首页 > 文章中心 > 数学建模基本模型

数学建模基本模型

开篇:润墨网以专业的文秘视角,为您筛选了八篇数学建模基本模型范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

数学建模基本模型范文第1篇

关键词:新课程;高中数学建模教学

一、引言

高中数学新课程标准强调培养学生的数学应用意识,力求让学生深切体会到数学在解决实际问题中的作用以及与其他学科之间的关系。加强高中数学的教学研究,不仅仅是社会发展的一个重要需求,更是新课程改革中数学教学目标的要求,是探索素质教育的一条途径。而“数学建模”教学方式能很好地满足新课改的要求,能够成为课程教学改革的重要突破点。

二、数学建模教学的概述

1.数学模型的内涵

数学模型是指借助于数学语言对现实世界进行的一种描述,具体而言,就是针对现实世界的某一个特定对象,采用抽象且简化的数学结构进行表现。其中,数学结构可能是各种概念、公式以及算法等。从狭义上分析,数学模型只是反映特定问题的结构。

而数学模型的特征主要有抽象性、准确性以及演绎性等。其中抽象性是指数学模型对原则进行了要素形式化处理,对本质进行了概括性简化;而准确性是指借助于数学语言的严密性对演绎推理奠定基础。

2.数学建模的内涵

数学建模是数学的一种思考方法,主要是借助心智活动明确现象特征,常以符号加以表示。本文研究的数学建模主要涉及七个阶段,分别是:模型准备、模型假设、模型建立、模型求解、模型分析、模型检验以及模型应用。

数学建模的基本原则是:具备较高的精度,一定要将现象本质的关系以及规律均加以充分描述;注重简化,避免因为繁琐而造成求解困难;数学理论依据要充分,涉及的公式以及图表必须合理;模型所描述的系统应具备很好的操控性,这样可以方便对数学模型进行检验以及修改。

三、新课程背景下高中数学建模教学的开展

高中数学建模必须要与高中数学知识相同步,同时应充分考虑到高中生的特点。只有选择了合适的数学建模型课题才能更好地完成教学过程,并进一步提高教学质量。下面重点探讨一下高中数学建模教学的开展流程。

1.简单建模教学

简单建模环节主要是针对高一学生,目的是为了激发学生的学习兴趣,并不断增强学生的数学应用意识。这一环节中,教师可以针对具体的教学内容,注重学生分析及推理能力的培养,可以选择一些典型实例,指导学生共同参与数学建模的建立,该环节可能使用的教学知识点有:集合、函数、等差数列、不等式、指数函数以及三角函数等。

2.典型案例建模教学

典型案例建模教学主要是针对高二学生。因为高二学生已经对数学基本知识点有了一定的掌握,可以独立解决一些简单的数学应用问题,需进一步渗透学习的知识点有:圆锥曲线、导数、坐标系以及概念等。

3.综合建模教学

综合建模教学环节主要针对高二下学期以及高三的学生。一般情况下,教师只需要给出问题的一般情景以及基本要求,要求学生根据这些情况及基本要求收集信息,甚至需要自行假定与设计一些已知条件,提出多种多样的解决方案,进而得出或繁或简的结论。学生可分小组或独立进行设计和建模活动。就某一问题的建模展开充分的讨论。

四、总结

高中数学建模课并不是传统意义上的数学课,而是引导学生“学着用数学”。目前,对于数学模型还不存在现成的普遍适用的准则以及方法,需要通过教师的经验见解以及有效措施,才能建立并优化数学建模教学流程。对于高中生而言,有效的数学建模思想可以帮助他们学会用数学方法解决实际相关问题,这也为他们今后进一步学习打下良好的基础。

总之,高中学生蕴藏着极为丰富和巨大的创造力,关键是我们的教育能否为他们提供适合他们发展的氛围环境和舞台,能否为他们提供更多发挥其创造性的机会。随着课程改革的进一步深化及高考选拔制度的改进,形成和发展学生的数学应用意识必将成为全社会的共识,数学建模教学在培养学生动手实践能力、合作交流能力、探究能力、微型科研能力方面的作用也越来越明显。

参考文献:

数学建模基本模型范文第2篇

关键词: 数学建模 必要性 教学实践 评价

生活中,学生自主创业活动必定涉及到各方面的知识,而创业中的现实问题的提出与解决,反映在数学中就是数学应用问题的创设和解决(数学建模),目前,数学建模是世界各国数学教育界共同关注的问题,如何培养中职生的数学建模能力为他在实际生活中真正创业时,做到条件的分析无误、设计的合情合理呢?,现阶段必须在教学中大力培养和提高中学生的数学应用意识,使学生掌握提出、分析和解决 带有实际意义的数学问题,准确而灵活地运用数学语言研究和表述问题,是职高数学教学的迫切要求,在职高数学教学过程的始终都应注重学生应用意识的培养,加大应用问题的教学力度。如果没有分析问题,抽象问题的基本功,就谈不上数学建模 ,更谈不上今后如何指导自己创业,因此,对中职生的数学建模能力进行探讨、研究是十分必要的。

一、什么是数学建模

数学模型:对于现实中的原型,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。也可以说,数学建模是利用数学语言(符号、式子与图象)模拟现实的模型。把现实模型抽象、简化为某种数学结构是数学模型的基本特征。它或者能解释特定现象的现实状态,或者能预测到对象的未来状况,或者能提供处理对象的最优决策或控制。

数学建模:(Mathematical Modelling)把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模。

二、数学建模的目的:

(1)体会数学的应用价值,培养数学的实际中的创业应用意识;

(2)增强数学学习兴趣,学会团结合作,提高现实生活中分析和解决问题的能力;

(3)知道数学知识的发生过程,培养数学创造能力

三、数学建模的过程:

模型准备 :了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。

模型假设 :根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

模型建立 :在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)

模型求解 :利用获取的数据资料,对模型的所有参数做出计算(估计)。

模型分析 :对所得的结果进行数学上的分析。

模型检验 :将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,在次重复建模过程。

模型应用 :应用方式因问题的性质和建模的目的而异

四、提高中职生数学建模能力的教学实践

1、重视基本方法和基本解题思想的渗透与训练。

中职生数学建模能力的培养最重要的是要求教学内容的选择要有开放性和关联性。为此,我们在教学中补充和拓展教学内外的典型事件和案例,培养学生的应用意识,提高学生分析问题解决问题的能力,首先应结合具体问题,教给学生解答应用题的基本方法、步骤和建模过程,建模思想。 教学实际应用题的常规思路是:将实际问题抽象、概括、转化 --数学问题解决数学问题 回答实际问题。具体可按以下程序进行:

(1)审题:由于数学应用的广泛性及实际问题非数学情景的多样性,往往需要在陌生的情景中去理解、分析给出的问题,舍弃与数学无关的因素,抽象转化成数学问 题,分清条件和结论,理顺数量关系。为此,引导学生从粗读到细研,冷静、慎密的阅读题目,明确问题中所含的量及相关量的数学关系。对学生生疏情景、名词、 概念作必要的解释和提示,以帮助学生将实际问题数学化。

(2)建模:明白题意后,再进一步引导学生分析题目中各量的特点,哪些是已知的,哪些是未知的。是否可用字母或字母的代数式表示,它们之间存在着怎样的联系?将文字语言转化成数学语言或图形语言,找到与此相联系的数学知识,建成数学模型。

(3)求解数学问题,得出数学结论

(4)还原:将得到的结论,根据实际意义适当增删,还原为实际问题。

例:某城市现有人口总数 100 万人,如果年自然增长率为 1.2 %,写出该城市人口总数 y( 人 ) 与年份 x( 年 ) 的函数关系式

这是一道人口增长率问题,教学时为帮助学生审题,,可以提出以下要求:

a找出有用量,题目中涉及到哪些关键语句,哪些有用信息?解释“年自然增长率”的词义,指出:城市现有人口、年份、增长率,城市变化后的人口数等关键量。

b理解量的关系,问题中各量哪些是已知的,那些是未知的,存在怎样的关系?

c建模,启发学生分析这道题与学过的、见过的哪些问题有联系,它们是如何解决的?对此有何帮助?

学生讨论后,从特殊的 1 年、 2 年…抽象归纳,寻找规律,探讨 x 年的城市总人口问题: y=100(1+1.2%) x .

通过这个故事让学生知道,创业过程中有大量的现实问题可以抽象到数学的应用中来,同时让学生发现大量的引人入胜的研究方向,比如这道题分析下去,其中就可以扩展到人口,存款付息,房屋按揭等方面的应用。

数学建模基本模型范文第3篇

一、构建数学建模意识的基本途径

1.努力培养学生的建模意识。中学数学教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。同时,还需要不断学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。

2.数学建模教学还应与现行教材结合起来研究。如讲立体几何时可引入正方体模型或长方体模型把相关问题放入到这些模型中来解决。这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

3.注意与其他相关学科的关系。由于数学是学生学习其他自然科学以至社会科学的工具,而且其他学科与数学的联系是相当密切的。因此我们在教学中应注意与其他学科的呼应,这不但可以帮助学生加深对其他学科的理解,也是培养学生建模意识的一个不可忽视的途径。例如教了正弦型函数后,可引导学生用模型函数y=Asin(ωx+φ)写出物理中振动图像或交流图像的数学表达式。这样的模型意识不仅仅是抽象的数学知识,而且将对他们学习其他学科的知识以及将来用数学建模知识探讨各种边缘学科产生深远的影响。

二、构建数学建模意识与培养学生创造性思维

在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力。通过数学建模活动,既能培养学生独立自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,又可以培养学生的想象能力和直觉思维、猜测、转换、构造等能力。而这些数学能力正是创造性思维所具有的最基本的特征。

1.发挥学生的想象能力,培养学生的直觉思维。通过数学建模教学,使学生有独到的见解和与众不同的思考方法。例如:证明sin5°+sin77°+sin149°+sin221°+sin293°=0

分析:此题若作为“三角”问题来处理,当然也可以证出来,但从题中的数量特征来看,发现这些角都依次相差72° ,联想到正五边形的内角关系,由此构造一个正五边形(如图)

由于AB+BC+CD+EA=0

从而它们的各个向量在Y轴上的分量之和亦为0,故知原式成立。

这里,正五边形作为建模的对象恰到好处地体现了题中角度的数量特征。反映了学生敏锐的观察能力与想象能力。如果没有一定的建模训练,是很难“创造”出如此简洁、优美的证明的。

2.以“构造”为载体,培养学生的创新能力。我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力。

如:求函数f(θ)=■+■(0<θ<π)。

分析:学生首先想到的是用不等式求得最小值为2,但忽略了等号成立的条件。若把函数变换为f(θ)=■,则可构造数学模型“求过定点A(0,―4)及动点B(2sinθ,sin2θ)的直线朋斜率的最小值” 而动点B(2sinθ,sin2θ)的轨迹是抛物线段:y=■x2(0<x≤2)结合图像知f(θ)的最小值为■。

从上面例子可以看出,只要我们在教学中教师仔细观察,精心设计,可以把一些较为抽象的问题,通过现象除去非本质的因素,从中构造出最基本的数学模型,使问题回到已知的数学知识领域,并且能培养学生的创新能力。

数学建模基本模型范文第4篇

【关键词】数学建模 数学模型方法 数学建模意识 创新思维

一、数学建模与数学建模意识

著名数学家怀特海曾说:“数学就是对于模式的研究”。

所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构,数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。

具体的讲数学模型方法的操作程序大致上为:

由此,我们可以看到,培养学生运用数学建模解决实际问题的能力关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。

二、构建数学建模意识的基本途径

1.为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。

2.数学建模教学还应与现行教材结合起来研究。教师应研究在各个教学章节中可引入哪些模型问题。要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

3.注意与其它相关学科的关系。由于数学是学生学习其它自然科学以至社会科学的工具而且其它学科与数学的联系是相当密切的。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。这样的模型意识不仅仅是抽象的数学知识,而且将对他们学习其它学科的知识以及将来用数学建模知识探讨各种边缘学科产生深远的影响。

4.在教学中还要结合专题讨论与建模法研究。我们可以选择适当的建模专题,通过讨论、分析和研究,熟悉并理解数学建模的一些重要思想,掌握建模的基本方法。甚至可以引导学生通过对日常生活的观察,自己选择实际问题进行建模练习,从而让学生尝到数学建模成功的“甜”和难于解决的“苦”借亦拓宽视野、增长知识、积累经验。这亦符合玻利亚的“主动学习原则”,也正所谓“学问之道,问而得,不如求而得之深固也”。

三、把构建数学建模意识与培养学生创造性思维过程统一起来

我认为培养学生创造性思维的过程有三点基本要求。第一,对周围的事物要有积极的态度。第二,要敢于提出问题。第三,善于联想,善于理论联系实际。因此在数学教学中构建学生的建模意识实质上是培养学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动。它既具有一定的理论性又具有较大的实践性;既要求思维的数量,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立,自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力,直觉思维、猜测、转换、构造等能力。而这些数学能力正是创造性思维所具有的最基本的特征。

1.发挥学生的想象能力,培养学生的直觉思维

众所周知,数学史上不少的数学发现来源于直觉思维,如笛卡尔坐标系、费尔马大定理、歌德巴赫猜想、欧拉定理等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。

2.构建建模意识,培养学生的转换能力

恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。

3.以“构造”为载体,培养学生的创新能力

“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”

我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。只要我们在教学中教师仔细地观察,精心的设计,可以把一些较为抽象的问题,通过现象除去非本质的因素,从中构造出最基本的数学模型,使问题回到已知的数学知识领域,并且能培养学生的创新能力。

参考文献:

[1]沈文选.数学建模.湖南师大出版社,1999.

[2]中国教育学会中学数学教学专业委员会.面向21世纪的数学教学.浙江教育出版社,1997.

[3]胡炯涛,张凡.中学数学教学纵横谈.山东教育出版社,1997.

数学建模基本模型范文第5篇

【关键词】数学建模数学模型方法数学建模意识创新思维

一、引言

材料一:如果我们在高中学生中作一个调查,问其学习数学的目的是什么?可能大部分同学的回答是:为了高考;如果我们在非数学系的在读大学生中作一个调查,问其学习数学的用处是什么?可能大部分同学的回答是:应付考试。

材料二:从1993年起在高考试题中强调了考查数学应用问题,1993年——1994年在小题中考到了应用题,尤其是1994年考了三个小题,其中一道题是测量某物理量的“最佳近似值”,试题新颖,文字较长,应用性较强,其结果理科难度为0.29,文科为0.16,得分率较低。从1995年——1999年高考加大了应用题力度,连续五年出了大题,这些题目成了不少同学取得高分的“拦路虎”,解答不太理想。

应该说,我们的中学数学教学是一种“目标教学”。一方面,我们一直想教给学生有用的数学,但学生高中毕业后如不攻读数学专业,就觉得数学除了高考拿分外别无它用;另一方面,我们的“类型十方法”的教学方式的确是提高了学生的应试“能力”,但是学生一旦碰到陌生的题型或者联系实际的问题却又不会用数学的方法去解决它。大部分同学学了十二年的数学,却没有起码的数学思维,更不用说用创造性的思维自己去发现问题,解决问题了。由此看来,中学数学教与学的矛盾显得特别尖锐。

加强中学数学建模教学正是在这种教学现状下提出来的。“无论从教育、科学的观点来看,还是从社会和文化的观点来看,这些方面(数学应用、模型和建模)都已被广泛地认为是决定性的、重要的。”我国普通高中新的数学教学大纲中也明确提出要“切实培养学生解决实际问题的能力”要求“增强用数学的意识,能初步运用数学模型解决实际问题,逐步学会把实际问题归结为数学模型,然后运用数学方法进行探索、猜测、判断、证明、运算、检验使问题得到解决。”这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因为我们的数学教学不仅要使学生获得新的知识而且要提高学生的思维能力,要培养学生自觉地运用数学知识去考虑和处理日常生活、生产中所遇到的问题,从而形成良好的思维品质,造就一代具有探索新知识,新方法的创造性思维能力的新人。

二、数学建模与数学建模意识

著名数学家怀特海曾说:“数学就是对于模式的研究”。

所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构,数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题都可以转化为二次函数来解决。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。

具体的讲数学模型方法的操作程序大致上为:

实际问题分析抽象建立模型数学问题

检验 实际解 释译 数学解

由此,我们可以看到,培养学生运用数学建模解决实际问题的能力关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。

三、构建数学建模意识的基本途径。

1、为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。北京大学附中张思明老师对此提供了非常典型的事例:他在大街上看到一则广告:“本店承接A1型号影印。”什么是A1型号?在弄清了各种型号的比例关系后,他便把这一材料引入到初中“相似形”部分的教学中。这是一般人所忽略的事,却是数学教师运用数学建模进行教学的良好机会。

2、数学建模教学还应与现行教材结合起来研究。教师应研究在各个教学章节中可引入哪些模型问题,如讲立体几何时可引入正方体模型或长方体模型把相关问题放入到这些模型中来解决;又如在解几中讲了两点间的距离公式后,可引入两点间的距离模型解决一些具体问题,而储蓄问题、信用贷款问题则可结合在数列教学中。要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

3、注意与其它相关学科的关系。由于数学是学生学习其它自然科学以至社会科学的工具而且其它学科与数学的联系是相当密切的。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。例如教了正弦型函数后,可引导学生用模型函数y=Asin(wx+Φ)写出物理中振动图象或交流图象的数学表达式。又如当学生在化学中学到CH4CL4,金刚石等物理性质时,可用立几模型来验证它们的键角为arccos(-1/3)=109°28′……可见,这样的模型意识不仅仅是抽象的数学知识,而且将对他们学习其它学科的知识以及将来用数学建模知识探讨各种边缘学科产生深远的影响。

4、在教学中还要结合专题讨论与建模法研究。我们可以选择适当的建模专题,如“代数法建模”、“图解法建模”、“直(曲)线拟合法建模”,通过讨论、分析和研究,熟悉并理解数学建模的一些重要思想,掌握建模的基本方法。甚至可以引导学生通过对日常生活的观察,自己选择实际问题进行建模练习,从而让学生尝到数学建模成功的“甜”和难于解决的“苦”借亦拓宽视野、增长知识、积累经验。这亦符合玻利亚的“主动学习原则”,也正所谓“学问之道,问而得,不如求而得之深固也”。

四、 把构建数学建模意识与培养学生创造性思维过程统一起来。

在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力。麻省理工大学创新中心提出的培养创造性思维能力,主要应培养学生灵活运用基本理论解决实际问题的能力。由此,我认为培养学生创造性思维的过程有三点基本要求。第一,对周围的事物要有积极的态度;第二,要敢于提出问题;第三,善于联想,善于理论联系实际。因此在数学教学中构建学生的建模意识实质上是培养学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动。它既具有一定的理论性又具有较大的实践性;既要求思维的数量,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立,自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力,直觉思维、猜测、转换、构造等能力。而这些数学能力正是创造性思维所具有的最基本的特征。

1、发挥学生的想象能力,培养学生的直觉思维

众所周知,数学史上不少的数学发现来源于直觉思维,如笛卡尔坐标系、费尔马大定理、歌德巴赫猜想、欧拉定理等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。

分析:此题若作为“三角”问题来处理,当然也可以证出来,但从题中的数量特征来看,发现这些角都依次相差72°,联想到正五边形的内角关系,由此构造一个正五边形(如图)

从而它们的各个向量在Y轴上的分量之和亦为0,故知原式成立。

这里,正五边形作为建模的对象恰到好处地体现了题中角度的数量特征。反映了学生敏锐的观察能力与想象能力。如果没有一定的建模训练,是很难“创造”出如此简洁、优美的证明的。正如E·L泰勒指出的“具有丰富知识和经验的人,比只有一种知识和经验的人更容易产生新的联想和独创的见解。

2、构建建模意识,培养学生的转换能力

恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。

如在教学中,我曾给学生介绍过“洗衣问题”:

给你一桶水,洗一件衣服,如果我们直接将衣服放入水中就洗;或是将水分成相同的两份,先在其中一份中洗涤,然后在另一份中清一下,哪种洗法效果好?答案不言而喻,但如何从数学角度去解释这个问题呢?

我们借助于溶液的浓度的概念,把衣服上残留的脏物看成溶质,设那桶水的体积为x,衣服的体积为y,而衣服上脏物的体积为z,当然z应非常小与x、y比可忽略不计。

第一种洗法中,衣服上残留的脏物为;

按第二种洗法:第一次洗后衣服上残留的脏物为;第二次洗后衣服上残留的脏物为;显然有——

这就证明了第二种洗法效果好一些。

事实上,这个问题可以更引申一步,如果把洗衣过程分为k步(k给定)则怎样分才能使洗涤效果最佳?

学生对这个问题的进一步研究,无疑会激发其学习数学的主动性,且能开拓学生创造性思维能力,养成善于发现问题,独立思考的习惯。

3、以“构造”为载体,培养学生的创新能力

“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”

我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。

如:在一条笔直的大街上,有n座房子,每座房子里有一个或更多的小孩,问:他们应在什么地方会面,走的路程之和才能尽可能地少?

分析:如何表示房子的位置?构造数轴,用数轴表示笔直的大街,几座房子分别位于 ,不妨设 ,又设各座房子中分别有 个小孩,则问题就成为求实数,使最小。

分析:学生首先想到的用不等式求得最小值为2,但忽略了等号成立的条件。若把函数变换为,则可构造数学模型“求过定点A(0,-4)及动点的直线AB斜率的最小值”而动点的轨迹是抛物线段:结合图象知f(θ)的最小值为52。

从上面两个例子可以看出,只要我们在教学中教师仔细地观察,精心的设计,可以把一些较为抽象的问题,通过现象除去非本质的因素,从中构造出最基本的数学模型,使问题回到已知的数学知识领域,并且能培养学生的创新能力。

数学建模基本模型范文第6篇

数学建模教学与传统的数学教学活动有着很大的不同,它重视数学理论与实践的结合,把培养学生的创新能力作为首要的教学目标,以此来让学生更好地运用数学知识解决现实生活中的实际问题。数学建模使用数学理论和数学工具,通过演绎、推断、分析、解释等步骤对数学问题以及现实世界的信息进行归纳整理。学生要在数学建模的过程中不断培养自己的数学建模意识和数学建模的水平,只有这样才能建立一个优秀的数学模型。高校的数学教育除了要教给学生基本的数学知识外,还要用实践活动培养学生的创造性思维、创新能力,让学生在实践中掌握数学知识,以及数学的精神实质和精髓,要让学生利用数学建模的知识来解决现实中的问题。近年来,众多高校开展了数学建模教学活动,并举办了大学生数学建模竞赛活动,这些教学活动和竞赛活动极大地推动了高校数学建模教学的开展,高校在这一过程中,充分培养了学生的数学建模意识以及创新能力[2]。

二、数学建模教学对于学生创新能力培养的重要意义

高校的数学建模教学在很多大学正如火如荼地展开,数学建模教学的内容较为新颖、有趣,因此吸引了较多的学生参与数学建模的学习[3]。数学建模教学以及大学生数学建模竞赛可以有效地提高学生的创新能力和综合素质。高校通过数学建模教学可以对学生的创新能力进行全方位的培养。

(一)有利于学生想象力的培养

高校进行数学建模教学,主要是让学生使用数学理论和数学工具来建立模型,进而解决实际问题。学生要使用数学语言来描述相关的问题,这其中主要包括两部分的内容,即模型的假设和模型的架构。学生在建立数学模型之前,需要学量的数学理论知识,然后才能进行数学的建模。在数学建模的教学活动中,最为常用的一个方法就是理想化的方法。理想化方法需要学生具有一定的想象力,因此教师的数学建模教学可以使学生在此期间不断进行思维的延伸,培养学生的想象力。想象力就是人们在原有的事物形象的基础之上,添加一些新的形象,然后将这两种形象进行一定的加工处理,从而创造出了一种新的事物的形象,这就是想象力。数学建模教学也是如此,教师在进行数学建模教学时,首先让学生学习相关的数学基础理论知识,然后让学生通过一定的数学工具构建数学模型,而构成这种数学模型最关键的一个因素就是学生的想象力,想象力是创新能力的基础组成部分,因而通过数学建模教学可以很好地培养学生的创新能力。

(二)有利于学生发散思维能力的培养

数学模型的成功建立需要学生充分发挥自己的想象力,在想象力的基础之上才能培养学生的发散思维能力。发散思维是一种非常重要的创造性思维,是由某一具体条件或事实出发,从各个不同角度、不同侧面理解问题、思考问题,并探索解决方法,从而产生出各种结果,即它的思考方向是由各个方向发散的。数学建模本质上就是对现实问题的数学描述的过程。在这个过程中,从不同角度出发,考虑不同的条件,就可以得到同一问题的多种解决方法,甚至能得到同一问题在不同条件下截然不同的结果。运用数学建模教学培养学生的发散思维能力,需要教师在教学过程中适时启发和引导学生针对实际问题提出合理的假设,忽略掉一些次要因素,寻找主要因素之间的量化关系,运用所学的相关专业理论知识、科学规律、生活经验和数学知识,建立数学模型。鼓励学生考虑不同因素,运用不同方法解决问题,培养学生解决实际问题的意识和发散思维能力。

三、数学建模教学是培养学生创新能力的途径

(一)优化知识结构

基本的数学理论知识,是高校进行数学建模教学、培养学生创新能力的根基,学生只有掌握了数学的基本理论知识,才能在数学建模的学习中,很快地掌握建模要领。因此在数学建模的教学实践中,学生首先要学好数学基本理论知识,形成完整的数学知识理论体系,并掌握好数学建模的要领[4]。以往的学生在学习的过程中,只需要掌握与考试内容相关的数学理论知识,而这些数学理论知识对于数学建模的学习而言,知识量是远远不够的。学生的数学基础知识越多,就越可以在数学建模的过程中充分发挥自己的想象力,根据数学建模的相关要求,找出更多的新思想、新方法,以此来更好地完成数学建模的学习。因此,高校需要在数学建模的教学过程中,注重引导学生掌握更多的数学基础理论知识,不断地优化自己的知识结构,从而在建模的过程中培养自己的创新能力。

(二)重视知识认知

在数学建模的教学过程中,教师还要注重学生的知识认知情况。学生的数学基础理论是其掌握数学建模要领的知识基础,因此学生要在数学建模学习之前掌握较多的数学理论基础知识。在学习基础的数学理论知识时,教师要通过一定的手段,来检验学生的学习情况,了解学生的数学知识认知情况,只有这样才能使学生在学习数学建模时,能够很快地建立数学模型,充分考虑各项注意事宜。教师在数学教学的过程中,在教授了相关知识后,要留给学生一些思考的时间,让学生在思考过程中形成自己的数学知识理论体系,从而激发学生的创新能力,让学生在创新能力的引导下,更好地进行数学建模的学习。因此,教师要重视学生对于数学基础知识的认知情况,这是学生学习数学建模的关键。

(三)设计教学情境

学生在刚开始学习数学建模的相关内容时,会有一些困难,因为数学建模具有一定的抽象性,需要将形象思维转化为抽象思维,这样才可以突破具体实际问题的限制,抽象是适用于同类问题的一般化模型。因此教师要在数学建模的教学活动中,设计相关的教学情境,让学生在教学情境中,能够充分发挥自己的主观能动性,充分发挥自己的逻辑思维能力,从而更好地掌握数学建模的相关知识。学生通过数学建模教学情境的学习,可以更好地理解数学建模的知识,以及数学建模的操作步骤,从而培养了学生的创新能力。

四、对于数学建模教学培养学生创新能力的思考

数学建模教学培养了学生全面思考问题的能力,学生可以根据自己所学的数学知识,来解决现实生活中遇到的问题。数学建模要求学生从课本中解放出来,能够真正地做到学以致用,达到其他学科和其它数学课程所达不到的高度。在现代高校的数学教学中,需要教师通过数学建模的教学,来培养学生用数学知识解决实际问题的能力,培养学生的数学建模意识以及建模的能力,培养学生的创新能力,使学生能够将所学的数学知识,潜移默化地使用到日常生活问题的解决上面。很多高校毕业生认为自己所学的专业知识无法有效地运用到工作中,自己到工作岗位之后,需要重新学习相关的知识。对于接受了数学建模教学的学生,以及参加过大学生数学建模竞赛的学生而言,他们可以将自己所学的知识有效地运用到工作领域中,这是因为他们在参加数学建模活动时,教师已经在有意地培养他们的数学建模意识、数学建模能力,以及创新能力,学生在学习的过程中,已经有意识地将数学知识运用到实际问题的解决方面,所以他们能够充分发挥自己的创新能力,将数学建模应用到社会实践中去。

数学建模基本模型范文第7篇

关键词:数学建模;高等数学;创新思想;教学手段;实践效果

引言

柏拉图说过:“数学是一切知识中的最高形式。”由此可见学好数学的重要性。高等数学是大学一年级的一门重要基础必修课,教学基本目标是让学生掌握高等数学中的基本定义、基本定理及应用定义、定理计算相关习题,为学好其专业课打下扎实的数学基础。但是高等数学课程的特点是抽象性和逻辑性都比较强,大部分的知识点学生理解起来比较吃力,上下两册书的难度呈递增趋势,即由一元函数的微积分学到多元函数的微积分学。随着课程的持续讲解,学生学习的兴趣会降低。如何在高等数学的教学中添加“活跃”因子,使高等数学的教学变得丰富多彩,是高等数学教学改革的重点。在充分考虑学生实际情况的基础上培养学生的应用技术能力,是适应新形势下高等数学教学改革的关键。

数学建模是从实际问题出发,首先作出基本假设、分析内在规律等前期工作;然后需要运用数学符号和语言得到目標函数,即数学模型;最后用计算机仿真方法计算出所需结果用来解释实际问题并且能够接受实际的检验。数学建模是理论与实际联系的一个重要桥梁,在教学中合理地加入数学建模解决实际问题的引例,彻底改变只是利用既定的公式和定理进行解题的形式,让学生真实地感受高等数学中公式和定理的用处,既能激发学生学习的兴趣,又能提高学生数学的实际应用能力。

把数学建模思想适当地融入到高等数学的教学中来,是提高教学效果的有效方法,也是教学改革的有效途径。通过在教学中添加数学建模这个“活跃”因子,不仅使得课堂的整体气氛变得活跃、生动。而且可以达到提高学生学习兴趣和综合能力的目的,拓展学生知识的广度,展示高等数学理论知识的实用性和应用性。

一、课上融入数学建模思想的教学手段与方法

(一)教学中融入数学建模思想的方法与作用

传统的教学模式,几乎都是老师一言堂式的教学模式。这种教学模式缺少老师与学生之间合理的互动,课堂逐渐变得枯燥无味,学生自然提不起学习的热情,久而久之教学效果会越来越不理想。并且这种模式很难跟上素质教育的脚步,很难为培养应用技术型本科人才做好数学基础。所以为了适应培养应用技术型本科人才的需要,高等数学课程的教学应打破传统的模式,适应时代的脚步。

在教学中适当地融入数学建模思想是打破传统教学模式的一种的有效方法。针对于不同专业的学生,适当地调整数学建模引入的实例,做到因材施教。比如,针对经济类专业的学生,教学中应多涉及与经济有关的数学建模实例;针对计算机类专业的学生,教学中应多涉及一些应用计算机软件编程的数学建模实例,使得学生在学习高等数学的同时还可以接触到Matlab,mathmatics,lingo等计算机软件方面的知识。这种教学方法,不仅可以提高学生的学习兴趣,促进学生学习高等数学基础知识的自觉性和主动性,而且对学生学习好本专业的后续课程有很好的帮助。

在高等数学教材中有许多知识点的教学可以用于融入数学建模思想,比如函数的极值及最值、导数的概念、微分方程、函数的极限等等。总体来说,无论是在几何上还是物理上的应用实例,都可以看成是一个简单的数学建模问题。通过不同的实例在教学中反复讲解数学建模的过程,不仅使学生对应用高等数学的知识来解决实际问题有了一定的了解,而且还使学生对数学建模有了初步的认识,培养学生将实际问题数学化的能力。

(二)高等数学教材中的数学建模案例分析

下面用教学中的一个具体例题谈谈在教学中数学建模思想的融入,在高等数学教材的下册第九章第八节多元函数的极值及其求法中的例6:有一宽为24cm的长方形铁板,把它两边折起来做成一断面为等腰梯形的水槽,怎样折法才能使断面的面积最大?求解此题时,首先设折起来的边长为xcm,倾角为α,则梯形断面的下底长为(24-2x)cm,上底长为(24-2x+2xcosα)cm,高为(xsinα)cm,这就是数学建模中的建立变量的过程;

断面面积,A=24xsinα-2x2sinα+x2sinαcosα这就是数学建模中的建立目标函数的过程;0<α≤π/2,0<α≤π/2这就是数学建模中的约束条件;下面求这个函数取得最大值的点Ax=24sinα-4xsinα+2xsinαcosα=0,Aα=24xcosα-2x2cosα+x2(cos2α-sin2α)=0..令Ax=24sinα-4xsinα+2xsinαcosα=0,Aα=24xcosα-2x2cosα+x2(cos2α-sin2α)=0.

解方程组,得α=60°,x=8这就是数学建模中的具体模型的求解过程;

根据题意可知断面面积的最大值一定存在,通过计算得知α=π/2时的函数值α=π/3,

x=8点的函数值小,又函数在D内只有一个驻点,因此可以断定,当α=60°,x=8时,就能使断面的面积最大。这就是数学建模中的对模型的分析与检验,找出模型的最优解;在课上讲解这道例题时,就可以以此为例拓展讲解关于数学建模的全过程,第一步模型的准备;第二步模型的假设;第三步模型的构成;第四步模型的求解;第五步模型的分析检验;第六步模型的应用,使学生初步了解数学建模的过程。

二、课下数学建模的组织与培训

有了课上融入数学建模思想作为前提,在课下时间选取部分学生对数学建模方面的知识进行培训与学习,每周固定时间进行数学建模的研讨课,然后学生自主分组,以团队形式进行小范围内的数学建模比赛。

第一阶段:老师具体讲解数学建模所用的基本方法,如层次分析法、模糊线性规划法、图论法插值拟合法等等。并针对每一种数学建模基本方法讲解一个具体的数学建模实例,让学生充分了解各种建模基本方法的应用;培训學习计算机软件能力,如Matlab、mathmatics等数学建模常用软件。使得学生可以有能力应用这些软件来解决数学建模中遇到的问题。

第二阶段:通过一段时间的具体培训,学生对自己在数学建模中的优势和劣势有了一定的了解。有些学生擅长计算机操作,有些学生擅长模型的建立与求解,有些学生则擅长撰写论文。通过一段时间研讨课的接触,学生们对彼此的优势相对比较了解,他们以三人为一团队的形式自主分组,尽量做到在团队中充分发挥自己的长处,并且可以互相配合完成整个数学建模的任务。由老师布置数学建模作业,小组内研究讨论并在规定时间内上交已完成的作业资料。学生通过自己查找相关资料解决问题有助于提高他们学习的主动性,将增强学生应用理论知识的能力,激发学生学习数学的兴趣。老师根据作业的具体情况查缺补漏,对大部分小组比较薄弱的数学建模知识再进行深入讲解与讨论。

第三阶段:开展小范围的数学建模比赛,有了第二阶段的上交数学建模作业作为基础,老师布置数学建模比赛题目,在选择题目时要做到循序渐进。通过比赛的开展,不仅使学生对所学的数学知识有了更加深刻的理解,计算机应用能力得到一定的提高,还培养了学生的协作精神。为举办关于数学方面的创新能力竞赛准备好后备力量,为参加全国大学生数学建模竞赛选拔优秀团队做好基础。

三、数学建模创新能力的实践效果

有了课上融入数学建模思想和课下数学建模的组织与培训作为前提,数学建模的实践效果可以说是水到渠成。近些年来一直持续举办关于数学方面的创新能力竞赛,如数学综合能力竞赛、大学生数学建模竞赛等。在学校及学院领导的大力支持下竞赛开展得十分顺利,在参赛学生及指导教师的不断努力和拼搏下,取得了优异的成绩,获奖范围从国家二等奖到省一、二、三等奖并不断创造着新的纪录。充分说明了培养学生数学建模创新能力的实效性。

下面用一个具体例题谈谈培养数学建模能力的实效性,在高等数学教材的上册第七章第五节中的例4:设有一均匀、柔软的绳索,两端固定,绳索仅受重力的作用而下垂,试问绳索在平衡状态时是怎样的曲线?这道题的求解方法是通过模型的假设,建立微分方程模型,应用高等数学中可降解微分方程的求解方法,就可以求解出此微分方程的特解,即曲线方程。这曲线叫做悬链线。这道题也是教材中一道典型的数学建模题,在课上的教学中会给学生拓展讲解数学建模中的微分方程模型。

2016年的全国大学生数学建模竞赛中的A题系泊系统的设计问题中,就应用到了这道例题中的悬链线方程,可见在高等数学课堂上加入数学建模思想的重要性。高等数学与数学建模相结合可起到相辅相成的作用。学生通过课上学习数学建模思想、课下参与数学建模研讨课、参加小范围内数学建模比赛和全校数学建模比赛等数学能力方面的竞赛,锻炼自己的数学创新能力。有了这些作为基础,才取得了全国大学生数学建模比赛的优异成绩。由此可见,数学建模创新能力的实践效果显著。在整个过程中全面训练学生的综合素质。

四、结语

本文在培养应用型本科人才的新形势下,针对学生的实际情况,提出了课上融入数学建模思想的教学方法和课下组织与培训数学建模的改革方案并加以实施。通过数学建模创新能力的实践效果可以明显看出,整个实施方案的效果显著。这需要求老师在具体的实施过程中做到不断地探索,时常总结具体实践中的宝贵经验,为更好地培养大学生的应用创新能力而努力。

参考文献: 

[1] 王涛,佟绍成.高等数学精品课程建设的研究与实践[J].黑龙江教育:高教研究与评估,2007(10):44-46. 

[2] 同济大学应用数学系.高等数学(第七版)(上下册)[M].北京:高等教育出版社,2014. 

[3] 杨四香.浅析高等数学教学中数学建模思想的渗透[J]. 长春教育学院学报,2014(3):44-46. 

[4] 丁素珍,王涛,佟绍成.高等数学课程教学中融入数学建模思想的研究与实践[J].辽宁工业大学学报,2008,10(1):133-135. 

数学建模基本模型范文第8篇

关键词:高中数学;建模教学;设计策略

纵观人类发展史,数学建模知识的身影存在于日常生活的各个地方.特别是在新课程下,传统授课模式已经无法满足教学的要求,所以加快授课方法变革和创新刻不容缓.而通过在高中数学教学中传授建模思想,那么可以使学生综合运用已学的数学思想和方法来解决现实生活实践问题,从而可以进一步实现数学学科教学难点的突破.因此,对于建模教学的运用进行研究具有重要的意义.

1.明确建模步骤,奠定扎实基础

建模教学是一项系统性的教学活动,其实施步骤的合理性直接关乎建模教学的效率,所以为了提升建模教学的质量,就必须要合理确定建模步骤.而就建模教学的具体实施步骤而言,其过程可以分成三个主要阶段,即:简单建模阶段、典型案例阶段和综合建模阶段.其中的简单建模阶段实际上就是结合数学授课内容,在必要的教学环节中导入建模教学,并且需要选择一些简单的数学实例来引导学生进行合理建模,以便使学生初步体会数学建模的具体运用方法,使学生逐步养成正确的建模意识;典型案例建模则是要求数学教师为学生创设合理的问题情境,接着引导学生进行分析,以使学生切身经历和体验建模的具体过程,以使学生初步掌握建模的基本方法;而综合建模阶段则是以学习小组为单位来完成数学教师所指定的建模任务,具体包括学生自身来搜集教学资料,提出建模假设,解决实际问题等环节,以借此来使学生形成良好的思维方法,提高学生的创新能力.如此一来,通过循序渐进的建模学习步骤,有助于逐步提升学生的解题能力和创新能力.例如,针对简单建模阶段的教学内容而言,其主要是引导学生初步理解和认识建模方法,并且懂得运用五步建模法来解决一些简单的数学问题,所以相应的教学内容主要包括:数学建模的基本含义、基本方法及其相关的数学知识.比如,数列、函数、不等式、线性规划和统计等方面的高中数学内容均可以将其改编为一些比较简单的建模题目.针对典型案例建模阶段的教学内容而言,可以以建筑物的振动模型、土地承包、产品销售、市场物品交易以及动物身长同体重之间的关系等等,以便使学生逐步接触和了解建模的具体运用策略.而针对综合建模阶段的教学内容而言,可以选用图形剪裁、酒店清洁、图书馆添书和酒店清洁等方面的知识为平台,融汇各种必要的高中数学知识点,从而不断提升学生解决生活中实际问题的能力.

2.精选建模内容,加强知识整合

正如上文所述,针对不同建模学习阶段的建模教学而言,教师必须要合理选择一些合理的建模问题,以确保建模教学的整体质量,促使学生尽快实现数学教学知识的整合.而就具体的建模内容而言,其需要在充分考虑授课内容和目标的基础上,根据学生的学习特色、兴趣爱好和认知能力等来综合选择,以便充分促使学生自主投入到建模内容的学习中来.而就建模内容的选择原则而言,其主要注意以下几个方面:其一,建模内容要尽量贴合学生的生活实际,尤其是学生已经非常熟悉或者感兴趣的内容,以便借此背景来使学生充分体验数学建模的乐趣.其二,要确保内容选择难度的适宜性,采用层次化的学习模式来引导学生运用所学知识来解决一些必要的数学知识.其三,要尽量确保建模内容的趣味性,比如当前社会生活中的经典内容和热点话题等,以便激发学生学习建模知识的兴趣,促使学生运用建模思想来解决有关的数学问题.例如,在讲解“函数模型与应用”这部分授课内容的时候,为了可以借此教学过程来培养学生的建模思想和意识,相应的数学授课教师可以为学生设置以“收集数据并建立函数模型”等为建模主题的建模任务,学生可以结合“工资奖励”和“投资回报”等实际问题来构建不同奖励方案或者回报下的函数模型,从而使学生通过建模的过程中将那些已经掌握的基本函数知识有效地整合起来,以借助学生对于相关建模知识进行分析和归纳,从而不断提升学生的建模能力.

3.创新教学方法,践行实践探究