首页 > 文章中心 > 数学建模问题

数学建模问题

开篇:润墨网以专业的文秘视角,为您筛选了八篇数学建模问题范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

数学建模问题范文第1篇

数学建模中的灵敏度分析是研究和分析一个系统或模型的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。在最优化方法中经常利用灵敏度分析来研究原始数据不准确或发生变化时最优解的稳定性,通过灵敏度分析还可以决定哪些参数对系统或模型有较大的影响,因此,灵敏度分析几乎在所有的运筹学方法中以及在对各种方案进行评价时都是很重要的,其用途主要用于模型检验和推广,简单来说就是改变模型原有的假设条件之后,所得到的结果会发生多大的变化。

建立数学模型的五个步骤:

1、提出问题

(来源:文章屋网 )

数学建模问题范文第2篇

【关键字】数学教学 新课程 数学建模 实际问题

随着科学技术、经济的飞速发展和计算机的广泛应用,数学日益成为一种技术,其手段就是计算和数学建模。所谓数学建模,粗略地说就是“解决各种实际问题的一种数学的思考方法。”具体地说:“数学建模就是将某一领域或部门的某一实际问题,经过抽象、简化、明确变量和参数,并依据某种‘规律’建立变量和参数间的一个明确的数学关系(即数学模型),然后求解该数学问题,并对此结果进行解释和验证,若通过,则可投入使用,否则将返回去,重新进行改进。

数学建模主要有以下三个步骤:实际问题数学模型;数学模型数学的解;数学的解实际问题的解。

新课程实施以后,高中阶段已全面使用新教材。在新课程理念下编写的新高中数学教材,与以往的教材相比更加注重学生学习的过程,强调学生去体验知识的获得过程,通过自己的实践获得第一手资料,要求学生了解数学知识的来龙去脉,经历数学知识的发现、发生、发展的过程。特别强调让学生去发现问题、分析问题、解决问题。但在日常教学中,由于自身条件限制和学生的原因,数学建模教学这一块仍然存在一些问题。现结合自己的教学经历谈一点感受:

一、存在问题:

1、学校方面:作为高中,学校特别注重高考升学率,狠抓常规教学,平时很少搞数学建模活动。

2、教师方面:教师在大学都学过数学建模课程,但是对这部分内容还教的不是很得心应手,平时同事间缺乏专业知识交流,数学建模方面知识匮乏。

3、学生方面:

(1)缺乏解决实际问题的信心。

与纯数学问题相比,数学实际问题的文字叙述更加语言化,更加贴近现实生活,题目也比较长,数量也比较多,数量关系显得分散隐蔽。因此,面对一大堆非形式化的材料,许多学生常感到很茫然,不知如何下手,产生惧怕数学应用题的心理。

(2)对实际问题中一些名词术语感到生疏。

由于数学应用题中往往有许多其他知识领域的名词术语,而学生与外界接触较少,对这些名词术语感到很陌生,不知其意,从而就无法读懂题,更无法正确理解题意,比如实际生活中的利率、利润、打折、保险金、保险费、纳税率、折旧率、教育储蓄等概念,学生对其意思都没懂,涉及这些概念的实际问题就谈不上如何去理解了,更谈不上解决问题。

二、克服数学建模困难的对策

1、学校方面。

(1)加强对教师的继续教育,邀请专家给予指导和讲座。作为一线教师,具有一定的实践经验,但从理论上缺乏相关知识,可以开设相关的继续教育课程,打开思路,交流心得,增进了解,以此提高自身的数学应用意识。

(2)邀请各行各业专家做学术报告。学校利用校本教研,为了增强数学应用意识,可以邀请各行各业的一些专家到学校做学术报告或讲座,不仅是局限于请教育方面的专家。一般来说,他们的报告或讲座涉及实际应用,能够反映当今数学在科技前沿上的广泛应用。通过听报告和参加座谈,教师会了解当今社会数学的发展动向,洞悉数学应用的广泛领域和广阔前景,会更深刻地体会数学的应用价值。

(3)开展数学建模活动,让师生积极参与。

2、教师方面。

(1)教师还应与新教材结合起来研究,注意研究新教材各个章节要引入哪些模型问题。如储蓄问题、贷款问题可以结合在数列的教学中。教师要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中领悟到数学建模的广泛应用,从而激发学生研究数学建模的兴趣,提高他们应用数学知识进行建模的能力。

(2)在数学课堂上,要适时地结合实际,将数学建模思想引入课本知识。

新课程标准在教学建议中指出:“在数学教学中,应注重发展学生的应用意识:通过丰富的实例引入数学知识,引导学生应用数学知识解决实际问题,经历探索、解决问题的过程,体会数学的应用价值。帮助学生认识到:数学与我有关,与实际生活有关,数学是有用的,我要用数学,我能用数学,我要学数学。”因此,教师要多创设教学情境,从现实生活中引入数学知识,使数学知识生活化。让学生带着生活问题进入课堂,使原本觉得十分枯燥的数学问题一下变得鲜活起来。

3、学生方面:

(1)培养学生的自信心。一个人的自信心是他能有效地进行学习的基础,更是他将来能适应经济时代必备的心理素质。教师在教学中如果注意联系身边的事物,让学生体验数学,并尝到成功的乐趣,对激发学生的数学兴趣,培养学生的数学应用意识以及解决实际问题的自信心是非常重要的。

数学建模问题范文第3篇

一、结合生活,提出问题

在平时的应用题教学中,教师提出问题时要考虑从学生的实际生活出发,这样才能激发学生的学习热情,让学生主动学习。利用与学生实际生活相关的题材可以吸引学生,让学生接触熟悉的事物,感受到数学和生活是息息相P的。在提出问题后,教师要适当地指导学生,帮助学生分析问题,同时,还要让学生运用之前学习过的知识解决问题。审题过程中,教师要对题目的意思进行严密的分析。以“轴对称图像与性质”这一教学内容为例,教师生怕学生完成不了教学任务,多数在黑板上画出图像,然后再根据图像指出对称轴、顶点坐标,引出相关性质。问题多是设计引出的。再结合学生自己动手、主动探究、合作,在整堂课上,学生积极参与教学活动,提出了许多有价值的问题,比如说图像具有对称性、对称轴、顶点有划分的作用可以使图像的增减性很有作用,当然具体讲解时是以轴为准,等等。教师通过引导学生动手、观察、感受、讨论、总结,使学生发现图像的性质。这种“由学生提出”的教学的效果肯定利于学生掌握新知识,因为学生在发现问题和提出问题的探究过程中,对于图像的性质是自己通过数形结合领悟到的,虽然表述不是很准确,但是意思基本接近,那就更易于理解,记忆更深刻。

二、构建模型,分析问题

建立模型是“问题――建模――应用”教学模式中最关键的一个环节。在通过理解题目和交流后,学生已经在脑海里建立了一个解题的思路,同时将未知的问题转换成数学模型,因此,教师可以对这个部分设计并实行适当的教学方法。例如,遵循新课标对当下数学课程教学提出的要求,再结合学生的具体情况对授课的方式进行科学的安排,合理规划开展教学工作的路线。在实践中我们主要采取明暗结合的方式,即明线与暗线相互配合。明线指的是着重培养学生的数学基础,大力加强基础概念知识的教学。开展明线数学教学,学生能练就扎实的基本功,处理实践问题的思路与能力也能得到不断加强。除了明线,暗线教育也要同步进行,也就是在日常教学的过程中,通过潜移默化的引导帮助学生形成数学化的思维方式,并养成科学严谨的逻辑;在借助数学知识处理实践问题时,学生能够自行制定实验方法并能够自主绘制数学图表,并且可以利用数学思维对实践问题进行分析并提出解决方法。两条教学主线,明暗结合两者相得益彰,从而推进了双基教学在常规教学中的渗透与结合。

三、运用模型,解决问题

数学模型的运用也非常重要。在模型运用中,教师可以引导学生回顾整个解题的过程,使之成为自己的一套解题思路。部分学生即使学习了大量的数学概念并且也具备了一定的数学能力,在实际生活中遇到数学问题时仍然会出现无从下手的情况。为了引导学生有效地解决数学问题,可以采取构建模型的方式,把抽象的数学问题转化为模型的形式呈现,这样可以帮助学生对问题进行分析理解,并找出解决问题的突破口。在对实践中的数学问题进行分析处理时,教师要重点帮助学生对问题进行思考分析,将抽象的情况转化为具象的模型。比如,在学习“三角形面积计算”这一知识点时,教师可以给学生分发一些学具或者让学生使用白纸、剪刀自己动手制作,将书本上描述的各种三角形制作出来。在对三角形的面积进行计算时,需要借助计算矩形面积的方法,为此教师要指导学生如何将三角形转化为矩形,让学生自己动手试一试,将做好的三角形剪开再拼凑起来,了解三角形转化为矩形的思路,再指导学生利用公式对三角形面积进行计算,从而掌握这一知识点。

数学建模问题范文第4篇

一、数学教材设计存在缺陷 

现行高中数学教材将数学建模内容散布于各数学知识教学单元内容之中。此种课程设计固然便于学生及时运用所学数学知识解决实际问题,但却存在诸多弊端。将数学建模内容分置于各数学知识教学单元的课程设计遮蔽了数学建模内容之间所固有的内在联系,致使教师难以清晰地把握高中数学建模课程内容的完整脉络,难以准确地掌握高中数学建模课程内容的总体教学要求,难以有效地实施高中数学建模课程内容的整体性教学。而学生在理解和处理数学知识教学内容单元中的具体数学建模问题时,既易受到应运用何种数学知识与方法的暗示,也会制约其综合运用数学知识方法解决现实问题。从而势必影响学生运用数学知识方法建立数学模型的灵活性与迁移性,降低数学建模学习的认知弹性。 

二、高中数学建模课程师资不足 

许多高中数学教师缺少数学建模的理论熏陶和实践训练,致使其数学应用意识比较淡漠,其数学建模能力相对不足,从而制约了高中数学建模教学的效果。高中数学教师所普遍存在的上述认识偏差、实践误区以及应用意识与建模能力方面的欠缺,严重阻碍了高中数学建模课程目标的顺利实现。 

三、学生学习数学建模存在困难 

相当多数高中学生的数学建模意识和数学建模能力令人担忧。普遍表现为:难以对现实情境进行深层表征、要素提取与问题归结;难以对现实问题所蕴涵的数据进行充分挖掘、深邃洞察与有效处理;难以对现实问题作出适当假设;难以对现实问题进行模型构建;难以对数学建模结果进行有效检验与合理解释等。 

1.编写独立成册的高中数学建模教材。将高中数学建模内容集中编写为独立成册的高中数学建模教材。系统介绍数学建模的基本概念、步骤与方法并积极吸纳丰富的数学建模素材且对典型的数学建模问题依步骤、分层次解析。 

2.加强高中数学建模专题的师资培训。 

高中数学教师是影响高中数学建模课程实施的关键因素。他们对数学建模的内涵及其教育价值的理解、所具有的数學应用意识和数学建模能力水平等均会在某种程度上影响高中数学建模教学的开展与效果。目前高中数学建模师资尚难完全胜任高中数学建模课程的教学,绝大多数高中数学教师在其所参加的新课程培训中并未涉及数学建模及其教学内容。因此应有计划地组织实施针对高中数学建模专题的教师培训。 

3.探索高中学生数学建模的认知规律。 

数学建模问题范文第5篇

关键词:初中数学建模活动;内容设计;组织原则;数学建模能力

在初中课程内容中,数学建模活动既没有明确的课程定位、目标要求,也未设置专题活动内容,更没有明确的教学要求、实施策略等,致使很多一线教师对初中数学建模活动的内涵、内容设计和组织原则等认识模糊,甚至将应用题教学与数学建模活动简单地画上等号。因而,正确理解初中数学建模活动的内涵,明确建模活动内容,掌握组织原则,才能取得预期的活动成效。

一、初中数学建模活动的内涵

数学建模活动由数学、建模、活动三个关键词构成。“数学”凸显数学学科本质属性,蕴含着数学眼光、数学思维、数学语言等诸多含义,最终指向用数学知识分析和解决实际问题;“建模”是指运用数学符号系统建立数学模型;“活动”是指为实现学习目标而采取的行动。初中数学建模活动是指初中生(以下简称“学生”)在实际情境(生活情境、社会情境、科学情境和数学情境)中,从数学的视角发现和提出问题,用数学的方法分析问题,简化、假设、抽象出数学问题,建构数学模型,确定参数、求解验证,最终解决实际问题的学习活动。2011年版义务教育数学课程标准中使用了“模型思想”的表述,将数学建模活动看成是一种思想,包括从现实问题到数学问题、从数学问题到数学模型,数学模型求解及结果验证三个过程。2017年版高中课程标准指出数学建模活动是一种过程,分为现实问题的数学抽象(实际模型)、数学表达(数学问题)、建构模型求解问题三个阶段。从建立和求解模型的过程与形态可以看出,模型思想的建立过程与数学建模活动过程的本质是一致的,都包含对现实问题进行数学抽象,用数学语言表达形成数学问题,用数学方法建构数学模型,计算求解模型并解释现实问题的活动过程。事实上,模型思想必然形成于数学建模活动的过程中。

二、初中数学建模活动的内容设计

1.构建数学模型活动

数学建模中的“建模”是指建构数学模型[1]。数学知识本身就是一种数学模型,从数学知识属性维度看,数学模型一般分为概念模型、方法模型和结构模型。因此,学生对数学知识的学习本质是一种构建数学模型的学习活动,构建数学模型是学生习得数学知识的基本途径。从初中数学建模活动(以下简称“数学建模活动”)的过程看,构建数学模型活动本身不是严格意义上的数学建模活动,而是数学建模活动过程的某个阶段或某个环节。在这类建模活动中,活动重点是渗透模型思想,使学生学会建构数学模型,为完成完整的数学建模活动奠基。

2.应用数学模型活动

数学建模活动更强调的是建立模型和解决问题的过程[2]。数学模型的价值在于将现实世界与数学的壁垒打通,通过数学模型连接现实世界与数学世界,使学生体悟数学建模的现实意义。现行初中数学教材注重数学与现实世界的联系,设置了大量的应用类问题,为学生应用数学模型解决实际问题提供了良好的载体。比如苏科版初中数学教材中勾股定理的简单应用、用一次函数解决问题、锐角三角函数的简单应用、收取多少保险费才合理等属于应用数学模型活动。虽然这些应用类问题具有封闭的、数据清楚、信息正好、结果唯一等特点,不同于真正的数学建模问题,但应用数学模型活动也属于数学建模过程的重要阶段,解决应用类问题所考查的能力往往正是数学建模过程中某些环节所需要的能力[3]。教师要利用好这些素材,开展有意义的数学模型应用活动,在活动中渗透数学建模思想,重点提升学生建构数学模型解决应用题的能力。

3.主题综合实践活动

主题综合实践活动是指以现实世界中实际问题为研究对象,明确具体研究主题,综合应用学科知识(不限于数学知识)解决实际问题的实践活动。在初中阶段,主题综合实践活动是数学建模活动的主要形式,是学生参与完整的数学建模活动,培养学生数学建模能力的重要途径。主题综合实践活动内容源于杂乱无序的现实世界,学生需从“原生态”的现实情境中抽象出数学问题,我们一般将其称为数学化能力。数学化能力是数学建模的关键成分,在主题综合实践活动设计中应予以重点关注。每个学期开展1~2次主题综合实践活动,有利于促进学生经历完整的数学建模活动过程,培养数学建模能力。综合实践主题的选题源自学生熟悉的现实生活,符合学生的生活经验和认知水平。综合实践活动有利于激发学生的学习兴趣,培养应用意识和数学建模能力,具有积极的现实意义。比如在分析问题环节,先梳理影响出租车收费的相关因素,再确定主要因素(里程数),调查收集燃油附加费的收费标准。在提出假设环节,假设出租车收费只受里程数影响,不存在乘客主观因素的影响;假设打车策略以费用为唯一标准,不考虑顾客的主观感受,也不考虑出租车公司的有关优惠活动。主题综合实践活动任务给学生提供了“原生态”的问题情境,能有效驱动学生从现实世界中发现和提出有意义的实际问题,运用数学知识建立数学模型,从而解决实际问题。从主题综合实践活动的整个流程看,学生经历了相对完整的数学建模活动过程,有效弥补了以上两种阶段性建模活动在培养学生数学建模能力上的不足,对培养学生数学建模能力至关重要。

三、初中数学建模活动的组织原则

1.阶段性原则

阶段性原则是指根据初中数学教学内容,参照数学建模过程将数学建模活动分为不同的阶段,发挥数学建模活动的教育价值[4]。数学建模活动是一个完整的解决实际问题的过程,具体包括现实原型———实际模型———数学模型———模型求解———检验解释等。在初中数学学习中,受数学知识与数学能力所限,我们不可能也没必要使学生经常性地经历完整的数学建模活动过程[5]。在平时数学知识的教学中,注重渗透数学模型思想,引导学生经历数学建模的某个环节或某个阶段,体现数学建模活动的阶段性原则。初中数学建模活动一般分为三个阶段:标准数学模型学习阶段、用数学模型解决实际问题(应用题)阶段、主题建模实践阶段。三个阶段由低到高、层层递进,教学中应根据数学建模活动的内容特点,对建模活动目标精准定位,分阶段、分层次培养学生的数学建模能力。

2.适切性原则

适切性原则是指数学建模活动内容应源于学生熟悉的、真实的实际情境,符合学生的认知基础、智力水平和心理特点,注意学生解决问题能力上的差异[6]。从实际情境的视角看,选用的问题情境要符合实际情况,是学生熟悉的情境。对于综合性实际情境,应具备一定的挑战性,有利于促进学生主动学习数学、物理等相关学科知识,但建立数学模型时涉及的数学及跨学科知识应符合其认知水平,不能随意提高数学建模活动的要求。从数学建模的教育价值看,数学建模活动应在学生解决实际问题能力的基础上,运用数学知识又不限于数学知识主动连接现实世界,感受数学建模的应用价值。

3.发展性原则

发展性原则是指组织的数学建模活动应能驱动学生积极主动参与建模活动,发展学生的数学建模能力。发展性原则属于数学建模活动的目标范畴,即为什么组织、为谁组织数学建模活动?发展学生的数学建模能力是数学建模活动的出发点和落脚点,在组织不同类型的数学建模活动时,都应遵循发展性原则,提高数学建模活动立意,将活动目标落到实处。比如在构建数学模型的活动中,活动的内容设计应有利于引导学生经历现实问题到数学问题再到数学模型的抽象过程,特别是对数学对象的第二次抽象时,教师应将教学重心放在引导学生用数学符号建构数学结构(数学模型)上,分阶段发展学生数学建模能力水平。

参考文献

[1]孙凯.从问题类属谈初中生数学建模能力培养[J].数学通报,2020,59(12):30-33.

[2]张景斌,王尚志.中学数学建模活动为中学生创造发展空间[J].数学教育学报,2001,10(01):11-15.

[3]张艳娇.谈“数学建模活动与数学探究活动”如何在教科书中落实[J].中学数学杂志,2020(09):1-7.

[4]刘伟.初中生数学建模能力培养研究[D].曲阜:曲阜师范大学,2020:132.

[5]温建红,邓宏伟.“综合与实践”教学中渗透模型思想的策略与建议[J].中学数学月刊,2021(03):52-55.

数学建模问题范文第6篇

关键词:数学建模数学应用意识 数学建模教学

一、数学建模是从现实问题中建立数学模型的过程.

在对实际问题本质属性进行抽象提炼后,用简洁的数学符号、表达式或图形,形成便于研究的数学问题,并通过数学结论解释某些客观现象,预测发展规律,或者提供最优策略.它的灵魂是数学的运用并侧重于来自于非数学领域,但需要数学工具来解决的问题.这类问题要把它抽象,转化为一个相应的数学问题,一般可按这样的程序:进行对原始问题的分析、假设、抽象的数学加工.数学工具、方法、模型的选择和分析.模型的求解、验证、再分析、修改假设、再求解的迭代过程.

数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性;数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。

二、那么当前我国高中学生的数学建模意识和建模能力如何呢?

学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!

三、那么高中的数学建模教学应如何进行呢?

数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。

四、在教学的过程中,引入数学建模时还应该注意以下几点:应努力保持自己的"好奇心",开通自己的"问题源",储备相关知识.这一过程也可让学生从一开始就参与进来,使学生提高自学能力后自我探究.

将数学建模思想引入数学课堂要结合实际,这是关键.学生在课堂中解决的实际问题即建模材料必须经过一定的加工,否则有可能过于复杂,有些问题的数学结论可能偏离生活实际太多,也很正常.

数学课堂中的建模能力必须与相应的数学知识结合起来.同时还应该通过解决实际问题(建模过程)加深对相应的数学知识的理解.

注意梯级上升.问题要立足于学生知识的最近发展区内,从自己较熟悉的课题入手,直接实践、探索规律.

数学建模问题范文第7篇

关键词:应用型人才;数学建模;教学平台

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)06-0035-03

一、对应用型人才内涵与数学建模实践活动的深入认识

应用型人才是一种能将专业知识和技能应用于所从事的专业社会实践的一种专门的人才类型,是熟练掌握社会生产或社会活动一线的基础知识和基本技能,主要从事一线生产的技术或专业人才。在知识结构上,应用型人才更强调复合性、应用性和与时俱进,具有复合性和跨学科的特点。在能力结构上,应用型人才强调发现问题和解决问题的能力,要求具备解决复杂问题的实践能力;在素质结构上,应用型人才直接服务于各行各业,更强调社会适应性和与社会的共处能力。应用型人才的特点:强调实践,突出应用;终身学习,知识复合;科学态度,敢于创新;责任意识,团队协作。

数学建模就是通过对现实问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题;然后求解该数学问题,最后在现实问题中解释、验证所得到的解的创造过程。数学建模过程可用下图来表明:

因此,数学建模活动是一个多次循环反复验证的过程,是应用数学的语言和方法解决实际问题的过程。数学建模是一种联系数学与实际问题的桥梁,它突出了实践活动的重要特点,强调人才的培养应从侧重知识教育转向侧重应用能力培养。

二、应用型人才培养模式下数学建模活动在人才培养过程中的作用

应用型人才培养模式下,数学建模活动不仅包括学习数学知识,展示各应用领域中的数学问题和建模方法,提高学生学习数学的积极性,更重要的是培养学生应用数学知识解决实际问题的能力,创造有利于提高学生将来从事实际工作能力的环境。数学建模活动的教学内容和教学方法是以应用型人才培养为核心,内容取材于实际、方法结合于实际、结果应用于实际,对学生能力的培养体现在多个方面。

(一)培养学生分析问题与解决问题的能力

数学建模竞赛的题目一般由工程技术、经济管理、社会生活等领域中的实际问题简化而成,在数学建模活动中,要求首先强调如何分析实际问题,如何利用所掌握的知识和对问题的理解提出合理且简化的假设,如何将实际问题抽象为数学问题,即将实际问题“翻译”成数学模型。其次是如何建立适当的数学模型,如何利用恰当的方法求解数学模型,以及如何利用模型结果解决实际问题。对数学模型求解后,还要用数学模型的结果解释实际现象。这是一个双向“翻译”的过程,通过这个过程,让学生体验数学在解决实际问题中的作用,培养学生应用数学知识的意识和能力,从而提高学习数学的兴趣和应用数学解决实际问题的能力。数学建模本身就是一个创新的过程并且为培养学生创新精神和创造能力提供了环境。

(二)培养学生的创造精神和创新能力

创造精神和创新能力是指利用自己已有的知识和经验,在个性品质支持下,新颖而独特地提出问题、解决问题,并由此产生有价值的新思想、新方法、新成果。数学建模问题的解决没有标准答案、不局限于唯一方法,不同的假设就会产生不同的模型,同一类模型也会有很多不同的数学求解方法。数学建模的每一步都给学生留有较大的空间,在数学建模活动中,要鼓励学生勤于思考、大胆实践,不拘泥于用一种方法解决问题,尝试运用多种数学方法描述实际问题,鼓励学生充分发挥想象力、勇于创造新方法,不断地修改和完善模型,不断地积累经验,逐步提高学生创新能力,数学建模本身就是一个创新的过程并且为培养学生创新精神和创造能力提供了环境。数学建模是培养学生创造性思维和创新精神的良好平台。

(三)培养学生的学习探索能力

心理学家布鲁纳指出:探索是数学教学的生命线。培养学生的探索能力,应贯串数学教学的全过程。这一点在普通的数学课堂上往往做不到。但在数学建模的教学过程中,通常会有意识地创设探索情境,引导学生以自我为主,进行调查研究、查阅文献、制定方案、设计实验、构思模型、分析总结等方面独立探索能力的训练,促进学生创新精神、科研能力和实践技能的培养。

(四)培养学生的洞察力和抽象概括能力

数学建模的模型假设需要根据对实际问题的观察和分析,透过现象看本质,将错综复杂的实际问题简化,再进行高度的概括,抽象出合理、简化、可行的假设条件。数学建模促进了对学生的洞察力和抽象概括能力的培养。

(五)培养学生利用计算机解决实际问题的能力

在数学建模中,很多模型的求解都面临着复杂的数学推导及大量的数值计算,同时所建模型是否与实际问题相吻合也常常需要通过计算或模拟来检验,能熟练使用计算机计算数学问题是对学生的必要要求。数学建模将数学、计算机有机地结合起来,逐步培养学生利用数学软件和计算机解决实际问题的能力。

(六)培养学生论文写作和语言表达的能力

数学建模的考核内容一般包括基本建模方法的掌握、简单建模问题的求解和实际问题的解决,考核方式往往采取闭卷与开卷相结合、理论答卷与上机实验相结合、笔试与答辩相结合的方法。因此,数学建模答卷需要学生具有一定的描述问题的能力、组织结构的能力以及文字表达的能力。而数学建模竞赛成绩的好坏、奖项的高低,其评定的唯一依据就是数学建模论文,假设是否合理,建模方法是否有特色,重点是否突出,模型结果是否正确,论文撰写是否清晰等是对论文成绩评定的主要标准。通过数学建模确实能培养学生的论文写作能力和语言表达能力。

(七)培养学生的交流与合作能力和团队精神

数学建模中的实际问题涉及多个学科领域,所需知识较多,因此集体讨论、学生报告、教师点评是经常采用的教学方式。数学建模竞赛活动是一个集体项目,比赛要求参赛队在3天之内对所给的问题提出一个较为完整的解决方案,具有一定规模的建模问题一般都不可能由个人独立完成,这就需要三个人积极配合,协同作战,要发挥每个人的长处,互相弥补短处,是培养学生全局意识、角色意识、合作意识的过程,也是一个塑造学生良好个性的过程。在此过程中,既要发挥好学生各自特点,又要有及时妥协的能力,目的是发挥整体的最好实力。作为对学生的一种综合训练,除了三个人都要有数学建模的基础知识外,成员之间的讨论、修改、综合,既有分工,又有合作。只有充分的团队合作,才能取得成功,凡是参加过竞赛的每一个人都能深刻体会到这种团队精神的重要性,认识到这一点对学生以后的成长是非常有帮助的。

数学建模在以上九个方面培养了学生的能力,促进了学生应用能力的养成。有目的、有计划、有针对性地开展数学建模教学将会使其对应用型人才的培养更具实效性。

三、应用型人才培养模式下数学建模三级教学平台的构建与实施

(一)将数学建模思想方法融入工科数学基础课,实现数学建模教学常态化

我们在开设《数学建模》选修课及必修课的基础上,积极探索将数学建模的思想方法融入到工科数学基础课教学之中,并进行了有益的教学实践。在相关课程的教学中,适当引入一些简单的实际问题,应用有关方法,通过建立具体的数学模型,利用模型结果解决实际问题。以向学生展示某些典型的数学方法在解决实际问题中的应用及应用过程,既巩固了相关知识又提高了处理问题的能力,比单纯的求解应用问题更有效。

1.在《高等数学》课程中,讲授函数的连续性时,引入方桌平稳问题,把实际问题转化为连续函数的零值点的存在问题;曲面积分时引入“通讯卫星的覆盖面积问题”,建立在距地面一定高度运行的卫星覆盖地球表面面积的曲面积分公式,并通过计算面积值确定为了覆盖地球表面所需卫星的最少数目;讲授微分方程时引入“交通管理中的黄灯时间问题”,通过简单分析黄灯的作用、驾驶员的反应等,建立汽车在交通路口行驶的二阶微分方程,通过求解方程计算给出应该亮黄灯的时间;在讲授无穷级数时,引入银行存款问题。

2.在《线性代数》课程中,讲授矩阵有关知识时引入“植物基因分布问题”,在简单地了解基因遗传的逐代传播过程基础上,引入基因分布状态向量,建立状态转移模型,通过矩阵运算求出状态解,进而分析基因分布变化趋势,确定植物变化特征。

3.在《概率论与数理统计》课程中,讲授随机变量时引入“报童的策略问题”,设定随机变量(购进报纸份数)、建立报童收益函数的数学期望、求数学期望的最大值,给出报童购进报纸的最佳份数。引导学生从实际问题中认识随机变量,并将其概念化,进而解决一定的问题。另外,还是学生认识了连续型和离散型随机变量在描述和处理上的不同。

总之,通过一些简单的数学建模案例介绍,让学生了解相关知识的实际应用,解决学生不知道所学数学知识到底有什么用,以及该怎么去用的问题;另一方面,使学生初步了解运用数学知识解决实际问题的简单过程和方法,并鼓励学生积极地去学数学、用数学。通过将数学建模思想融于低年级数学主干课教学中,培养学生的建模兴趣。激发学生科学研究的好奇心、参与探索的兴趣,培养学生学数学、用数学的意识。

(二)广泛开展学生数学建模课外科技活动,实现数学建模实践经常化

在数学建模课程教学和数学建模竞赛培训的基础上,以数学建模实验室为平台开展经常性的学生数学建模课外科技活动,包括教师讲座和问题研究。在每年三月初至五月初,开设《数学建模》课程,进行数学建模方法普及性教育;在五月下旬至六月末,开设数学建模讲座,内容主要包括一些专门建模方法讲解、有关案例介绍和常用数学软件介绍;在七月下旬至八月上旬,进行建模竞赛培训,准备参加全国竞赛。

全国竞赛之后,组织学生开展数学建模问题研究。问题来源于现有建模问题和自拟建模问题,其中自拟题目来自学生的日常生活、专业学习以及现实问题和教师研究课题等,针对自拟问题,建模组教师进行集体讨论,形成具体的建模问题;然后,教师指导学生完成问题研究,并尝试给出实际问题的解决方案。把这一活动与大学生科技立项研究项目结合起来。数学建模课外科技活动期间,实验室对学生开放、建模问题对学生开放、指导教师对学生开放。

从建模课程、建模讲座、竞赛培训、参加竞赛,到建模研究、学生科技立项等,数学建模活动从每年三月初开始至下一年的二月止,形成了以一年为一个周期的经常性的课外科技活动,实现了数学建模实践的经常化。很多学生从大一下学期开始连续一年半或两年参与建模活动,在思维方法、知识积累和建模能力等方面获得了极大的提高,为其后期的专业学习与实践打下了良好的基础。

(三)将数学建模思想方法引入专业教学与实践,实现数学建模应用专业化

无论是数学建模课程教学、数学建模讲座、建模竞赛培训,还是数学建模研究,所有过程大多定位于数学建模思想的传授、数学建模方法的应用,所针对的问题多数来自于社会生活、经济管理、工程管理等领域,专业背景不强。如何培养学生应用数学建模解决专业应用领域中的实际问题,这是数学建模应用的深层次研究问题,也是理工科专业学生创新型能力培养的重要内容,需要结合专业教学与实践得以实现。

首先,需要理工科专业教师的积极参与。数学建模教师主要承担数学建模和数学实验的课程教学、数学建模竞赛的培训与指导,教师队伍的构成基本上都是单一的数学专业教师,很少有其他专业的教师参与进来。教师队伍在知识的结构、实践动手能力上都有相当大的局限性,教师很难做到既了解实际问题、懂得专业知识,又熟悉有关算法与程序。因此,数学建模教师队伍需要在专业结构上多元化发展,吸引理工科专业的教师对数学建模的兴趣,引导其他专业教师的积极参与。

其次,要实现数学建模融入学生培养的各个环节和各个阶段,就必须在专业课教学、课程设计及毕业设计指导等阶段注重数学建模思想与方法的运用,注重对学生建模能力的培养。因此,通过一定的途径,比如,交叉学科教师间的交流活动、针对一些具体问题的教师共同探讨、建模教师帮助专业教师解决一些科研问题等,在专业教师中传播数学建模的思想与方法,使其了解数学建模的作用,并掌握一些数学建模知识。通过专业教师指导进入专业课学习、课程设计及毕业设计阶段的学生,去解决一些具有一定专业背景的实际问题,将数学建模的思想方法融入到工科专业领域,以实现数学建模应用的专业化。在问题解决的过程中,学生在专业领域的数学建模应用能力得以提高,专业教师对数学建模有了更深入的认识和了解,数学建模教师对专业理论知识也有了较多的理解,促进了数学建模向专业领域的应用拓展,并能逐步实现数学建模教学对创新型人才培养从通识性教育向专业性教育转换的目标调整。与专业老师相配合,实现在多学科教师共同研究指导下培养学生在专业领域中的数学建模能力的目的,也可逐步改善数学建模教师队伍的知识结构,为数学建模在专业领域中的深入应用探索思路。

四、结论与展望

数学建模在大学生创新能力培养中的重要作用已得到广泛共识,如何使这种作用得到充分发挥还需要深入探讨,本文从数学建模教学常态化、实践经常化和应用专业化的角度出发,我们探讨了数学建模教学的三级模式,更多的细节工作还有待于进一步探讨。

参考文献:

[1]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2013.

[2]钱国英,本科应用型人才的特点及其培养体系的构建[J].中国大学教学,2005,(9):54-56.

数学建模问题范文第8篇

【关键词】新课程 高中数学 数学建模

数学建模是当代教学的一种新的教学方式,数学建模教学的实施不仅能够给学生提供自主学习的空间,让学生理解到数学在日常生活中的利用价值,而且能够激发学生主动学习,增强学生学习数学的兴趣,提高他们的创新能力。在高中教学中引入数学建模教学是非常有必要的,是提高教学水平的有效手段。

一、数学建模问题的确定

高中数学建模问题不是随便就能确定的,学生一般会把实际中的问题经过思维转换以后,形成自己能够处理的数学问题,在某些时候还需要对问题进行讨论与研究,所以,高中数学教师在选择建模问题时,一定要考虑到学生和教学的具体情况。

首先,数学老师要仔细分析学生的学习情况,根据学生的数学水平来进行建模问题的确定,这样学生在解决问题的时候,就会得心应手,不用补充大量的新知识,学生很容易的就能够理解建模的问题,求解过程简单,有趣味性和延展性。其次,学生在求解的过程中,要能够体现出建模的特点,譬如假设问题、抽象、建模求解、改正等。第三,教师选择的建模问题要尽可能的有实际的生活背景,模型能够运用在类似的问题的解决上,这样学生的解决建模问题的同时,还能够体会到数学与实际生活的关联性,从实际生活中体会到数学知识的价值所在。

二、数学建模思想的贯彻

数学建模问题的来源非常的广泛,不仅可以是学生的现实生活中的某个问题,而且还可以是其他学科的问题。在高中数学教学中,数学老师要尽可能地挖掘教学中的素材,特别是应用性素材,鼓励学生参与社会实践活动,引导学生运用数学知识解决实际问题。

在进行数学建模教学之前,对所有的学生不能提出同样的建模问题,要因材施教,举行各种各样的建模活动,每一个学生都可以根据自己的生活经历提出自己的问题,即使是同样的问题,不同的见解也是非常常见的。高中数学建模教学要从不同的角度、不同的层次进行个性化的教学,使学生提高综合运用数学知识解决实际问题的能力,在培养创新思维的同时体会数学建模思想。

当数学建模问题被确定之后,数学教师就该重视引导学生把实际问题抽象成数学问题了。建模思想是要渗透到高中数学的教学活动中的,教师要科学地设计教学过程,建模问题要在体现高中数学知识的应用时,还尤其要提供一些问题的背景材料和具有引导意义的问题。通过这样的教学提高学生把实际问题转化为数学问题的能力,让学生充分体会到数学知识在实际生活中的重要性。

三、基础教学与建模教学相结合

在传统的数学教学中,有的数学老师认为进行数学建模教学会耽误学生学习基础知识,而事实上,数学建模教学是与数学基础知识的教学紧密联系的,是建立在数学基础知识的基础上进行的。科学地说,数学建模教学在一定程度上是对学生的基础知识掌握水平的一种测试,在巩固了基础知识的同时,也提高了学生的数学建模能力。学生从学懂数学知识到把数学知识应用到实际生活中是一个难度非常大的过程,倘若不进行充分的、刻意的训练,是达不到良好的效果的。在高中的数学教学中,数学老师首先要重视基础知识和基础技能的传授,使学生深刻理解数学概念和数学技能,其次,在学生掌握了最基本的知识和技能之后,老师要有目的地开展数学建模的教学,提升学生的建模意识和数学知识的应用意识,进而促进数学教学成绩的提高。

四、加强概率论和微积分知识的应用

概率统计和微积分在我们的日常生活中应用的非常广泛,而且是新课程教学中新增加的教学内容,是进行数学建模教学的首选内容。高中数学教师要认真研究这两个部分的知识在实际生活中的应用,有目的地进行教学,使这两部分的知识成为解决实际问题的重要工具。概率统计和微积分的知识是高等数学的重要内容,在一定程度上有利于提高学生的实践能力,增加学生的实际问题解决经验,为学生就业提高保障。

总之,随着教育教学水平的不断发展,数学建模教育已经成为高中教育不可缺少的一部分,在数学建模教育实行的过程中,高中数学老师要慎重选择建模的问题,重视建模在数学教学中的应用。在日常的教学中,数学教师最好能够有意识地给学生渗透建模的思想,正确地引导学生,最大程度地提高学生的数学建模能力,促进高中数学教学的科学发展。

参考文献:

[1]蔡敬民.高中数学建模教学[J].中学教师.2011(06).

[2]王朝君,阮传同.新课改背景下高中数学建模教学的现状及对策[J].时代教育(教育教学版).2010(06).