首页 > 文章中心 > 二氧化碳影响

二氧化碳影响

开篇:润墨网以专业的文秘视角,为您筛选了八篇二氧化碳影响范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

二氧化碳影响范文第1篇

(1.陕西师范大学?国际商学院,陕西西安710128;2.西安外国语大学?经济金融学院, 陕西西安710128;

3.陕西师范大学?西北研究院, 陕西西安710128)

摘要:本文基于1990—2011年中国省际面板数据,运用动态面板模型(GMM)对金融发展与二氧化碳(CO2)排放关系进行经验研究。结果显示:金融发展对人均CO2排放的整体影响并不显著,而这是不同发展特征的省市产生不同作用互相抵消的结果;经济发展水平和经济开放度均会影响金融发展对CO2排放的作用,收入水平由低到中的提升会强化正向影响,达到高收入水平则会变为负向影响;随着经济开放度提升,金融发展会降低CO2排放。

关键词 :金融发展;二氧化碳排放;经济开放度

中图分类号:F830文献标识码:A

文章编号:1000-176X(2015)04-0040-07

收稿日期:2015-01-28

基金项目:教育部人文社会科学基金项目“西北资源开发生态补偿金融支持政策体系研究”(12JJD790020);陕西省教育厅科研计划项目“陕西省生态补偿的市场化机制与模式研究”(2013JK0105);陕西省教育厅科研计划项目“陕西环境效率、环境全要素生产率及其影响因子研究”(14JK1401)

作者简介:陈欣(1974-),女,陕西西安人,博士研究生,副教授,主要从事资源与环境金融、农村金融等方面的研究。E-mail:jodeechen0719@aliyun.com

伴随着中国经济的高速增长,近三十年环境污染问题变得日益严重。人们开始逐渐关注经济增长可能引起的环境问题,有关二者关系的研究随之涌现。从逻辑上讲,金融发展能够推动经济增长,同时经济增长又可能与环境污染有关,那么金融发展与环境污染就可能存在某种程度上的关联。

在当下的中国,金融发展在何种程度上影响了环境?而这正是本文试图回答的问题。

在研究中,我们注意到,中国各省市地区经济发展十分不平衡,且各省市具有不同的发展特征。一些省市地区经济增长速度和金融发展十分迅速,而污染物排放的比例与趋势却在下降。与此同时,随着经济增长和金融发展,部分省市污染物排放比例却大幅增加。这种不一致性一定程度上反映了金融发展与环境污染关系可能存在的复杂性。此外,大量有关中国经济增长与金融发展的实证研究结果表明,选取不同的样本会导致结论不同,比如研究如果采用总体数据得出的结论可能与利用不同省市地区数据得出的结论差别很大。金融发展与经济增长关系的不确定性,同时也会导致金融发展与环境污染关系可能存在的复杂性。因此,本研究将利用中国跨省面板数据分析金融发展对环境污染的影响,并尝试将样本分组以体现不同省市的发展特征。这样区分特征的分组研究,将有利于我们更加深入地把脉两者之间的关系,继而在推动金融发展的同时降低其对环境的负面作用,并实施适宜的举措对环境产生积极的影响。

为便于分析问题,本文仅选择二氧化碳排放来衡量环境质量,即将它作为污染排放的指标。这样的选择基于两点原因:其一,二氧化碳受到国际社会的普遍重视与高度关注;其二,二氧化碳排放与其它污染物排放存在显著的正相关关系。虽然各种不同的污染排放均会对环境质量造成影响,但对于中国金融发展与二氧化碳排放关系的深入剖析,无疑对我国实施宏观调控以及碳减排的金融政策具有重要的参考意义。

一、文献综述

国内外学者对金融发展与环境质量关系的研究大多集中于定性研究,与此相关的定量分析十分少见,结论也不尽相同。从金融发展对环境影响的机理上来看,理论上存在正反不同方向作用力,因此,整体影响取决于不同方向作用力的相对大小。

一方面,金融发展可能导致环境恶化,其机理为:金融发展会促进经济增长,经济增长会引起能源需求增加,而能源需求增加通常意味着污染排放加大。从消费者的角度看,当一国发展金融服务时,消费者会因为贷款的易得性而扩大消费,购买房子、汽车和空调等大件商品,这些会直接增加能源需求;从企业的角度看,金融发展可使得企业融资变得更加便利,股票市场融资还在一定程度上降低了企业融资成本,这些都会促进企业扩大规模生产和扩张商业活动,从而也将增加能源需求。对于这样一种关系,我们可将其表述为金融发展对环境影响的负面规模效应。国外学者Sadorsky[1]选取22个新兴市场国家的数据,使用动态面板模型(GMM)方法检验这些国家金融发展对能源消费的影响,得出结论:当金融发展用股票市场度量时,股票市场交易额与股票市值对国民生产总值的占比,都对能源需求产生显著的促进作用。Bello和Abimbola[2]通过对尼日利亚的金融发展进行研究发现,由于该国投资缺乏必要的监管,因而以证券市场资产表示的金融发展会导致环境恶化。对于中国金融发展与环境之间关系的实证研究虽然少见,但也有部分研究得出了类似的结论。Zhang[3]利用中国1980—2009年的时间序列数据,采用VECM 模型和协整检验、格兰杰因果检验等计量方法研究,发现金融发展促进了CO2排放,其中金融规模对CO2排放影响最为显著,而金融中介效率对CO2排放的作用则较小。徐盈之和管建伟[4]将金融发展变量纳入EKC分析框架,以中国为研究对象,对气、水、雾三种污染物进行回归分析,发现金融发展加剧了环境质量的恶化。

另一方面,金融发展也可能减少能源消费和污染排放,其机理为:随着一个国家或地区经济的进一步发展,金融体系将会给予低污染和低能耗的企业更多的信贷资金支持,通过改变资金的产业投向,产业结构得以优化进而降低环境污染;金融发展还可以在一定程度上促进先进生产技术的投资增加,生产技术升级会逐渐淘汰高污染企业及生产方式[4],从而使环境污染得以抑制。对于金融与环境之间存在的这一关系,我们可以将其表述为结构效应与技术效应。不仅如此,当一国经济与金融发展达到一定程度时,国家政策、消费者偏好、经济结构和市场机制等都会有抑制环境恶化。Tamazian等[5]选取金砖四国1992—2004年的面板数据研究金融发展与环境质量之间的关系,并加入美国和日本的数据进行实证检验,发现金融自由化和金融开放对减少CO2起到重要作用,它们能够吸引高水平研发的直接投资,提升能源使用效率,进而抑制环境恶化。郭郡郡等[6]通过对96个国家1988—2007年的面板数据进行研究,发现仅上市公司市值和私营部门的国内信贷占比对CO2排放有影响,经济发展水平和金融开放程度会对金融发展与CO2排放之间的关系产生影响,收入水平和金融开放程度的提高均会减少CO2排放。Shahbaz等[7]对巴基斯坦的CO2排放进行研究,认为在控制了经济增长、人口规模和能源消费等因素后,金融业发展减少了CO2排放,而这暗示促进金融部门的发展可成为降低CO2排放的一个政策工具。对于中国的研究,也有类似的结论。Jalil和Feridun[8]利用中国1953—2006年的数据,采取自回归分布滞后(ARDL)模型检验金融发展和环境污染之间的长期关系,发现金融发展能够减少CO2排放。顾洪梅和何彬[9] 采用1979—2008年中国各省的面板数据,通过建立P-VAR模型考察区域金融发展与CO2排放之间的动态关系,发现区域金融发展的深化对碳排放具有显著的抑制作用。郭福春和潘锡泉[10]基于Gregory-Hansen结构突变检验,对浙江省1995—2010年期间是否发生经济转型升级和金融支持低碳经济发展进行了定量分析,认为经济增长、人口规模效应,能源使用效率低下依然是浙江省CO2排放量的引擎,而金融信贷服务支持却能有效地降低CO2排放,对浙江省低碳经济的发展具有强劲的“推进效应”。

不同的实证研究结果表明一个事实,如果所选样本和利用的方法不同,可能会得出不同的结论。基于此,现有实证文献还存在两点不足:一是文献要么采用跨国数据,要么采用中国总体统计数据,再有就是以中国个别省市为样本进行研究。前者无法体现中国地区差异下金融发展与环境关系的复杂性,其结论可能存在偏差;后者的结论则在广泛意义上缺乏代表性。二是现存研究并未分析和探讨中国不同省际地区发展特征差异对金融发展和环境污染关系的影响。本文将在这两个方面进行推进:第一,为把握中国金融发展与CO2关系的总体状况,将使用包括所有不同发展特征省市的跨省面板数据,在EKC基本模型的基础上进行经验研究。第二,在研究金融发展对CO2整体作用的基础上,深入探讨经济发展水平和经济开放程度差异对二者关系所造成的影响。

二、模型设定与变量描述

1.模型设定

为检验金融发展与CO2排放之间的关系并体现动态调整过程,

本文采用动态面板模型,用差分广义矩方法对模型进行估计。在利用分省面板数据研究金融发展对CO2排放的影响时,基于基本的EKC模型,不仅考虑将影响CO2排放的各种因素作为自变量,而且基于CO2排放可能具有的较强路径依赖性(生产和消费行为存在路径依赖),将因变量的一期滞后项也作为自变量之一。同样,FDI(外国直接投资)也具有滞后效应,因而在模型中也引入FDI的一阶滞后项作为自变量。这样,以动态面板数据模型为基础,模型(1)的基本形式为:

模型对除IND的自变量和因变量均做了对数处理,γlnFDit的系数即为金融发展对CO2排放的影响。依据郭郡郡等的研究,由于样本地区的发展特征不同,金融发展对CO2排放的影响可能会存在差别,γ值则能够反映这一差别。因此,我们在模型(1)的基础上,引入与发展特征有关的表示收入水平和经济开放程度的虚拟变量,得到模型(2)和模型(3),进一步研究收入水平以及经济开放度差异可能对金融发展与CO2关系造成的影响,具体为:

模型(2)在模型(1)的基础上引入了表示收入水平的虚拟变量,将样本省市按收入水平划分为三组,基准组设为高收入水平组,Minc和Linc分别为代表中等收入组和低收入组的虚拟变量。由此,lnFD的系数γ1表示高收入水平组的金融发展对CO2排放的影响,而系数γ2和γ3则分别表示与高收入水平组相比,中等收入和低收入组金融发展对CO2排放的影响。

模型(3)中加入了表示经济对外开放程度的虚拟变量,以OPEN表示,以FDI占GDP比衡量。将样本省市分成两组,基准组设为经济开放程度高的省市地区。这样,lnFD的系数γ1表示经济开放程度高的省市金融发展对CO2的影响,而OPEN×lnFD的系数γ2则表示相较高开放组而言,开放程度低的省市金融发展对CO2排放的影响。

2.变量选取与描述

因变量Cit为i省t年人均CO2排放量,自变量则主要由三部分组成:

(1)因变量的滞后项Ci,t-1,以前期人均CO2排放量表示。对于CO2排放的测算,基于能源消耗过程中CO2产生的基本化学原理,采用其中相关参数及公式进行估算,某省碳排放的计算公式为:

其中:CO2代表估算的某省CO2排放量,Ci为该省第i种能源产生的CO2排放量。参考周建和易点点[11]文献的做法,将排放CO2的能源分解为原煤、原油、天燃气三大类,i=1,2,3分别代表三种化石能源,按照这三大类能源的统计口径进行各省CO2估计。Ei代表该省第i种化石能源的实际消费量;NCVi为转换因子,表示第i种能源每千克消费释放的热量;CCi为第i种能源燃烧时单位热量的含碳量;COFi为第i中能源消费释放碳时的氧化率;44和12分别是CO2的分子量和C的分子量。NCVi来源于《中国能源统计年鉴2008》附录4中的平均低位发热量,CCi和COFi来源于IPCC(2006年)和《中国温室气体清单研究》。

(2)控制变量,包括人均收入Yit及其平方,经济对外开放程度FDIit-1,产业结构INDit和能源消费强度ENit。其中,人均收入Yit以地区人均生产总值衡量,产业结构以工业产值占GDP的比重衡量,能源消费强度以单位GDP能耗(吨标准煤/万元)衡量,对外开放程度以外商直接投资额占地区GDP比重衡量,FDI数值的计算方法为以每年外商直接投资额美元标价数值乘以每年的平均汇率。

(3)金融发展变量FDit,以各地区金融机构贷款占GDP比重衡量。目前虽有许多研

究集中于以银行信贷、股票市场以及债券市场规模占GDP比重衡量金融发展水平,但本文仅以贷款占比进行表征,原因有三:第一,目前我国企业融资主要依赖于银行信贷,直接融资比重较小,而贷款对于企业扩大规模生产或进行技术革新作用最大最直接。第二,中国的债券市场始于2005年,可得数据较少,并且对整个金融体系影响十分有限,因而未用其表征金融发展。第三,部分研究将股票市场规模与效率作为表征金融发展的变量,但值得注意的是,这些都是基于国家层面数据的研究,作为对一国金融市场发展的考量,在研究中使用股票市场发展指标是适宜的。但本文是基于省际面板数据的研究,如采用各省股票市场数据表征金融发展则会出现这样的问题:公司上市融资归属一个省市,其业务却覆盖跨越多个省市,因而所产生的CO2被统计在多个省市。这样,如在研究中采用按省划分的股票市场交易额或市值作为衡量金融发展的表征就会发生严重误差,其逻辑也是不通的。因此,本文对于股票市场指标不予纳入。

模型选取了中国29个省市作为研究对象(因西藏数据缺失,重庆后设为直辖市统计容易出现偏差,故排除这两个省市),时间段取为1990—2011年。表1给出了模型估计中变量设计及数据来源,表2是对变量的统计性描述。

三、经验结果分析

动态面板GMM 估计有一步和两步估计,本文采用经验应用中常用的一步估计量。考虑到估计有效性,我们采用AR(1)、AR(2) 统计量对应的P值和Sargan统计量对应的P值来联合检验所采用的工具变量的有效性[12]。检验结果中的J统计量是Hansen(1982) 提出的,它是基于GMM 目标函数和矩条件约束个数的Sargan检验。表3给出了整体样本、按照收入水平和经济对外开放度分组的模型(1)—模型(3)的估计结果,Hansen检验及AR检验的P值均表明所采用的工具变量表现良好,并且过度识别条件成立。

1.整体估计结果

模型(1)的估计结果显示:L.lnC作为因变量的滞后项系数估计值为0.191,且统计量在1%的水平上显著,这说明当期的CO2排放受前期的CO2排放的显著影响,同时意味着CO2排放与其它污染物一样,都具有路径依赖性;控制变量lnY、(lnY) 2、L.lnFDI、 lnEN和 IND的系数估计值都在5%的水平上显著,具体分析为:首先,β1>0 且β2<0,即收入的一次项系数为正而二次项系数为负,表明CO2排放和其它污染物有着类似的特点,即排放符合环境库兹涅茨倒U曲线的假说;其次,β3<0,即外商直接投资的滞后项对人均CO2排放产生了负面的影响,表明外国直接投资的提高会减少人均CO2排放;最后,β4和β5均大于0,即工业产值占GDP比重的提高和能源使用强度的增强均会加大人均CO2排放。金融发展变量统计结果并不显著,似乎说明金融发展未对CO2排放产生显著影响,但更可能的原因是:各个地区发展特征不同,不同省市金融发展对CO2排放产生了大小及方向上不同的影响,这些影响在整体回归中相互抵消,从而使得整体估计中金融发展变量变得不显著。因此,对于这样的模型检验结果,我们不能简单地将其解释为金融发展对CO2排放没有显著性影响,反而需要进一步研究不同特征差异给实证研究结果带来的变化。此外需要注意的是,人均收入lnY和能源消费强度lnEN的系数估计值比其它变量的系数估计值都大,这表明相比较其它影响CO2排放的因素而言,收入水平和能源消费强度对CO2排放产生了更大的影响。

2.按收入水平分组的估计结果

对模型(2)的估计结果,我们重点关注金融发展变量的系数估计值。模型(1)整体样本的金融发展变量估计量并不显著,但却不能简单得出结论认为金融发展与CO2排放并无关联。事实上,整体样本回归可能由于忽视样本的不同特征而存在结果失真,与事实相违。具体讲,即显著的正向影响和显著的负向影响可能互相抵消,这样便产生了利用整体样本回归时估计的整体影响不显著的情况[6]。模型(2)的估计就进一步揭示了不同经济发展水平下金融发展对CO2排放的影响的不同。

引入表示收入水平的虚拟变量,将样本按收入水平分组的估计结果显示,虚拟变量及基准组的金融发展系数均在5%的水平上显著,这表明区分收入水平进行模型估计是适宜的。lnFD的系数估计值为负值,说明金融发展在作为基准组的高收入水平省市会对人均CO2排放产生负向的影响。Minc×lnFD的系数估计值为正,说明相对于高收入省市,中等收入省市金融发展对人均CO2排放表现出相对的正向影响,而r1(基准组金融变量lnFD的系数)与r2(Minc×lnFD)的相加之和为正,进一步表明中等收入省市金融发展会增加人均CO2排放。与中等收入省份相似但略有不同的是,虽然Linc×lnFD 的系数估计值r3也为正,但比Minc×lnFD的系数估计值小,因此表明,相对于高收入省市,虽然低收入省市金融发展对人均CO2排放也表现出明显的正向影响,但这种影响要比中等收入省市正向影响小。而将Linc×lnFD的系数估计值和lnFD的系数估计值相加后发现,金融发展对人均CO2排放也具有正向的影响,但比中等收入省市要小。

整体估计结果反应了这样一个特征:当收入水平从低向高变化时,正的交叉项的系数估计值会随收入水平提高变大,即中等收入省市金融发展会进一步加大人均CO2排放;但当人均收入进入到高收入水平的时候,系数又会变为负值,说明随着收入水平进一步提高,金融发展反而会减少CO2排放,从而有利于环境改善,而这也是符合中国经济发展特征的。

3.按经济开放度分组的估计结果

模型(3)估计显示了引入虚拟变量,按照经济对外开放度进行分组估计的结果。因为模型以经济开放度较高的国家为基准组,因而lnFD的系数估计值就表示了经济开放度高的省市金融发展与CO2排放的关系。lnFD的系数估计值在统计上显著,且估计值为负,说明对于经济开放度高的省市,金融发展会减少人均CO2排放。OPEN×lnFD表示代表经济开放度的虚拟变量和金融发展变量相乘,其估计值为正且统计显著,说明相对于基准组,经济开放度低的组金融发展对人均CO2排放表现出更为明显的正向影响。将交叉项的系数估计值与基准组金融变量的系数估计值相加后,我们可以得到经济开放度低的省市金融发展对人均CO2排放的影响,此时可以发现,金融发展的系数估计值为正,说明对经济开放度低的省市,金融发展会导致人均CO2排放增加。

4.CO2排放对金融发展的弹性

由于我们对CO2排放和金融发展(FD)做了对数处理,因此lnFD 的系数估计值以及分组计量的交叉项系数估计值与基准组系数估计值的相加值可被视为CO2排放对金融发展的短期弹性。长期弹性的计算公式为[6]:

长期弹性=短期弹性/(1-α) (5)

其中,α为因变量的一阶滞后项的系数估计值。依式(5)可知,长期弹性大小与短期弹性大小及滞后项系数有关,当期的CO2排放对前期CO2排放的依赖性越强,即α估计值越大,长期弹性越大。CO2排放对金融发展的短期弹性和长期弹性的估算结果如表4所示。

表4仅报告了根据统计上显著的金融发展变量系数估计值计算的弹性,CO2排放对金融发展的长期弹性与短期弹性符号相同,这表明长期影响不会从方向上改变短期影响,但CO2排放的路径依赖性会放大短期影响。低收入省市CO2排放对金融发展的长短期弹性均为正,随着收入提升至中等收入水平,弹性并不会减小,反而加大。当收入进一步提升至高收入水平时,弹性才发生方向性的变化,符号转变为负。当经济对外开放程度由低向高变化时,CO2排放对金融发展的弹性由正转负。基于这样的变化和规律,我们可以认为收入水平的提高对环境质量改善的前提是要进入到高收入水平,而随着经济对外开放度的提高,金融发展会抑制CO2排放。

四、结论与政策建议

本文基于1990—2011年中国省际面板数据,以金融机构贷款占GDP比重作为衡量金融发展(FD)的变量,首先研究整体上金融发展对CO2排放的影响,其次引入虚拟变量对不同收入水平和经济开放度的省市进行分组研究,分析收入水平和经济开放度变化对二者关系的影响,最后计算CO2排放对金融发展的短期弹性与长期弹性。研究结果表明:

首先,金融发展对CO2排放的整体影响并不显著。基于后续分组研究,我们认为这样的模型检验结果是忽视了不同省市的发展特征造成的。当按收入水平和经济开放度进行分组研究时,不同分组的金融发展变量系数估计值均在5%的水平上显著,且大小和方向存在很大差异。这表明,收入水平和经济开放度差异会对结果造成影响,整体样本回归中,这些不同方向的影响相互抵消从而使得金融发展变量回归结果不显著。整体和分组样本回归显著性的不同表明,发展特征会影响金融发展与CO2排放的关系,如果对特征差别不加以考虑,整体研究结果就会掩盖了不同省市金融发展对环境污染的真实影响。

其次,将样本省市按经济发展水平和经济开放度分组,能够发现:金融发展对CO2排放的影响由于收入水平和经济开放度不同而有所不同。当收入水平从低向高提升时,金融发展对CO2排放的正向影响开始加大,后来进入到高收入则会变小,转为负向影响。这样的结果也符合中国的实际情况:在经济发展水平低的时候,企业从银行获得的贷款少,金融对环境的作用主要为规模效应,金融发展会对CO2排放产生正向影响。当收入水平逐渐提高时,经济活动也较低收入时有了较大增长,工业化程度相对提升,金融发展(我们这里主要指银行贷款)会进一步促使企业扩大再生产和个人增加消费,从而比低收入省市更加加大CO2排放。高收入省市通常经济结构已经有所调整,不依赖于工业,而金融机构贷款等也更多地用于产业升级和技术革新,因此,金融发展会对CO2排放产生抑制作用。对于经济开放度的结果表明,经济开放度的提高会加大金融发展对CO2排放的负向影响,即减少CO2排放,而这不仅符合中国实际情况,也与相关研究结论相吻合。国外直接投资常常能够对一个国家起到促进技术升级和改造的作用,一个省市如果对经济开放度高,资金也越多地投入到与技术改造和升级相关的领域中去,因而抑制了CO2的排放。

最后,弹性的计算结果显示,长期弹性与短期弹性符号是一致的,但长期弹性大于短期弹性,即放大金融发展对CO2排放的影响。低收入省市和中等收入省市,CO2排放对金融发展的长短期弹性均为正,只有等到收入提升至高收入水平时,CO2排放对金融发展的弹性才变为负。当经济开放度提升时,CO2排放对金融发展的弹性会逐渐由正变为负。

由于金融发展会对CO2排放产生影响,因此,我国在制定政策时必须考虑使金融发展与CO2减排政策不相冲突,发挥金融发展能够改善环境的积极作用同时减少其对环境产生的负面影响。如此,才能使节能减排的难度和成本在金融发展中得以减低。基于本文的研究结果,我们提出如下的政策建议:

首先,加强信贷市场监管,合理分配信贷比例和信贷方向,尤其加强对中等收入省市信贷管理。我们能够发现,中国CO2排放与人均收入关系符合环境库兹涅兹倒U曲线,而金融发展也是在中等收入省市对CO2排放产生最大的正向影响。因此,对中等收入省市应有效管控工业企业的信贷规模,同时给予环境友好型企业一定的信贷支持,对积极创新的私营部门降低贷款难度,使金融产生更多的结构效应和技术效应。具体来讲,一方面金融机构应采取政策窗口指导等手段引导信贷资金流向低碳产业,另一方面金融机构可联手环保部门建立“绿色信贷体系”和绿色信贷激励机制,加大对碳技术创新的资金支持,为低碳产品研发和实施低碳理念的企业提供资金支持。

其次,进一步引进外国直接投资,扩大经济开放度。我国外国直接投资对CO2排放总体产生了负面影响,这说明FDI起到的技术和结构效应超过了规模效应。此外,省市经济开放度越高,金融发展对CO2排放越能起到抑制作用,因此在信贷上,我们应鼓励和支持FDI,并且在引进FDI时关注其是否为环境友好型企业,积极引导其发挥技术扩散效应。

再次,因地制宜地制定金融发展政策,并与经济发展所处的阶段相适应。对于中等收入和低经济开放度省市,在制定金融政策时要格外关注金融发展可能对环境产生的破坏作用。由于研究结果显示高收入水平和高经济开发度下金融发展会对CO2排放起到抑制作用,因此从长远看,化解金融发展和环境之间矛盾的有效路径便是提升经济发展水平并扩大经济开放度。

最后,加强环境金融产品创新,强化低碳消费理念。研究表明,碳排放具有明显的路径依赖性,这不仅表明企业生产存在惯性,同时表明人们的消费理念和生活方式也具有惯性。因此,从生产角度,我国商业银行应充分发挥绿色信贷作用,鼓励低碳产业发展,保险、证券和基金等也应加快开发金融工具,增加对低碳经济的融资信贷服务,以此推动绿色低碳产业发展。从消费角度,可以通过灌输低碳思想和理念转变人们高碳的生活方式,银行也可在消费贷款上鼓励低碳消费行为,减少人均碳排放水平,并因此间接影响企业生产,降低CO2排放。

参考文献:

[1]Sadorsky,P.The Impact of Financial Development on Energy Consumption in Emerging Economies [J]. Energy Policy, 2010,38(5):2528-2535.

[2]Bello,A. K.,Abimbola,O. M. Does the Level of Economic Growth Influence Environmental Quality in Nigeria:A Test of Environmental Kuznets Curve (EKC) Hypothesis[J].Pakistan Journal of Social sciences, 2010,7(4):325-329.

[3]Zhang,Y.J.The Impact of Financial Development on Carbon Emissions: An Empirical Analysis in China [J]. Energy Policy,2011,39(4):2197-2203.

[4]徐盈之,管建伟. 金融发展影响我国环境质量的实证研究: 对EKC曲线的补充[J].软科学,2010,(9):18-22.

[5]Tamazian,A.,Chousa,J.P.,Vadlamannati,K.C.Does Higher Economic and Financial Development Lead to Environ-Mental Degradation:Evidence from the BRIC Countries [J]. Energy Policy,2009,37(1):246-253.

[6]郭郡郡,刘成玉,刘玉萍. 金融发展对二氧化碳(CO2)排放的影响——基于跨国数据的实证研究[J].投资研究,2012,(7):41-53.

[7]Shahbaz,M.,Islam,F.,Butt,M.S. Financial Development, Energy Consumption and CO2 Emissions: Evidence from ARDL Approach for Pakistan [Z].MPRA Paper, 2011.30138.

[8]Jalil,A.,Feridun,M.The Impact of Growth,Energy and Financial Development on the Environment in China: A Cointegration Analysis [J]. Energy Economics, 2011,33(2):284-291.

[9]顾洪梅,何彬.中国省域金融发展与碳排放研究[J].中国人口·资源与环境, 2012,(8): 23-27.

[10]郭福春,潘锡泉.金融支持低碳经济发展的影响机制研究——基于浙江省数据的经验分析[J].浙江社会科学,2011,(10): 12-19.

[11]周建,易点点.中国碳排放省级差异及其影响因素与减排机制研究[J].上海经济研究,2012,(11):65-80.

二氧化碳影响范文第2篇

关键词 二氧化碳 土壤 泄露 影响

中图分类号:S714 文献标识码:A

1研究背景及意义

鉴于当前我国经济社会的快速发展,未来较长一段时间内仍将以化石燃料作为主要的能源,由此产生大量的CO2等温室气体,若不及时处置,很可能造成极地冰川融化,海平面上升,海水入侵并污染地下淡水,极端气候与自然灾害等。因此,目前减少大气中的二氧化碳含量最为有效的方法是将其储存于地下,即二氧化碳地质储存,该方法是将CO2处理至超临界状态,增强其流动性、扩散系数与密度,有利于CO2在储层介质中的迁移转化,并将其注入至地下1200~1500米之间。通常适宜CO2地质储存的场所主要有:深部咸水层,枯竭的油气藏,不能开采的煤层,深海。

2 CO2地质储存泄露所产生的的影响

纵观国内研究现状,姜玲模拟CO2注入深部储层后,使得地下水的pH显著降低,原先的岩石溶解度增强,高岭石、伊利石沉淀,而绿泥石、钾长石等溶解,推断出储存在深部储层中的CO2泄露后可能会改变储层的渗透性、孔隙率等参数。赵仁宝利用X射线衍射、扫描式电子显微镜等研究了CO2泄露对岩石矿物组分、孔隙率的影响,结果表明:岩石的溶蚀与自身的构造关系大,特别是层理面最先受到溶蚀。关笑坤模拟一定浓度CO2人工地下缓慢释放,结果得到:在CO2长期释放过程中,土壤的pH值有所上升,而土壤当中的水溶性碳酸盐与有机碳变化并不大,同时二氧化碳从地下深层向地表运移时,其浓度逐渐减小,最后接近大气当中的CO2浓度。

3 实验结果与分析

3.1 pH的变化

本实验是人工模拟向地表土壤释放不同浓度的CO2,CO2浓度分别为0%,5%,10%,15%,在其入侵土壤较长一段时间后,测试土壤中某些化学指标,如pH,Ca2+,Mg2+,CO32-,HCO3-,Cl-,SO42-。其中pH的变化如图1:(注: pH1、PH2、pH3和pH平均分别表示三个平行值及平均值)。

图1:不同CO2泄露,土样pH值的变化

从图1可看出:随着CO2浓度以5个梯度增加,与自然状态下即浓度为0%相比,所有pH在CO2泄露后都有所增加,最大不超过6.95,总体偏酸性;而CO2浓度越大,pH值又有所减少,原因可能是土壤中CO2含量越高,与地表包气带形成H2CO3,从而解析出更多致使土壤变酸的物质。

3.2土壤浸出液水溶性盐的变化

土壤水溶性盐是反映土壤的一个重要特性,是限制作物生长的障碍因素。土壤水溶性盐的测定主要包括:土壤浸出液的制备与浸提,选取5:1的水土比,称取过筛1mm的风干土50g,用无气蒸馏水定容在250mL的三角瓶中,并充分振荡3min,进行抽滤,取清亮液置于塑料瓶中备用。钙、镁选用EDTA滴定法,碳酸根与碳酸氢根选用双指示剂法,氯离子选用沉淀滴定法,硫酸根选用EDTA间接络合滴定法。测试后得到各种离子的变化如表1所示:

表1:土壤水溶性盐测试结果

由以上数据得出:随着二氧化碳泄露浓度的增加,Cl-,SO42-有明显减少趋势,而Ca2+,Mg2+无明显变化规律,CO32-始终为零,HCO3-略微增加,可能是随着CO2入侵土壤浓度的增加,使得H2CO3的电离被促进,而CO32-被抑制。

4结论

(1)由以上分析可得:CO2泄露后,与土壤背景值相比,均使得其碱性增强;且浓度越高,pH值有减小之势。

(2)CO2入侵后,土壤的水溶性盐指标变化不一,碳酸根几乎不存在,因此,还需进一步研究。

参考文献

[1] 姜玲. CO2地质储存对地下水的环境影响研究――以江汉盆地为例[D].武汉:中国地质大学,2010.

[2] 赵仁宝,孙海涛,吴亚生,等.二氧化碳埋存对地层岩石影响的室内研究[J].中国科学,2010,40(4):378-384.

二氧化碳影响范文第3篇

[关键词] 腹腔镜手术;气腹;肝功能;临床探讨

[中图分类号] R726 [文献标识码] A [文章编号] 1674-4721(2012)01(b)-035-02

Clinical study on influence of carbon dioxide pneumoperitoneum of infants congenital megacolon by laparoscopic operation for liver function

DENG Honghui, LIAO Guirong, LAN Jibin, MO Dongsheng

Department of Pediatric Surgery, the Fisrst People′s Hospital of Nanning City in Guangxi Autonomous Region, Nanning 530022,China

[Abstract] Objective: To study the influence of carbon dioxide pneumoperitoneum of infants congenital megacolon by laparoscopic operation for liver function. Methods: Thirty infants congenital megacolon were respectively taken peripheral venous blood samples and detected liver function before and after the surgery at 2 hours and 48 hours, the liver function indexes were detected, and the indexes included alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltranspeptidase (GGT), serum total bilirubin (TBIL), serum total protein (TP), alkaline phosphatase (ALP). All the indexes were analyzed. Results: There were significant differences between the three times detection results of serum total bilirubin (TBIL), alanine serum total protein (TP), alkaline phosphatase (ALP), aminotransferase (ALT) andγ-glutamyltranspeptidase (GGT) before and after the surgery at 2 hours and 48 hours (P<0.05), and there were no significant differences between the three times detection results of serum direct bilirubin (DBIL), aspartate aminotransferase (AST) before and after the surgery at 2 hours and 48 hours (P>0.05). Conclusion: The lcarbon dioxide pneumoperitoneum of aparoscopic operation for infants congenital megacolon can cause the some fluctuation of liver function indexes, but fluctuation range is in normal limits. And all the patients are observed in 48 hours, the short-term influence for liver function is not obvious, long-term effect awaits to further observation.

[Key words] Laparoscopic operation; Carbon dioxide pneumoperitoneum; Liver function; Clinical study

本院2008年10月~2010年12月,收治婴幼儿先天性巨结肠症30例,均予施腹腔镜辅助下Soave改良根治术。术前、术后2 h、术后48 h分3次抽外周静脉血进行肝功能检测。检测各项数据进行比较,经统计学处理,了解腹腔镜手术二氧化碳气体对婴幼儿肝功能影响的临床效果,结果报道如下:

1 资料与方法

1.1 一般资料

本组30例患者,男22例,女8例。其中,新生儿组9例,婴儿组17例,幼儿组4例。均因反复腹胀、便秘入院,术前经钡剂灌肠造影诊断,术后病理报告符合先天性巨结肠症。

1.2 手术方法

气管插管全麻下,患儿仰卧位,头低足高位,插尿管引流。脐下缘切开皮肤0.5 cm扎入注气针,输入CO2建立气腹,压力维持8~10mmHg,流量2.5 L/min。分别在脐孔下缘及脐左右两侧旁开5 cm切开皮肤0.5 cm,置入3个5 mm Trocar,放入腹腔镜及操作钳入腹。腹腔镜下探查病变结肠,无损伤抓钳牵引乙状结肠,紧贴肠壁电凝分离肠系膜。近端分离至扩张段,远端分离至盆底腹膜反折处,环形切开直肠周围腹膜,检查无出血,解除气腹。手术移至部。肛周皮肤缝合4针牵引,显露直肠黏膜。黏膜下环周注射肾上腺素盐水,齿状线上0.5 cm前高后低环形切开直肠黏膜,缝合直肠黏膜数针向下牵引,向上分离直肠黏膜和肌鞘,直到腹膜反折处,环形切开腹膜反折,后鞘纵行切开。游离直肠,拖出病变直肠和结肠一并切除,送病理检查。下降结肠在无扭转,无张力情况下与齿状线上直肠黏膜端端吻合。

1.3 术后处理

术后1~2 d进食,新生儿术后放至温箱。予以抗生素及输液6~8 d,7~10 d出院。术后12 d开始扩肛至6个月,每日1次。

1.4 抽血检测

术前空腹抽外周静脉血2 ml送检肝功能,术后2 h、术后48 h各抽外周静脉血2 ml进行肝功能检测,本组病例各抽3次。检测项目有丙氨酸氨基转移酶(ALT),天门冬氨酸转移酶(AST),γ-谷氨酰转肽酶(GGT),血清总胆红素(TBIL),血清直接胆红素(DBIL),血清总蛋白(TP),碱性磷酸酶(ALP)。

1.5 检测数据经统计学处理

使用SPSS 13.0软件对资料进行分析,各项定量指标数据作方差齐性检验,然后将术前、术后2 h、术后48 h各项指标作t检验,P<0.05为差异有统计学意义。

2 结果

本组病例全部治愈出院,腹腔镜手术与传统手术两组间术前、术后2 h、术后48 h各项肝功能指标比较,血清总胆红素(TBIL)、丙氨酸氨基转移酶(ALT)、血清总蛋白(TP)、γ-谷氨酰转肽酶(GGT)、碱性磷酸酶(ALP)5项指标在术前、术后2 h,术后48 h 3次测量之间的差异有统计学意义(P<0.05)。血清直接胆红素(DBIL), 天门冬氨酸转移酶(AST)指标在术前、术后2 h,术后48 h 3次测量之间的差异无统计学意义(P>0.05)。基本情况见表1。

3 讨论

腹腔镜技术在普通外科中的应用是外科手术与高科技相结合的典范。随着科学技术的发展,越来越多的医疗器械更新和问世,以及外科医生腔镜技术水平不断提高,许多复杂的腹部手术也能在腹腔镜辅助下完成[1]。由于手术难度和复杂性增加,手术时间延长,CO2气体维持的时间也延长。CO2气体压力对患儿生理功能和肝功能的影响已受到外科医生的广泛重视。笔者在研究小儿腹腔镜手术CO2气腹压力对肝功能影响中发现,气腹压力的高低和长时间维持高气腹压力是影响肝功能变化的重要因素之一。正常情况下肝脏是接受肝动脉和门静脉双重血流供应,血流丰富,对血流灌注和氧的供应具有较高的依赖性,对低血流灌注和缺氧相当敏感。手术开始CO2气腹在短时间内从0上升至8~12mmHg,气腹压力突然迅速升高,使周围静脉阻力上升,腹主动脉受压,形成体外循环外周阻力明显增加[2],静脉血液回流减少,使肝脏血流量减少,导致肝脏缺血缺氧,对肝功能造成一定损害。Nickkholgh A等[3]通过大鼠再灌注损伤模型研究发现,CO2气腹腹腔内压力为8mmHg时,并未对血清转氨酶产生影响;腹腔内压力增至12mmHg时,放气后监测ALT、AST、LDH均明显增高。国内文献报道[3],气腹压为15mmHg时,患者可出现头面部、以上肩颈部充血、静脉怒张;降低气腹压至10mmHg后,上述现象立即改善,可能与腹内压过高影响上腔静脉回流有关。本组腹腔镜手术腹内压力未超过12mmHg,术后检测转氨酶均在正常范围。Mujicice E等[4]认为,术前肝功能正常的患儿,腹腔镜手术CO2气腹压力维持时间不长,对肝功能的影响只是暂时的,术后72 h基本可以恢复至术前水平。Morino等认为,CO2气腹手术后肝酶的改变与气腹压力的大小及持续时间和手术类型有关[5]。由于本科医师开展手术治疗先天性巨结肠已有30年历史,采用小儿腹腔镜手术治疗先天性巨结肠也有近10年[6]。随着腹腔镜手术技巧的不断提高,腹腔镜手术治疗先天性巨结肠时间由初期的5 h逐渐减少至3 h以内,其中腹腔镜操作部分基本可控制在1 h内。通过本组资料结果显示,小儿腹腔镜手术CO2气腹压力可造成肝血流灌注减少。术后会给患儿的肝功能带来短暂的影响,不会给腹腔镜手术患儿的身心健康带来影响。为了减少腹腔镜手术CO2气腹压力对肝功能的影响,手术操作过程中,尽量选择低气腹压。并且熟练掌握腹腔镜手术技巧,尽可能缩短手术时间,就可以减少肝脏损害。因此,只要能熟练掌握腹腔镜治疗先天性巨结肠的手术技巧,腹腔镜手术治疗先天性巨结肠是安全可行的。

[参考文献]

[1] 游海波,王强.腹腔镜外科的特殊问题[J].重庆医学,2009,38(3):362.

[2] 黄春艳,阮履强,郑东良,等.单纯全麻与硬膜外联合全麻用于腹腔镜子宫切除术的比较研究[J].重庆医学,2008,37(9):1010.

[3] Nickkdgh A,Barro-Bejarano M,Liang R,et al.signs of reperfusion injury following CO2 pneum operitoneum:an in vivo microscopy study[J].Sury Endosc,2008,22(1):122-128.

[4] Mujicice E,DuricA,Radovanovioc J.Influence of CO2 Pneum operitioneum on liver function[J].Med Arch,2006,60(2):87-89.

[5] 马龙滨,卢军利,韩益萍,等.CO2气腹对腹腔镜肝切除术患者呼吸循环的影响[J].山东医药,2007,47(9):38-39.

二氧化碳影响范文第4篇

如今,减少二氧化碳等温室气体的排放,已成为人们面临的重要课题之一。

减少二氧化碳的排放有很多技术手段。比如提高现有设备的燃烧效率,尽量少使用煤炭、石油、天然气等化石燃料;利用风能、太阳能、水能、核能等洁净能源,使用生物质燃料,等等。

谁排放了二氧化碳

对我国来说,在相当长的一段时期内,煤炭仍然是主要的能源。如何有效处置燃煤产生的二氧化碳,对实现节能减排目标,保护环境都至关重要。

根据粗略统计,交通运输业是排放二氧化碳的主要行业,大约占二氧化碳总排放量的1/3。交通运输所排放的二氧化碳是由成千上万辆机动车产生的,这些二氧化碳很难被统一捕集。

火力发电厂则是排放二氧化碳的最大行业。火力发电厂燃烧化石燃料后排放的二氧化碳大约占全球人类活动排放的二氧化碳总量的24%。

除火力发电厂外,建材、陶瓷、水泥、玻璃、冶金以及化工等行业,也燃烧化石燃料,不过,排放量要小得多。

由于化石燃料的燃烧是在锅炉等工业设备中进行的,比较容易在管道系统中进行二氧化碳的分离和捕集。因此,首先处理火力发电厂排放的二氧化碳是切实可行的减少温室气体排放的办法。

科学家们目前研究的重点是对工厂排放的二氧化碳进行捕集和分离,然后将其压缩成液体,输送到合适的地点,封存于地下。

最新研究显示,未来50年内,深埋二氧化碳可能成为减少温室气体的重要方式。

地下 二氧化碳好去处

我们人类生活、居住在地球表面,地下的岩石结构非常复杂。地质学家把地球表面到地下平均厚度17千米深处的这一部分,称为地壳。一般情况下,人类发现并开采的矿产,如铁矿、铜矿、金矿等,最深处也就在1~2千米。目前,煤矿开采深度普遍为几百米至1千米,往更深的地下开采的并不多;石油、天然气的埋藏深度相对深一些,可达几千米。

如果我们充分认识了解、利用我们脚下的岩石结构,就可以把捕集的二氧化碳储存起来。

在联合国政府问气候变化专门委员会(IPCC)的评估报告里,就介绍了埋存二氧化碳的几种主要技术,包括:注入衰竭油气田:注入油气田提高采收率;注入海洋或陆地咸水层:注入深部不可开采煤层与可开采煤层,增加煤层气产量;还有一些其他方法,如注入玄武岩、油页岩及岩石洞穴等。

使用这些方法,都离不开对二氧化碳性质的了解。

二氧化碳是一种无色、无味、比空气重的气体,在标准状况下,密度是1.977克/升。在空气中,二氧化碳占0.03%。当温度/压力高于31℃/74大气压时,二氧化碳处于超临界状态(超临界点温度是31.1℃,压力7.384兆帕大气压)。处于超临界状态的二氧化碳,密度近于液体,黏度近于气体,扩散系数为液体的i00倍,是一种很好的溶剂,它的溶解性、穿透性均超过水、乙醇和乙醚等溶剂,具有很强的溶解能力。利用这个性质可以从多种物质中提取出有效成分,因而,二氧化碳在医药、食品、香料、烟草与化学工业中得到了广泛的应用。

油田埋存储法提高石油采收率

利用超临界萃取理论的原理,把二氧化碳注入到产量正在递减的油气田,可以提高油气产量,这是不少发达国家正在采用的技术。

从20世纪70年代开始,发达国家开始尝试把超临界二氧化碳流体萃取理论应用到石油工业,即把二氧化碳注入到油田的储油层,增加油气产量,并且取得了很好的效果。由于二氧化碳对烃类物质的萃取有自己的特点,超临界流体把原油中较重的碳氢化合物萃取出来后,这种液态混合物具有较好的流动性,容易流向生产井,进而被抽提到地表。在石油工业中,这种方法被称为二氧化碳驱油。

目前,比较成熟的处理技术是在距地面800米以及更深处进行二氧化碳的储存。在800米或更深的地方,地热梯度为25~35℃/千米、压力梯度为10.5兆帕/千米,游离的二氧化碳处于超临界状态,它的浓度变化范围为440~740千克/立方米。因此,在多孔和可渗透的储存岩层中,不需要特别的压力条件就可以储存二氧化碳。

世界上达到一定规模的工业性试验首推加拿大萨斯喀彻温省韦本(Weyburn,或称韦伯恩)油田。这是国际能源署(IEA GHG)温室气体研究的监测和储存项目,也是加拿大能源公司(Encana)涉及1.5亿美元、周期达30年,用二氧化碳增加石油采收率的商业项目。其目的是通过把加压的二氧化碳气体注入到油田储层中,以增加石油产量1.3亿桶。同时,通过综合监测,查明二氧化碳在被灌注到地下以后的运移规律,最终作为建立长期、安全的二氧化碳地下储存技术和范例。

通过研究,地质学家发现韦本油田的地质构造适宜进行注入试验。制定好方案后,项目首先于2000年9月在加拿大能源公司韦本19井阵(1平方千米范围的注一采井群组)中进行,初期注气量为2.69百万立方米/天(或5000吨/天)。现在的注气量为3.3g百万立方米/天,其中,每天有0.71百万立方米的二氧化碳通过生产井进行再循环。在实验区块中,每天的石油产量(20560桶)有1/4(超过5000桶)是由二氧化碳的注入所贡献的。到2008年生产周期,二氧化碳注入到75个井阵,注气量达108亿立方米(2000万吨)。

我国也在积极开展这个领域的研究与试验,科技部支持开展的973项目――温室气体提高石油采收率的资源化利用及地下埋存,就是通过二氧化碳提高石油采收率并且实现地质封存的示范工程。如今,这项工作已经取得了显著成效。

海洋埋存储法限制虽多潜力大

除了上面这种方法外,把二氧化碳注入地下深部咸水层,也是一种主要实现环境效益的措施。不过,由于没有其他经济补偿手段,注入成本昂贵。

研究表明,在沉积盆地的咸水层封存二氧化碳的温度/压力条件是:深度必须大于800米。只有在这样的深度,才能达到二氧化碳的超临界压力。

尽管采用深部咸水层储存二氧化碳有着诸多限制,但深部咸水层储存二氧化碳有很大的潜力。目前,世界各地区正在进行估测咸水层封存二氧化碳容量的研究,比如在美国的陆地和加拿大阿尔伯塔盆地、欧洲西北部的海洋、澳大利亚东部海洋等。

其中,比较有名的是20世纪90年代欧盟启动的一个咸水

层封存二氧化碳项目(Sal ineAquifer CO2 Storage,简称SACS)。

1998年,挪威国家石油公司(Statoil)与挪威、丹麦、荷兰、法国及英国的科学研究机构组成SACS计划集团,并开始收集有关二氧化碳注入到北海地区Utsira地层及其他类似地区的资料。SACS涉及了多学科方法,包括地质、地球化学、地球物理以及储库的工程、数值模拟。

在北海的斯莱普内尔(Sleipner)气田,人们将二氧化碳从产出的天然气中分离并注入到ut sira地层中。1996年10月开始注气,每年注入100万吨。Ut sira地层从南到北延伸400多千米,从东到西延伸50~100千米,面积2.61万平方千米。那里有两个沉积中心,一个在斯莱普内尔南部,厚度达到300多米:第二个在斯莱普内尔北部,厚度200米,该地层的局部厚度为200米,下面还有一层砂岩,进一步增加了储集层的总厚度。

据估算,utsira地层可储存欧洲几百年的二氧化碳排放量,数量还是相当可观的。

煤层埋存储法置换甲烷保安全

煤层是富甲烷气体存储的岩层,一般情况下,每吨煤中会产生4.3~6.2立方米甲烷,所产生的甲烷集结在煤层中,吸附在煤的表面上。煤岩内部多微孔,具有吸附大量气体的能力。在煤层压力条件下,煤对甲烷的吸附可高达25标准立方米/吨。煤的年代越久远,含气量越多。不同种类的煤对甲烷的吸附情况不同,褐煤的吸附量最少,烟煤和无烟煤每吨可含有30立方米的煤层气。

其实,煤同样可以吸附二氧化碳,而且煤与二氧化碳的亲和力比甲烷大,在相同的压力下,煤对二氧化碳的吸附量是甲烷的1.8~2.8倍。可被煤吸附的CO2/CH4的体积比有一个变化范围:从无烟煤的1到褐煤的10以上。

由于二氧化碳与煤的吸附力比甲烷大,把二氧化碳注入煤层,可以保持储层的压力并很快置换出甲烷。

美国圣胡安盆地的煤田试验表明,注入3份体积的二氧化碳,可以得到1份体积的甲烷。一直到大部分甲烷都被置换出来以后,被注入的二氧化碳才会少量地从钻井口溢出。

我们知道,引发煤矿发生瓦斯爆炸的主要是甲烷等气体,既然二氧化碳可以把煤层中的甲烷置换出来,那么在较浅的煤层中,通过置换反应将甲烷置换出来,既利用了这部分煤层气,同时可有效避免发生瓦斯爆炸的危险,一举两得。

但是,在实际中,这种处理方式并不可取。因为浅层煤最终是要被采掘的。在采掘过程中,煤层吸附的二氧化碳又会被重新释放出来,还是没有达到减少温室气体排放的目的。

好在煤层的采掘是有限度的,超过1500米深度,再继续开采,经济上就不合算了。为了得到深部的煤层气,也同时为了实现二氧化碳的永久储存,可以在深部煤层注入二氧化碳,采集深部的甲烷。

只不过,现在的研究对深层煤圈闭二氧化碳的机理以及二氧化碳可能与煤发生的反应等问题,尚缺乏研究,相关项目的开展还需要进一步的研究试验。

我国是煤炭资源大国,至少有33个世和世以上的地质时代、有数量不等、质量各异的煤层沉积。对于煤层埋藏深度超过1800米以上的矿山,现有技术很难开采(我国现在有的煤矿已经开采到1000米了),所以,对于煤层埋藏太深、太薄以及不安全的地区,可作为注入二氧化碳提高煤田甲烷的候选基地。目前,我国已在山西沁水盆地开展了注入二氧化碳提高煤层气采收率的微型先导性试验,试验煤层的深度为472~478米。

备选方法实在多

除了上面提到的技术,各国专家也都在尝试其他储存技术,比如将二氧化碳注入衰竭油气田。我们可以这样来认识这个方法:石油天然气是地球经过很长时间的演化(几百万年、几千万年甚至几亿年或更长时问)才形成的矿藏,把它开采出来后,它们原来在地下的空间,没有遭到多大的破坏,还可以再用来埋存二氧化碳。同时,原来的油气藏地质资料也可以为二氧化碳的注入提供技术支持。只是,现在国际上还没有工业规模试验的报道。

在海底开展储存二氧化碳的试验也仍处于研究阶段。科学家发现,在深海注入的二氧化碳会与水形成一种水化物,体积膨胀4倍:在不同深度,当把二氧化碳释放到海水中时,会产生气泡,并在气泡外面形成一层固态的水化物。这层外壳限制了=氧化碳与海水的接触;当海水深度大于2600米时,液态二氧化碳的密度比海水大;在3627米的海洋深处,液态二氧化碳表面能形成稳定的水化物外壳,与冬季池塘被冰覆盖的现象类似。

科学家做了一个实验来显示在海底储存二氧化碳的过程。他们在一个7升的大烧杯中放入3.5升(半杯)液态二氧化碳,在1小时内,由于每个二氧化碳分子与6个水分子连接组成一种新的水化物颗粒,结果原来的二氧化碳体积增大,这些化合物就漫溢过烧杯,流到外面了。

不过,人们还不清楚二氧化碳对海洋生物的影响,也不知道高浓度的水化物对深海环境会有怎样的影响?海洋生物又会发生什么反应?这些都有待于进一步研究。

科学家还有一种设想,是把二氧化碳注入相关的岩体,例如玄武岩,玄武岩在全球的分布很广。一般认为,玄武岩有很低的孔隙率,是一种低渗透率的岩石,并不适合于二氧化碳的储存。但科学家考虑这个问题时,想到了玄武岩的裂隙,当多孔隙、有渗透性和封闭的低渗透性夹层出现时,这些夹层可以封存二氧化碳。玄武岩比沉积岩更有潜力作为二氧化碳的圈闭层,因为在适合的条件下注入的二氧化碳与玄武岩中的硅酸盐反应,有可能形成碳酸盐矿物。目前,人们关于这种类型储存地点的知识很有限,需要开展进一步的研究来评估发生在玄武岩中的二氧化碳矿化作用的范围与速度。

二氧化碳影响范文第5篇

关键词:二氧化碳;减排成本;减排技术;减排对策

一、我国二氧化碳排放基本状况分析

随着经济发展,温室效应不断加剧,已严重影响到了人类的生存与发展。二氧化碳是最主要的温室气体,对温室效应的作用可达66%。大部分的温室气体与人类活动有关,特别是进入工业化后,温室气体的浓度急速上升。

1.我国二氧化碳排放的总体特征

我国能源主要是石油、煤炭等化石燃料,这类能源是二氧化碳的主要能源。而且,由于我国是上升期的发展中国家,经济的快速增长,能源消耗大,导致我国二氧化碳排放量很大。我国在上个世纪80年代以前二氧化碳排放量相对较小,在21世纪之前,二氧化碳的排放量增速缓慢。从2003年开始,随着我国经济的迅猛发展,二氧化碳的排放量迅猛的增长,增长率达到了13%。在2010年,我国成为世界上二氧化碳排放量最大的国家,超过了美国。

欧盟的碳排放量一直居高不下,美国的碳排放量也一直是处于稳定的高水平状态。中国与日本的碳排放量从1980年到2007年都出现增长,日本增量较小,中国增量较大,总体碳排放量超过了美国。发达国家,已度过了工业化初期高耗能的时期,碳排放量趋于稳定并缓慢减少。中国由于经济的发展,碳排放量大增,减排任务极重。而且由于技术的不到位,强制性减排会造成很大的经济代价。

2.我国不同地区及不同行业碳排放量的现状

我国不同省区二氧化碳排放量有很大的差异。2007年,绝对碳排放量最多的省份是山东,最少的省份是海南;碳排放量增长速度最快的是宁夏和内蒙古,最少的黑龙江。从分布区域看,东部地区二氧化碳排

放量占到了全国排放量的一半,而且增长最快,达到9.8%;中部地区占到26.72%,增长率分别为8.85%;西部相对最少,增长率为7.45%;从行业分布来看,工业碳排放量占到全国的70%以上,高耗能行业碳排放量增长了一倍。其中有色金属冶炼及压延加工业碳排放增长最快。电力碳排放系数总体呈下降趋势。

二、温室气体减排成本分析

减排成本是一个关键制约因素,发展中国家短期内无法通过技术进步实现减排目标,只能是通过限制、关闭高排放部门来实现,这就需付出巨大的经济代价。

1.减排成本的基本概述

对二氧化碳减排成本可以从不同视角、层次对二氧化碳的减排成本的定义和估算。总体来说,可以从宏观层面和微观层面进行界定。

从微观角度,二氧化碳减排成本是指一个国家或地区为了实现减排目标而直接投入的技术和资金。从宏观角度,二氧化碳减排成本是指一个国家或地区为了实现减排目标采取措施从而对宏观经济造成的影响,即通过强制性减排造成的国家GDP损失。这种损失主要是因为在短期内无法依靠技术进步而达到减排目标,只能通过限制高耗能企业的发展来减少二氧化碳排放量,这样抑制了经济的发展,付出很大的经济代价。本文主要从宏观角度分析,还涉及到边际减排成本,边际减排成本是指每减少一单位二氧化碳排放量所引起的GDP的减少量。

2.我国二氧化碳减排成本分析

经济发展与减少二氧化碳排放量存在的一种矛盾的关系,如何做出一个适当的权衡非常重要。通过考察中国经济发展和二氧化碳排放量之间的关系,运用投入产出分析及多目标规划理论,建立了中国宏观经济成本估算模型。通过对模型的求解,对其结果的分析,建立了下图。

从表中我们可以看出二氧化碳排放量与潜在GDP之间的关系,从而对中国减排宏观经济成本做出粗略的计算。不同的二氧化碳排放量对应不同的GDP值,当二氧化碳的排放量最大时,GDP值也最大。当GDP值为最大值35.30万亿元时,二氧化碳排放量也达到最大值97.01吨。从另一方面,也可以看出,对二氧化碳的限制将以降低GDP的增长率为代价。通过对上图数据的计算分析得出下表。

从表中可以看出,当二氧化碳减排的力度越大,减排的宏观经济代价就越大,GDP的年增长率就会越低,二氧化碳的宏观经济成本就越高,而且在不同的减排力度下,成本的上升幅度也不同。在

减排量在4.42亿吨到7.59亿吨的区间内,减排量每增加1%,宏观经济成本就上升0.20%;在7.59到9.84这个区间内,减排量每增加1%,宏观经济成本就上升0.46%。同时也可以看出,碳强度降低的弹性较小。二氧化碳减排对我国经济的影响十分显著,我国2010年二氧化碳减排的宏观经济成本约为3100―4024元/吨二氧化碳。

然而由于温室效应的消极影响越来越大,国际对中国温室气体减排的要求越来越高,中国目前必需节能减排,由于技术的不到位只能强制性减排,造成了很大的经济损失。如表2中所示为二氧化碳浓度稳定在650ppmv,550ppmv,450ppmv情景下对我国经济的影响。

可以看出在450ppmv稳定情景下,发展中国家在2010年减排,会出现经济损失。减排率越大经济损失就越大。所以大规模的二氧化碳减排会对我国经济带来巨大的损失,对二氧化碳浓度要求越低,我国的经济损失就越大。如图中所示在450ppmv情景下,2100年损失可达到4.8%,在650情景下损失就小的多;有长期准备的减排其损失要小于突然快速减排;技术是实现减排的核心。

因此,在设定限排目标时应充分考虑到二氧化碳减排对我国宏观经济的影响程度,根据实际的潜力和承受力确定合理目标。减排要依靠长期的技术进步,短期内碳排放强度下降的空间弹性不塌,因此不宜把目标设的太高。

参考文献:

[1]范英.温室气体减排的成本、路径与政策研究[M].科学出版社,2011(7):112-152

二氧化碳影响范文第6篇

1.选用廉价肥源 目前,生产上利用二氧化碳肥源较多,有直接用工业副产品二氧化碳,有利用白煤油或液化石油气燃烧生成二氧化碳,这些肥源成本高,且易污染室内。最好肥源是利用工业的废硫酸加碳酸氢铵生产二氧化碳,价格低,原料来源广,操作方法简单,应用效果好,无污染,易于推广,容易被广大农民接受。以室内面积为基数,定量将工业废硫酸装入二氧化碳发生器硫酸桶中,碳酸氢铵装入反应罐中,手控发生器拉杆使硫酸与碳酸氢铵缓慢发生反应,生产二氧化碳用管道送到室内每角落,生成的硫酸铵回收后做肥料施入蔬菜。

2.确定经济浓度 作物光合作用是由光合面积、温度、光照水分及营养条件所决定,在正常条件下蔬菜的二氧化碳饱和点为10000×10-6,但不同作物品种随着叶面积、温度、光照的变化二氧化碳饱和点也发生变化。生产实践证明,保护地蔬菜二氧化碳施肥,在蔬菜作物生长的中前期,叶面积系数小,二氧化碳施肥浓度在600~800×10-6为宜。温度低,光照弱时,二氧化碳施肥应在800×10-6为宜。高于1000×10-6有增产作用,但成本较高,经济效益低,而且会导致气孔开张度缩小,降低蒸腾速度,使叶温升高,出现萎蔫现象。

3.把握好施肥时期和施肥时间 保护地蔬菜作物整个生育时期二氧化碳施肥均有增产效果,但差异较大,苗期叶面积系数小,吸收二氧化碳量少,利用率低,施用二氧化碳气肥虽有壮苗作用,但易产生植株徒长。因此,定植至缓苗期不施二氧化碳气肥,苗期也不施或少施二氧化碳气肥。叶菜类在起自身发棵期开始进行二氧化碳施肥,此期叶片活力强,叶面积系数大,光合生产率高,二氧化碳利用率高,增产幅度大。切果类在开花坐果呈果实膨大期为二氧化碳施肥最佳时期,此期进行二氧化碳施肥叶面积系数大,吸收二氧化碳多,光合生产率高,有机物积累多,促进果实膨大,提高果产量。施肥时间应在日出半小时后开始,随着光照强度增大,温度提高,施用二氧化碳浓度逐渐加大,达到确定的饱和浓度1000×10-6为止。中午放风前半小时停止施用,阴雨天不施肥。

二氧化碳影响范文第7篇

二氧化碳成了环境难以承受之重

生活在当代,相信很多人对每年不期而至的极端气候刻骨铭心,严寒与酷暑,飓风与海啸,干旱与洪涝,这些自然灾害破坏力惊人,造成的损失不可偌啤F涫嫡庖磺械淖锟祸首都与温室效应有关。所谓温室效应,是指大气中的水汽、二氧化碳、氧化亚氮、甲烷以及臭氧等气体,吸收和发射红外辐射,造成地表升温的效应。据研究,上述这些气体对太阳短波辐射吸收很少,而对大气长波辐射吸收很强,当空气中温室气体的含量增加,就会改变大气的热量平衡,从而影响地气系统的辐射平衡,导致大气低层和地表的平均温度上升,从而对全球气候的变化造成直接影响。

在温室气体中,二氧化碳虽然占比约0.031%,在空气成分中排名第三,但是却对温室效应贡献了30%的力量。所以,研究和控制温室效应,二氧化碳是首要目标。而化石燃料的燃烧和其他相关的人类活动,每年向大气中排放二氧化碳300亿吨,如果从工业革命开始算起,200多年间排放到大气中的二氧化碳,已经累计高达3000亿吨,浓度达到了80万年来最高水平。根据全球气温监测数据可知,从20世纪50年代开始,约有50%以上的地表气温升高,而温室气体在1951年到2010年的60年中,为地表温度上升贡献了0.5℃~1.1℃。二氧化碳与温室效应的密切相关度,让这种气体成了环境的不可承受之重。

要想应对温室效应,必须将全球大气中二氧化碳浓度的准确数据和未来变化情况了然于心,也就是说,最好有一幅全球二氧化碳浓度分布图,才能对症下药。想法虽然很好,然而,要想绘制这张图的难度却超出了我们的想象。原因为何?那就是以前的监测手段比较落后,无法获得全球大气中二氧化碳浓度的全面而准确的数据。

世界各国的科学家为了获取大气中二氧化碳的浓度数据也是绞尽了脑汁,目前,通行的检测方法一共有3种,分别是地基、空基和星载模式(卫星遥感模式)。

所谓“地基”检测模式,就是在地面建立多个观测站,观测和记录二氧化碳浓度。这种方法发端于1957年,由美国科学家查尔斯・基林在夏威夷的莫纳罗亚山上,建立起全球首个大气二氧化碳浓度监测站,开启了全球二氧化碳监测的先河。如今这项工作是由美国国家海洋和大气管理局的地球系统研究实验室承担,具体而言是由美国阿拉斯加州的巴罗天文台、夏威夷的莫纳罗亚天文台、萨摩亚群岛天文台和南极洲上的天文台共同承担检测大气中不同气体成分变化情况的任务,同时,还承担全球气体采样网络、提供大气中二氧化碳空间变化情况的任务。目前,全球设置二氧化碳地面观测点300多个,大部分位于美国和欧洲,对于美国和欧洲之外的广袤地区,包括海洋和沙漠,因缺乏站点,无法做到有效监测。

而“空基”二氧化碳检测方法,是利用飞机在科学家们指定的区域内进行观测,精度可达0.1ppm~0.2ppm。如今的美国飞机参与了多个项目的空基测量,而日本的空基测量则是利用商用飞机飞往澳大利亚、夏威夷、欧洲、北美和亚洲等国的机会,在飞机上搭载探测仪器进行温室气体的测量。除了利用飞机之外,热气球也是在大气底层中开展空基测量的好帮手。

然而,地基和空基测量方法都存在明显的局限性。比如地基测量技术存在空间覆盖度低、容易受到沙漠和高山等地形条件影响的问题,且地面观测基站的维护成本较高,无法获取大范围的二氧化碳浓度信息。而空基测量技术只有依托飞机和热气球等交通工具才能实施,也很容易受到恶劣气候的影响,同时飞机和热气球的航线也是固定的,使得二氧化碳测量范围狭窄,只能获取局部二氧化碳浓度数据,尚不能完成对全球大气中温室气体的浓度测量,更遑论绘制全球二氧化碳浓度分布图了。而此时,第三种办法就派上用场了,那就是“星载(卫星遥感)检测技术”。

二氧化碳星载检测技术的先行者

星载检测技术会脱颖而出,力压群芳,究竟靠的是哪些压倒性的优势呢?

原来,星载检测技术是通过卫星平台,对地球大气层中的二氧化碳进行浓度检测,绘制全球二氧化碳的浓度图,为科学家们研究气候变化产生的影响提供数据支持。这个卫星平台就是我们俗称的“碳卫星”,即全球二氧化碳监测科学实验卫星。它可以实时捕捉大气的二氧化碳浓度,具有统一、连续、覆盖范围厂的优势。

然而,星载检测技术虽然很高端,能够对全球大气的变化进行监测,但是也注定了这种技术实现难度之大。难到何种程度?全球目前只有日本、美国和中国掌握了这项技术。其中,美国和日本是星载技术的开拓者,采用的技术均基于“日光反射式被动探测原理”,即利用卫星上的望远镜,收集穿越大气层后由地表反射的太阳光,当反射光进入光学系统之后,对其二氧化碳的吸收光谱进行分析,进而得到全球二氧化碳的分布图。

美国的碳卫星OCO由美国加州理工大学喷气推进实验室负责研制,这是美国国家航空航天局(NASA)地球系统科学开发计划的重要组成部分。这颗碳卫星号称是测量大气中的二氧化碳浓度空间分辨率最高、测量数据最精准的卫星,卫星的测量采样率每天高达50万~100万次;视场分辨率为3平方千米,这里所说的“视场”,指的是卫星摄像头能够观察到的最大范围,视场越大,观测范围就越宽;卫星的二氧化碳光谱分辨率为20000,精度高达1ppm+2ppm。

美国发射碳卫星一波三折,2009年第一颗碳卫星OCO的发射,因为整流罩未能与第三级火箭分离,发射失败,卫星坠毁,星载技术遭受巨大挫折。随后,美国继续研制了碳卫星OCO-2,一直拖延到2014年才发射成功,总造价高达4.68亿美元。

相比之下,日本的第一颗碳卫星GOSAT发射就顺利得多,这颗卫星是日本宇宙航空研究开发机构、日本环境部和日本国家环境研究院联合研发而成的,搭载1台傅里叶变换光谱仪,用于探测二氧化碳和甲烷浓度,还搭载1台云(气)溶胶探测仪,用于提高温室气体观测精确度。它于2009年1月23日发射成功,至今服役7年时间,已经快要达到设计年限。

我国的TANSAT碳卫星后来居上

美日两国发射的碳卫星为全球范围内监测大气中的二氧化碳浓度作出了开创性贡献,这是毋庸置疑的。然而,不管是美国发射的OCO碳卫星,还是日本发射的GOSAT碳卫星,都存在技术上的不完美之处。就拿日本的GOSAT碳卫星而言,它每天的有效观测点只有300多个,相当于在地球的几十万平方千米范围内只有一个观测点,并且最小只能探测到10千米范围内大气中二氧化碳的平均值,测量精度和范围都不是太高。

鉴于美日两国碳卫星技术的不完美,我国的科学家们对自主研发的TANSAT碳卫星进行了20多项关键技术攻关,克服了重重困难,终于让卫星的技术水平上了一个台阶。2016年12月22日,在酒泉卫星发射中心,TANSAT碳卫星被成功发射。

我国发射的碳卫星的全称叫“全球二氧化碳监测科学试验卫星”,质量为620千克,在距地700千米的太阳同步轨道上运行,装有高光谱二氧化碳探测仪和多谱段云(气)溶胶探测仪,用来获取全球包括我国重点地区大气中二氧化碳浓度分布图,测量精度为1ppm~4ppm,达到了国际先进水平。

与日本的碳卫星相比,我国碳卫星的扫描宽度是20千米,是日本卫星的两倍,同时有效采样点数也比日本卫星高出10倍以上。碳卫星上专门搭载一台多谱段云(气)溶胶探测仪,这是美国的碳卫星没有的,这台仪器非常重要,可以在观测二氧化碳的同时,对大气中的气溶胶进行联合观测,主要是为了解决二氧化碳监测的噪音干扰问题。

TANSAT碳卫星的关键技术

我国的TANSAT碳卫星研发开始于2011年,其研发的核心动力,是为了打破国外的技术垄断,掌握更多的话语权,同时为应对全球气温变暖献计献策,最终做到资源共享,为全人类的福祉作出贡献。2011年,国家启动实施863计划“十二五”重大项目“全球二氧化碳监测科学试验卫星与应用示范”研究,由中科院国家空间科学中心负责工程总体组织实施,中科院微小卫星创新研究院负责卫星系统,中科院长春光学精密机械与物理研究所研制有效d荷,中国气象局国家卫星气象中心负责地面数据接收处理与二氧化碳反演验证系统的研制、建设和运行。

我国TANSAT碳卫星装载的高光谱二氧化碳探测仪有2000多个通道,光谱解析度极高。它的工作原理是,大气在太阳光照射下,二氧化碳分子会呈现光谱吸收特性,碳卫星通过精细测量二氧化碳的光谱吸收线,就可以反演出大气二氧化碳浓度。卫星每隔16天可完成一次地球二氧化碳测绘,从而能测量地面2平方千米范围内的二氧化碳浓度。

当碳卫星采集到原始数据后,通过设置在地面的应用系统,对卫星观测资料进行接收、汇集和加工处理。碳卫星观测完成的全球大气二氧化碳浓度的原始数据,将被传送汇集至中国气象局国家卫星气象中心,研究人员再将数据进行定位、光谱定标和辐射定标处理,产生高精度的高光谱分辨率辐射信号。随后,结合地面监测站的历史数据,再对信号进行反演,最终得到精度在]ppm~4ppm的全球二氧化碳浓度数据。

由于碳卫星的技术难度高,我国的科学家们几经周折,才攻克了最关键的200毫米×200毫米的大面积衍射光栅技术和光谱仪器的定标技术。其中大面积衍射光栅技术由中科院长春光机所研制成功,观测精度达到了原子级别,可以对二氧化碳的吸收光谱进行细分,能够探测2.06微米、1.6微米、0.76微米三个大气吸收光谱通道,最高分辨率达到0.04纳米,如此高的分辨率也创造了国内光谱仪器的最高纪录。

另外,TANSAT碳卫星毕竟在真空中运行,时间一长,搭载的测量设备就会因为部件老化和温度不断变化等原因,影响到测量仪器的精度,此时,必须采用定标技术对测量仪器进行精调,才能保障卫星的正常工作。而光学遥感定标技术,也是光谱仪器最终实现精度的关键技术,这种定标系统就犹如一杆秤的刻度,刻度越精准,测量精度越高。

二氧化碳影响范文第8篇

【关键词】沼气;二氧化碳;气肥;蔬菜生产

1 蔬菜产量的形成过程

蔬菜产量的形成过程也是碳水化合物积累过程。大棚蔬菜除了对氮、磷、钾以及其他微量元素和水分有需求外,二氧化碳也是必不可少的主要基础原料。以茄果类蔬菜为例。白天,叶片背面的气孔张开,吸入空气中的二氧化碳,根系将地下水运输到叶片上,在阳光下进行光合作用,合成为碳水化合物并储藏在叶片内,使叶片增厚;夜间,叶片通过有氧呼吸,将白天储存的碳水化合物进行分配,绝大部分输送到果实内进行积累,使果实膨大,另外一部分输送到根部和植株内,供根系和植株发育使用,这样循环往复,使植株逐渐长高,果实逐渐膨大,产量逐渐形成。

2 增施沼气二氧化碳气肥的必要性

作物生长需要一定的二氧化碳气肥,如果二氧化碳浓度低于0.1%,大部分蔬菜作物不能正常光合积累。在寒冷的冬季,棚内空气与外界空气相对阻隔,二氧化碳得不到及时补充。日出后,随着蔬菜光合作用加速,棚内二氧化碳浓度急剧下降,有时会降至二氧化碳补偿点以下,蔬菜几乎不能进行正常的光合作用,影响蔬菜的生长发育,容易造成减产和病害。要提高棚室内作物的产量和品质,增施沼气二氧化碳气肥是非常必要的。沼气二氧化碳气肥的优点主要有:

2.1 增产增收

增施沼气二氧化碳,可提高蔬菜光合作用效率,使营养和生殖生长同时得到促进,蔬菜的新陈代谢更加旺盛。例如,能够显著增加茄果类蔬菜的株高、茎粗和果实纵径等生长发育性状,从而提高大棚茄果类蔬菜平均坐果率、单株坐果数、单果重和单株产量,相应地总产量和产值均有大幅度增长,提高了广大菜农的经济效益。

2.2 增强蔬菜抗病能力

实验表明,增施沼气二氧化碳,一方面能提高果芽类花芽素质,结果节位下降,抗逆性增强;另一方面,蔬菜作物植株健壮,根系发达,叶片肥厚,增强了植株的抗病性,对不良环境条件(如低温、弱光等)的抵抗力也增强了,相应降低了病害的发生率和危害程度。例如,黄瓜霜霉病明显降低;番茄、辣椒的病毒病发病率和病害指数明显下降。因此,减少了农药用量,降低生产成本,有利于绿色蔬菜的生产。

2.3 提高产品商品价值

增施沼气二氧化碳,光合产物积累增多,蔬菜的品质明显改善,表现为色正、口味好等特点,上市后受到广大消费者的好评。例如,经对黄瓜和番茄果实进行分析,果实中维生素C和可溶性糖的含量均有增加,其中黄瓜的可溶性糖比对照增加13.8%,番茄的可溶性糖比对照增加7.6%。

3 施用沼气二氧化碳气肥的方法

在北方“四位一体”模式中,新增二氧化碳主要有三个来源:

3.1 燃烧沼气法

在室内地下建设沼气池,按要求比例填入畜禽粪便与水发酵生产沼气,通过塑料管道,输送给沼气炉,点燃燃烧生产二氧化碳气体。燃烧每立方米沼气可获得大约0.9立方米二氧化碳。一般棚内沼气池寒冷季节产沼气量为0.5立方米~1.0 立方米∕天,可使334平方米地大棚(容积为600立方米)内的二氧化碳浓度达到0.1%~0.16%。必须注意的是,因沼气属易燃物,沼气池要严格按照有关标准建造和管理;沼气必须经过脱硫处理;新建沼气池或大换料时,需对发酵原料进行堆沤处理(但不能在棚内),以免有害气体(如氨气)对蔬菜生产造成危害;应保持棚室严密。

3.2 利用牲畜新陈代谢呼出的二氧化碳

一头50千克重的猪每天呼出二氧化碳1.032立方米;四头猪每昼夜可呼出4.128立方米二氧化碳。畜舍产生的二氧化碳可通过棚室内山墙通气孔和蔬菜棚内空气自然交换。

3.3 沼肥施于土壤中

在棚室内增施沼肥,提高土壤腐殖质的含量,促进蔬菜根系的呼吸作用和微生物的分解活动,从而增加二氧化碳的释放量。此法有利于改良土壤,来源方便;不足之处是产气量有限而且缓慢。

4 施用沼气二氧化碳气肥的技术要点

4.1 施肥浓度

在蔬菜作物生长的中前期,叶面积系数小,二氧化碳施肥浓度应在0.06%~0.08%为宜;蔬菜作物生长的中后期,二氧化碳施肥浓度应在0.08%~0.1%为宜。温度低,光照弱时,二氧化碳施肥浓度应在0.08%为宜,高于0.1% 会导致作物气孔开放度缩小,降低蒸腾速度,使叶温升高,出现萎蔫现象。为了科学掌握施肥浓度,使一般菜农容易掌握,而且增强该项技术的可操作性,可在大棚内安装二氧化碳气体报警器,当大棚内二氧化碳超过所需要浓度时,仪器报警,则停止供气。

4.2 施肥时期

(1)大棚蔬菜定植至缓苗期不施二氧化碳气肥,苗期不施或少施气肥;

(2)叶菜类在起身发棵期开始进行二氧化碳施肥,此期叶片活力强,叶面积系数增大,光合生产率高,二氧化碳利用率高,增产幅度大;

(3)茄果类在开花坐果至果实膨大期为二氧化碳施肥最佳时期,此期进行二氧化碳施肥,吸收二氧化碳多,有机物质积累多,促进果实膨大,提高果实产量和品质。

4.3 施肥时间

植物一天中光合作用最强时间大约为10时~11时,大棚蔬菜施肥时间应在日出半小时后开始,随着光照强度增大,温度提高,施用二氧化碳浓度逐渐加大,达到确定的饱和浓度为止。一般中午放风前半小时停止施用,阴天雾天不施肥。

4.4 加强肥水管理

二氧化碳施肥后的作物,地上养分增加,光合作用增大,根系吸收能力增强,生理机能改善,施肥量也要相应增加。为避免肥水过大造成作物徒长,茄果类蔬菜应注意适当增加磷钾肥,瓜类和叶菜类适当增施氮肥,使地上下趋于平衡。

4.5 控制温度和光照

当棚内温度过高或过低时,应及时通风或提高温度和增强光照。早晨日出揭草帘时及时清除棚顶灰尘和杂物,增强室内光照强度和升温速度,提高二氧化碳施肥效果。

参考文献

[1]王志春,王建法,周克亮,徐俊山,钱兵,李庆生.塑料大棚蔬菜生产中沼气发酵应用技术初步研究[J].现代农业,2008(08)

[2]周鹏.沼气在大棚蔬菜中的应用[J].农家致富,2008(04)