算科学本身的一次新的革命,也许许多困扰人类的问题,将会随着量子计算机工具的发展而得到解决,它将“计算科学”从牛顿时代引向量子时代,并会给人类文明带来更加深刻的影响。

参考文献

[1]M.A.NielsenandI.L.Chuang,QuantumComputationandQuantumInformation[M].CambridgeUniversityPress,2000.

量子计算的特点范文第5篇

抽象地说,所谓计算,就是从一个符号串f变换成另一个符号串g.比如说,从符号串12+3变换成15就是一个加法计算。如果符号串f是x2,而符号串g是2x,从f到g的计算就是微分。定理证明也是如此,令f表示一组公理和推导规则,令g是一个定理,那么从f到g的一系列变换就是定理g的证明。从这个角度看,文字翻译也是计算,如f代表一个英文句子,而g为含意相同的中文句子,那么从f到g就是把英文翻译成中文。这些变换间有什么共同点?为什么把它们都叫做计算?因为它们都是从己知符号(串)开始,一步一步地改变符号(串),经过有限步骤,最后得到一个满足预先规定的符号(串)的变换过程。

从类型上讲,计算主要有两大类:数值计算和符号推导。数值计算包括实数和函数的加减乘除、幂运算、开方运算、方程的求解等。符号推导包括代数与各种函数的恒等式、不等式的证明,几何命题的证明等。但无论是数值计算还是符号推导,它们在本质上是等价的、一致的,即二者是密切关联的,可以相互转化,具有共同的计算本质。随着数学的不断发展,还可能出现新的计算类型。

2远古的计算工具

人们从开始产生计算之日,便不断寻求能方便进行和加速计算的工具。因此,计算和计算工具是息息相关的。

早在公元前5世纪,中国人已开始用算筹作为计算工具,并在公元前3世纪得到普遍的采用,一直沿用了二千年。后来,人们发明了算盘,并在15世纪得到普遍采用,取代了算筹。它是在算筹基础上发明的,比算筹更加方便实用,同时还把算法口诀化,从而加快了计算速度。

3近代计算系统

近代的科学发展促进了计算工具的发展:在1614年,对数被发明以后,乘除运算可以化为加减运算,对数计算尺便是依据这一特点来设计。1620年,冈特最先利用对数计算尺来计算乘除。1850年,曼南在计算尺上装上光标,因此而受到当时科学工作者,特别是工程技术人员广泛采用。机械式计算器是与计算尺同时出现的,是计算工具上的一大发明。帕斯卡于1642年发明了帕斯卡加法器。在1671年,莱布尼茨发明了一种能作四则运算的手摇计算器,是长1米的大盒子。自此以后,经过人们在这方面多年的研究,特别是经过托马斯、奥德内尔等人的改良后,出现了多种多样的手摇计算器,并风行全世界。

4电动计算机

英国的巴贝奇于1834年,设计了一部完全程序控制的分析机,可惜碍于当时的机械技术限制而没有制成,但已包含了现代计算的基本思想和主要的组成部分了。此后,由于电力技术有了很大的发展,电动式计算器便慢慢取代以人工为动力的计算器。1941年,德国的楚泽采用了继电器,制成了第一部过程控制计算器,实现了100多年前巴贝奇的理想。

5电子计算机

20世纪初,电子管的出现,使计算器的改革有了新的发展,美国宾夕法尼亚大学和有关单位在1946年制成了第一台电子计算机。电子计算机的出现和发展,使人类进入了一个全新的时代。它是20世纪最伟大的发明之一,也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。

在电子计算机和信息技术高速发展过程中,因特尔公司的创始人之一戈登·摩尔(GodonMoore)对电子计算机产业所依赖的半导体技术的发展作出预言:半导体芯片的集成度将每两年翻一番。事实证明,自20世纪60年代以后的数十年内,芯片的集成度和电子计算机的计算速度实际是每十八个月就翻一番,而价格却随之降低一倍。这种奇迹般的发展速度被公认为“摩尔定律”.

6“摩尔定律”与“计算的极限”

人类是否可以将电子计算机的运算速度永无止境地提升?传统计算机计算能力的提高有没有极限?对此问题,学者们在进行严密论证后给出了否定的答案。如果电子计算机的计算能力无限提高,最终地球上所有的能量将转换为计算的结果--造成熵的降低,这种向低熵方向无限发展的运动被哲学界认为是禁止的,因此,传统电子计算机的计算能力必有上限。

而以IBM研究中心朗道(R.Landauer)为代表的理论科学家认为到21世纪30年代,芯片内导线的宽度将窄到纳米尺度(1纳米=10-9米),此时,导线内运动的电子将不再遵循经典物理规律--牛顿力学沿导线运行,而是按照量子力学的规律表现出奇特的“电子乱窜”的现象,从而导致芯片无法正常工作;同样,芯片中晶体管的体积小到一定临界尺寸(约5纳米)后,晶体管也将受到量子效应干扰而呈现出奇特的反常效应。

哲学家和科学家对此问题的看法十分一致:摩尔定律不久将不再适用。也就是说,电子计算机计算能力飞速发展的可喜景象很可能在21世纪前30年内终止。着名科学家,哈佛大学终身教授威尔逊(EdwardO.Wilson)指出:“科学代表着一个时代最为大胆的猜想(形而上学)。它纯粹是人为的。但我们相信,通过追寻”梦想-发现-解释-梦想“的不断循环,我们可以开拓一个个新领域,世界最终会变得越来越清晰,我们最终会了解宇宙的奥妙。所有的美妙都是彼此联系和有意义的。”

7量子计算系统

量子计算最初思想的提出可以追溯到20世纪80年代。物理学家费曼RichardP.Feynman曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中,相互作用的光子每增加一个,有可能发生的情况就会多出一倍,也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了,不过,在费曼眼里,这却恰恰提供一个契机。因为另一方面,量子力学系统的行为也具有良好的可预测性:在干涉实验中,只要给定初始条件,就可以推测出屏幕上影子的形状。费曼推断认为如果算出干涉实验中发生的现象需要大量的计算,那么搭建这样一个实验,测量其结果,就恰好相当于完成了一个复杂的计算。因此,只要在计算机运行的过程中,允许它在真实的量子力学对象上完成实验,并把实验结果整合到计算中去,就可以获得远远超出传统计算机的运算速度。

在费曼设想的启发下,1985年英国牛津大学教授多伊奇DavidDeutsch提出是否可以用物理学定律推导出一种超越传统的计算概念的方法即推导出更强的丘奇--图灵论题。费曼指出使用量子计算机时,不需要考虑计算是如何实现的,即把计算看作由“神谕”来实现的:这类计算在量子计算中被称为“神谕”(Oracle)。种种迹象表明:量子计算在一些特定的计算领域内确实比传统计算更强,例如,现代信息安全技术的安全性在很大程度上依赖于把一个大整数(如1024位的十进制数)分解为两个质数的乘积的难度。这个问题是一个典型的“困难问题”,困难的原因是目前在传统电子计算机上还没有找到一种有效的办法将这种计算快速地进行。目前,就是将全世界的所有大大小小的电子计算机全部利用起来来计算上面的这个1024位整数的质因子分解问题,大约需要28万年,这已经远远超过了人类所能够等待的时间。而且,分解的难度随着整数位数的增多指数级增大,也就是说如果要分解2046位的整数,所需要的时间已经远远超过宇宙现有的年龄。而利用一台量子计算机,我们只需要大约40分钟的时间就可以分解1024位的整数了。

8量子计算中的神谕

人类的计算工具,从木棍、石头到算盘,经过电子管计算机,晶体管计算机,到现在的电子计算机,再到量子计算。笔者发现这其中的过程让人思考:首先是人们发现用石头或者棍棒可以帮助人们进行计算,随后,人们发明了算盘,来帮助人们进行计算。当人们发现不仅人手可以搬动“算珠”,机器也可以用来搬动“算珠”,而且效率更高,速度更快。随后,人们用继电器替代了纯机械,最后人们用电子代替了继电器。就在人们改进计算工具的同时,数学家们开始对计算的本质展开了研究,图灵机模型告诉了人们答案。

量子计算的出现,则彻底打破了这种认识与创新规律。它建立在对量子力学实验的在现实世界的不可计算性。试图利用一个实验来代替一系列复杂的大量运算。可以说。这是一种革命性的思考与解决问题的方式。

因为在此之前,所有计算均是模拟一个快速的“算盘”,即使是最先进的电子计算机的CPU内部,64位的寄存器(register),也是等价于一个有着64根轴的二进制算盘。量子计算则完全不同,对于量子计算的核心部件,类似于古代希腊中的“神谕”,没有人弄清楚神谕内部的机理,却对“神谕”内部产生的结果深信不疑。人们可以把它当作一个黑盒子,人们通过输入,可以得到输出,但是对于黑盒子内部发生了什么和为什么这样发生确并不知道。

9“神谕”的挑战与人类自身的回应

人类的思考能力,随着计算工具的不断进化而不断加强。电子计算机和互联网的出现,大大加强了人类整体的科研能力,那么,量子计算系统的产生,会给人类整体带来更加强大的科研能力和思考能力,并最终解决困扰当今时代的量子“神谕”.不仅如此,量子计算系统会更加深刻的揭示计算的本质,把人类对计算本质的认识从牛顿世界中扩充到量子世界中。

如果观察历史,会发现人类文明不断增多的“发现”已经构成了我们理解世界的“公理”,人们的公理系统在不断的增大,随着该系统的不断增大,人们认清并解决了许多问题。人类的认识模式似乎符合下面的规律:

量子计算的特点范文第6篇

论文摘要:将量子化学原理及方法引入材料科学、能源以及生物大分子体系研究领域中无疑将从更高的理论起点来认识微观尺度上的各种参数、性能和规律,这将对材料科学、能源以及生物大分子体系的发展有着重要的意义。

量子化学是将量子力学的原理应用到化学中而产生的一门学科,经过化学家们的努力,量子化学理论和计算方法在近几十年来取得了很大的发展,在定性和定量地阐明许多分子、原子和电子尺度级问题上已经受到足够的重视。目前,量子化学已被广泛应用于化学的各个分支以及生物、医药、材料、环境、能源、军事等领域,取得了丰富的理论成果,并对实际工作起到了很好的指导作用。本文仅对量子化学原理及方法在材料、能源和生物大分子体系研究领域做一简要介绍。

一、 在材料科学中的应用

(一)在建筑材料方面的应用

水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。

钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1 ,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca 钙矾石、含Ba 钙矾石和含Sr 钙矾石的Al -O键级基本一致,而含Sr 钙矾石、含Ba 钙矾石中的Sr,Ba 原子键级与Sr-O,Ba -O共价键级都分别大于含Ca 钙矾石中的Ca 原子键级和Ca -O共价键级,由此认为,含Sr 、Ba 硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。

将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。

(二) 在金属及合金材料方面的应用

过渡金属(Fe 、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。

量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。

二、在能源研究中的应用

(一)在煤裂解的反应机理和动力学性质方面的应用

煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。

量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子, 如低级芳香烃作为碳/ 碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian 98 程序中的半经验方法UAM1 、在UHF/ 3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3L YP/ 3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。 转贴于

(二)在锂离子电池研究中的应用

锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。

锂离子电池又称摇椅型电池,电池的工作过程实际上是Li + 离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago 等[8] 用半经验分子轨道法以C32 H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago 等[9 ] 用abinitio 分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li - C 和具有共价性的Li - Li 的混合物。Satoru 等[10] 用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。

随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。

三、 在生物大分子体系研究中的应用

生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘, 进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。

综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。

参考文献:

[1]程新. [ 学位论文] .武汉:武汉工业大学材料科学与工程学院,1994

[2]程新,冯修吉.武汉工业大学学报,1995,17 (4) :12

[3]李北星,程新.建筑材料学报,1999,2(2):147

[4]闵新民,沈尔忠, 江元生等.化学学报,1990,48(10): 973

[5]程新,陈亚明.山东建材学院学报,1994,8(2):1

[6]闵新民.化学学报,1992,50(5):449

[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1

[8]Ago H ,Nagata K, Yoshizaw A K, et al. Bull.Chem. Soc. Jpn.,1997,70:1717

[9]Ago H ,Kato M,Yahara A K. et al. Journal of the Electrochemical Society, 1999, 146(4):1262

量子计算的特点范文第7篇

量子通信是量子力学和经典通信相结合的产物,其安全性由海森堡测不准定理和不可克隆原理所保障,具有经典通信无法比拟的无条件安全性及对窃听的可检测性。电力系统通信专网,建立了“安全分区、网络专用、横向隔离、纵向认证”的网络与信息安全防御体系,但安全措施主要侧重于业务层和数据安全层面,在底层安全策略和适应未来发展方面存在局限性。由于电力数据对通信安全要求的特殊性,量子通信极有可能是确保电力通信安全的极佳选择。综上,开展量子保密通信技术研究非常有意义。本文首先对量子通信技术进行概述,接着阐述了国内外技术研究现状;最后,根据电力通信业务需求,分析量子通信在电力系统中的应用前景。

2量子通信技术概述

量子通信,广义上是指把量子态的传递,包括:量子密集编码、量子密钥分发和量子隐形传态。其中,量子密集编码用于量子计算机。量子密钥分发,在传送量子态的过程中,光子会经由光纤或自由空间被实际传送到接收方;量子隐形传态,纠缠光子对分处两地,量子态在一处消失后,在另一处被巧妙地重现,而光子本身却不被传送。量子通信,狭义上理解,是量子密钥分配或基于量子密钥分配的安全保密通信。量子密钥分发只是负责产生和分发通信需要的密钥,最终的的数据信息经由加密生成的密文,还是必须经过经典信道进行传输。在量子隐形传态中,同样也要用经典信道将测量的信息传送出去,经典信息与量子信息联合起来才能实现量子隐形传态。因此,量子通信技术除了在窃听检测和通信保密方面具有优势以外,并不能突破经典通信系统在通信速率、距离、抗干扰性能等方面的极限。

3量子通信技术国内外研究现状

量子通信具有高效率和绝对安全等特点,广泛的应用前景吸引众多国家投入人力物力。美国、日本、欧洲多国都成立了专门开展量子技术研究的机构,此外,IBM、HP、NEC、NTT等企业也纷纷加入到量子通信的研究之中。国外量子密钥分配技术专利统计显示,公司、企业申请的专利数占主导地位,科研院所其次,可以看出量子密钥分配技术具有潜在的商业化价值和应用空间。1984年,BennetC.H.和BrassardG.提出第一个量子密钥分发协议(BB84协议),揭开了量子密钥分发研究的序幕。1993年,英国国防部研究局在传输长度为10km的光纤中实现了基于BB84方案的相位编码量子密钥分发。1997年,奥地利的A.Zeilinger小组在室内首次完成量子态隐形传送的原理性实验验证。2001年,瑞士IDQuantique公司推出商用量子密钥分发系统。2004年,瑞士日内瓦大学的Gisin小组推出的“Plug&Play”光纤量子密钥协商系统光纤长度提高到67km,成为世界上首个商用的QKD系统。

国内,量子通信研究同样受到相关部门的大力支持。郭光灿小组:2004年,实现北京-天津125km光纤点对点的量子密钥分发;2007年,实现了基于波分复用的四用户量子密钥分发网络,通信距离达到42.6km;2009年,在安徽芜湖建成世界首个“量子政务网”。2005年,潘建伟小组在世界上首次实现13km自由空间的纠缠分发和量子密钥产生;2008年,实现了三用户的诱骗态量子密钥分发网络;2009年9月,世界上首个全通型量子通信网络建成,首次实现了实时语音量子保密通信。最近几十年,量子通信从理论到实验,再到实用化突破,发展迅速。

4量子通信技术在电力系统中的应用前景

电网规模的不断扩大,电网企业信息化程度日益提高,电网面临的安全风险更多、更大,迫切需要研究新的通信技术,将其应用到电力系统来。量子通信技术具备高效率和绝对安全的优势,将可能成为保护电力系统数据安全的极佳选择。而且,在我国相关的研究和实用化工作也走在世界前列,具有自主知识产权,探索量子通信技术在电力系统中的应用是非常有意义和前瞻性的工作。结合目前电力通信系统和业务系统现状,量子通信技术可以在以下方面开展应用研究:

4.1构建量子加密异地备份数据传输链路目前,各网省公司已大力开展备用调度系统和信息容灾体系的建设,并相继成立了异地数据容灾中心。为确保数据中心之间的数据保密传输,一个安全的加密系统是必需的。量子保密通信的安全性不是基于计算的复杂性,在信息保护和保密通信方面具有天然的优势。使用量子密钥分发链路,在主、备数据中心间进行密钥分发和交换,能够构建高效、安全的异地数据备份传输通道。

4.2构建核心加密通信网电力企业的电脑被攻击,可能引发用电行业的瘫痪,造成社会大面积混乱。传统的防火墙和信息过滤技术无法从根本上解决“黑客”攻击的问题,随着量子通信距离和多用户量子通信技术的突破,利用量子通信技术构建网省地重要调度机构加密通信网,在网络上任意两用户间实现量子密钥的加密通信,将能保证营销、市场、办公等重要业务的安全性。

4.3构建点对点量子加密保护通道线路保护、安稳属于电力生产一区的重要业务,对数据的实时性和安全性要求非常高。现采用的专用光纤、复用2M通道方式能保证数据的实时性,却无法保证绝对安全性。随着量子通信的快速发展,两点间的量子通信技术趋于成熟,两方量子密钥分发通信距离已经能够达到几十公里~百公里级。量子密钥分发技术,使用光量子作为保护、安稳信息的载体,将能极大地保障业务的安全性。

4.4构建加密量子交换网络电话业务是生产指令上传下达的关键工具,是电网安全正常运行的重要通信保障,目前主要采用PCM或交换机放号的方式,在承载网层面未进行安全保证。使用量子交换机实现经典通信网络的交换控制与量子交换网络的控制,可以构建高安全的量子交换网络,防止电话遭窃听和恶意攻击。

4.5应急量子通信当出现冰灾、地震、洪水等自然灾害,光缆、传输设备等电力通信基础设施受到大面积破坏时,现有电力通信网络陷入瘫痪,无法进行有效的应急抢修通信。目前,量子隐形传态技术已经获得16km的实验进展,随着关键量子器件技术的成熟,隐形传态将进入应用阶段。利用隐形传态技术,构建应急环境下的量子卫星通信系统,将对未来的应急抢修提供重要帮助。

5总结

量子计算的特点范文第8篇

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。