首页 > 文章中心 > 煤气化生产技术

煤气化生产技术

开篇:润墨网以专业的文秘视角,为您筛选了八篇煤气化生产技术范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

煤气化生产技术范文第1篇

关键词:煤化工;甲醇;温度;化学反应;化学式

中图分类号:Q946文献标识码: A

1煤气化原理

在甲醇生产的流程中,煤气化是第一步,它是一种化学反应,将气化剂和煤炭资源中的可燃物质放置在一个高位环境下,然后使其发生中和反应,产生一氧化碳、氢气等可燃气体。在煤气化工段里使用的气化剂包括水蒸气、氧气等,在加入这些气化剂后,煤炭就会发生一系列化学反应,从而生成所需的气体。煤炭在加入气化剂后,经历了干燥、热裂解等热力反应,该反应中生成的气体包括一氧化碳、二氧化碳、氢气、甲烷等,这些化学反应的速度取决于煤气化工段中的温度、热压、气化炉质量以及煤炭的种类,以下是煤气化过程中会出现的化学式:

吸收热量:C - H2O C O + H2C + C O2 2C O

发散热量:C + O2 C O2C +12O2 C O

变换反应:C O + H2O C O2+ H2

从大体上来说,煤气化反应是化学中的强吸热效应,如果以动力和热力的角度来解析这类中和现象,重点在于对温度的把握,温度过高会造成气体流失,温度过低则无法产生完整的化学反应,导致生成的气体数量少、质量差。同时在增压方面应该适当地增加对煤炭的压力值,这样可以使化学反应的速度提高,对甲醇的生产效率起积极作用。

2变换工段

甲醇产品在合成时,一般调整碳元素与氢元素的比例的方法是通过一氧化碳的变换反应来实现的,在甲醇生产的流程中,碳元素与氢元素的分离都在催化剂的影响下进行,在此需要注意的是,碳氧分离工序对水蒸气的需求量相当大,水蒸气的生产成本在这道工段中会激增不少,所以,如何最大限度地利用水蒸气,节约生产成本,这将直接考验生产部门的气体生产技术和操作人员的工作效率。在变换工段中,煤气化之后的煤气物质含有大量的一氧化碳和水蒸气,在催化剂的效果影响到位之后,就可以生成氢与二氧化碳,在此时还会有小部分的一氧化硫转化为氰化硫,此时化学式表现如下:

C O + H2O C O2+ H2

这是一个主要反应式,但是在主反应进行的同时,还有一部分副反应也会产生,生成甲醇的副产品,这些化学反应包括:

2C O + 2H2 C O2+ C H

2C O C + C O2

C O + 3H2 C H4+ H2O

C O + H2 C + H2O

C O2+ 4H2 C H4+ 2H2O

C O2+ 2H2 C + 2H2O

化学反应在化工产业中要求平衡,在主要变换的化学反应中是一种发散热量反应的类型,这里的化学反应会使煤气化后的温度降低,温度适当降低有利于化学反应的平衡作用,但是如果温度太低,就会导致化学反应时间过长,效率越低,当煤气化工段的生成气体慢慢消耗殆尽时,就会浪费前一道工段的时间和成本,造成浪费。同时,温度还与催化剂的适应性挂钩,如果温度没有调整到位,催化剂的效力就无法发挥到最大值,这就会造成碳氧分离程度不足,必须加大催化剂的剂量,这也会增加生产成本。

3甲醇生产中的注意事项

1.)气化压力的大小在其他的生产条件没有变化的情况下,如果改变气化压力,就会产生非常细微但是关键的变化。通常气压定格在2M Pa以上的范围时,在煤气化工段里基本上不会产生影响,但是如果气压低于2M Pa就会使气化炉的气化效果变低。所以,在煤气化工段中,一定要保证气化压力控制在2M Pa以上,而且可以视实际情况适当提高,这样可以增加气体数量,提高生产效率。

2.)氧气与煤量的比例氧煤比例的提高,指的是在煤炭中氧气流量的增多,直观反映为在煤炭高温加热时,煤炭的燃烧反应量明显提升。同时因为氧气流量的增加,使气化炉的温度也得以升高,煤炭的气化反应会更加强烈,一氧化碳和氢气的数量会增加不少,但是生成的气化产物中,二氧化碳和水分的含量占了很大比例,而一氧化碳和氢气的含量会变少,所以,如果不仔细控制氧煤比例,就会使气化炉中的气化反应过强而导致生产甲醇所需的气体成分变少。

4 甲醇生产工艺模拟

传统的烧煤方式已经不能满足人们对甲醇的需求量,而且单纯的燃烧煤炭既是对资源的浪费,也会造成环境污染。所以,当务之急是要尽快找到新的甲醇提取方法和更快捷有效的甲醇生产技术,在这方面,煤气化生产流程已经被初步运用于各大化工厂中,作为目前提取甲醇的有效方式,煤气化工段还需要更多的模拟和分析来增强其效率,简化其工序。

在模拟中我们假设煤浆和高压后的氧气依照固定比例放置在气化炉中,然后在高温作用下因气温及气压生成各种气体,其中包括一氧化碳、氢气、二氧化碳等,其中高压后的氧气进入气化炉可以通过设置烧嘴的中心管道和外环管道,而煤浆可以通过烧嘴的中环管道进入气化炉。在模拟环境下,我们还设置了激冷室,位于气化炉下段,激冷室主要是处理煤炭中的灰份。在煤气化工段进行到末尾后,会残留一些灰份物质,这些物质会在气化炉的高温中熔融,熔渣和热量汇聚,合成了气体,然后结合离开气化炉的燃烧室部分,经由反应室,进入气化炉下段的激冷室。这些气体在激冷室中将被极寒温度降低到200摄氏度左右,熔渣会立即固体化,然后生成大量的水蒸气,经水蒸气饱和后带走了灰份,从激冷室的排出口派排

出。

需要进行变换的水煤气在预热器中加入一部分进行换气和换热步骤,然后进入模拟的变换炉,这部分水煤气在经过煤气化工段后,自身携带了不少的水蒸气,变换炉中的催化剂进行催化作用进行变换反应,在第一部分结束后,另一部分的水煤气也进入变换炉,变换炉这时就会需要新的高温气体,模拟的变换工段里加入了预热装置,提前储存并加热生成高温气体,然后连入变换炉中与另一部分的水煤气进行变换反应,然后进入气液分离器进行分离,分离成功后的气体将进入低压蒸汽室内降温,再次进入气液分离器进行分离,再喷入冷水来清洗掉气体中的三氢化氮,最后气体进入净化系统,生产气态甲醇。

精馏工段的流程为四塔工作方式,首先甲醇气态材料在预热器中进行高温加热,再传输进预塔中部,在这里去除粗甲醇里的残留溶解气体与二甲醚等,这些属于低沸点物质。在加热后,气体进入冷却器进行气体降温,形成甲醇蒸气后进入预塔的回流管道。甲醇蒸气在经过回流后进入换热器,加热后进入加压塔,甲醇在加压塔中进行冷凝化处理,其中小部分送回加压塔顶部作为回流液。剩余的甲醇气体进入精度甲醇管道,最后由加压塔提供压力与热量,将冷凝的高精度甲醇视需求定制成液态或固态储存,然后将杂质或者甲醇残留物通过排污口排入废水处理器进行净化提取处理。

参考文献:

[1] 韩雅楠. 煤制甲醇的研究进展与发展前景分析 [J]. 中国科技投资. 2013(17) :229.

[2]刘喜宏.浅谈煤制甲醇的前景与工艺流程[J]. 中国石油和化工标准与质量 . 2013(10) :22.

[3] 陈倩,李士雨,李金来. 甲醇合成及精馏单元的能效优化[J]. 化学工程. 2012(10) :1-5.

煤气化生产技术范文第2篇

关键词 煤化工技术;现状;突破

中图分类号TQ53 文献标识码A 文章编号 1674-6708(2013)103-0184-02

1 我国煤化工迅速发展

我国煤化工迅速发展的原因主要有以下几点:一是我国经济的快速增长,对新材料的需求不断增加;二是我国煤炭资源十分丰富;三是国际油价的长期高位运行导致我国对外进口依存度逐渐增加,2011年已高达56.8%;四是经过30年的时间积累,技术已进入到产业化阶段。而煤化工项目的特点可以概括为“三个密集”,即资源密集、技术密集和资金密集。资源密集是对资源的需求较高,尤其对水资源的要求;技术密集是指大规模工业化生产过程中需要应用到气体净化、污水处理及其他节能减排技术等;资金密集是指每万吨的产品投资需要消耗一个亿左右。

2 煤化工技术还不成熟

拓展煤炭产业链的主要途径是发展煤化工,确定拓展煤炭产业链的发展方向对调整产业结构、实现煤炭矿区经济稳步健康发展具有十分积极的现实意义,但要注意的是拓展煤炭产业链并不意味着能从源头上解决资源短缺的问题,何况某些拓展项目属新兴的朝阳产业,其科技含量之高、投入资金之多、存在风险之大都是难以估量的,因此煤化工的发展之路并非一马平川。

新型煤化工是一个技术与人才高度密集的现代产业,现在很多大型的新型煤化工技术尚处于初步试点阶段,要想真正实现大规模的工业化推广还有一段很长的路要走,这其中需要引入大量设计研发、生产施工、管理运营等相关的高素质专业人才,但我国从事煤化工生产及研发的工作人员多由石化行业或其他关联领域转行过来的,可以说现阶段制约煤化工现代化发展的主要因素之一便是高素质专业人才的不足。

大型现代煤化工技术多是首次在大规模的工业化中应用,所以下列风险不可避免:技术在初步试点阶段虽然可行,但没经过实践长时的运行检验;当前煤化工中关于“三废”的处理技术尚不完善,距离真正实现“零排放”还有几步之遥;经济、技术等方面还没得到验证,因此要想完善技术必须进行深层次的集成优化与升级示范;投资强度大必然会造成部分投资者望而却步,总之要想新型煤化工的现代化发展一帆风顺,必须做好事先的经济风险评估。

煤炭是我国的基础能源,煤气化是煤炭高效、清洁利用和转化的核心技术,是发展煤基化学品、IGCC发电、制氢等工业的基础。大规模气化技术的应用对引领煤化工行业的转型发展、促进我国化学工业可持续健康发展、保障国家能源安全具有重要意义,然而在一些产业链延伸项目在实施过程中仍存在较大的技术风险。

3 新型煤化工技术问世

我国的芳烃年消费量超两千万吨,其为大宗基础有机化工原料,作为化纤、塑料等领域的关键生产原料成功覆盖了服装面料、航空航天、交通运输、装饰装修、电器产品、移动通讯等行业。市面上的芳烃有不小于97%都源于石油原料,而我国石油产能不足,40%的芳烃依赖国外进口,而由我国自主研发的煤制芳烃技术的成功问世成为了新型煤化工现代化发展之路上的一个里程碑突破,不仅有利于推动石化原料的多元化发展,也有利于应对市场快速增长的需求,对保障国家能源安全是有百利而无一害的。

当前用煤炭资源代替石化生产原料成为新型煤化工现代化发展的重点方向,同时要求真正实现煤炭资源的“零排放”,这一点已被国家能源局写进了““十二五”科技发展规划。煤制芳烃技术以煤炭资源为主要生产原料,由煤气化、合成气制甲醇和甲醇制芳烃三大关键技术组成,其中国内外关于煤气化与合成气制甲醇的生产技术都已纯熟,唯有甲醇制芳烃这一生产技术还是白纸一张。而经由我国清华大学自主研发成功且当作催化剂的甲醇制芳烃和能够应用于大规模工业生产的流化床甲醇制芳烃填补了此项国际空白,对我国发展安全新能源具有重要的保障意义。

经清华大学各位专家们数十年技术攻关而成功研发的流化床甲醇制芳烃在煤制芳烃技术领域里可谓具有划时代意义,其成套技术的创新性之强在技术领域的发展史中都是“前无古人后无来者”的且将同类技术远远地甩在了身后。流化床甲醇制芳烃成套技术的先进性表现在操作流化床装置时,虽然弹性较大,但是非常平稳、易于控制,其自动化与连续性非常高,甲醇不费吹灰之力便可全部转化成所需要的芳烃,同时还会产生大量的氢气,真正实现三废“零排放”、环境“零污染”。清华大学各位专家们在研发煤制芳烃技术的过程中始终坚持“绿色化学”的理念,煤基甲醇生产在经过脱硫、脱氮等程序后,生产处的芳烃必然是干净的、不含丝毫杂质的;甲醇转化成芳烃的过程中产生的大量氢气并非无用武之地,其可以回炉用来调整合成气的碳氢比;甲醇转化成芳烃的过程中产生的甲烷和乙烷可用作燃料或制氢原料,并且在下一道工序中还能再次转化为芳烃,可谓一举多得,真正实现了物尽其用、物尽其责,很大程度上推动了环境友好型城市的建设。

当今社会科技是第一生产力,企业要想长期在竞争激烈的市场和煤化工领域中站稳脚跟、占据技术高地必须大力发展科技,不断突破创新。这就要求企业要积极研发煤制芳烃技术的延伸产业链,不断优化产业结构,形成企业与众不同的技术核心竞争力,继续探索被视为最符合中国国情的企业科技创新途径的产学研合作模式并发展运用这种模式,促进企业的科学、可持续、快速发展。因为谁能在新能源战略竞争中取得优势,谁就能在下一场产业革命中充当领跑者。需要强调的是,我国中西部地区的煤炭资源相对比较丰富,而研发煤制芳烃技术的延伸产业链势必会带动相关下游产业的发展,这不仅有利于实现东部地区共享中西部地区丰富的煤炭资源,还有利于促进中西部地区的经济又快又好的发展,对实现西部大开发具有十分重要的战略性与现实性。研发煤制芳烃技术作为实现新型煤化工的现代化发展的第一步,一定不能出丝毫差错,后续的很多相关工作都要稳扎稳打,坚决杜绝急于求成。

煤气化生产技术范文第3篇

1、引言

中国是一个富煤贫油少气的国家,能源结构表现在80年代前,煤炭占80%以上。目前仍然以煤炭为主,约占65~70%。2013年国家统计局统计表明:2012年煤炭消费量比上年增长2.5%;原油消费量增长6.0%;天然气消费量增长10.2%;电力消费量增长5.5%。从1993年我国已成为石油进口国。同时,我国目前也正在积极开发其他能源:水力资源;核能;天然气。

能源是一个国家生产技术水平的重要标志,没有能源就没有工业因此,能源问题是世界各国,尤其是工业发达国家最先考虑发展的问题。在应对当今石油供需矛盾和贯彻节能减排政策中,煤炭液化不仅具有重大的环保意义,煤炭液化技术也将成为新型煤化工产业的重要方向之一,而且具有保障能源安全的战略意义。因此,煤炭液化将是未来煤代油的重要途径之一。

所以,从世界到我国来看,能源结构的发展趋势进入了群雄并起,各自发挥自身优势的阶段。 应该清醒地看到我国是世界上少数几个以煤炭作为主要能源的国家之一。我国煤炭探明储量为114500亿吨,名列世界第三,占世界储量的12.6%。综合我国能源消费特点:以煤炭为主;人均消费水平低,单位产值能耗高;人均能耗是世界平均水平的1/2,单位产值能耗是世界平均水平的近4倍(3.95倍).

综上所述,为了更好地解决我国未来的能源问题,除了应大力发展其他能源外(核能、水力能、太阳能),还要大力加强煤炭的综合利用,提高煤炭的利用率是极其重要的。

2、煤炭液化工艺

煤炭液化是把固体状态的煤炭经过一系列化学加工过程,使其转化成液体产品的洁净煤技术。这里所说的液体产品主要是指汽油、柴油、液化石油气等液态烃类燃料,即通常是由天然原油加工而获得的石油产品,有时候也把甲醇、乙醇等醇类燃料包括在煤液化的产品范围之内。煤炭液化主要有2种方法:间接法和直接法。

间接法:

煤先进行气化,气化气中的CO与H2在催化剂的作用下反应生成烷烃和烯烃而获得液体产品。间接液化开始于1923年,由德国Franz Ficher和Hans Tropsch提出,因此称为F-T合成。世界目前最为成功的是南非SASOL。

南非因不产石油和天然气,而煤炭储量丰富且价格低廉,在1955年建立了Sasol-Ⅰ合成油厂,生产柴油、石蜡等产品,以后又建立了Sasol-Ⅰ、Sasol-Ⅱ厂,分别于1980、1982年投产,主要生产汽油,Sasol 3个厂每年可生产450万t车用燃料和有价值的化工产品。

Sasol煤气化全都采用鲁奇固定床气化炉,煤气净化工艺采用低温甲醇洗涤法。F-T合成工艺,Sasol公司开发2大系列工艺,即高温(300~350℃)F-T3 - & 合成,主要产品是汽油和轻稀烃,所用反应器是循环流化床和固定流化床,另一类是低温F-T合成,主要产品是蜡和馏出物,所用反应器是固定床和浆态床反应器。

山西煤化所低温浆态床合成技术,铁系催化剂,700t/a级试验平台,完成4000多小时考核运行,柴油馏分70%,十六烷值达到70。成立中科煤制油公司,已经进行3个(神华、山西潞安、内蒙伊泰)十六万吨示范工厂的建设。

兖矿集团: 2003年-2004年建成5000吨/年低温浆态床FT合成中试装置与铁系催化剂制备装置,2004年11月26日完成4706小时连续平稳考核运行,合成产品以柴油为主(70%以上,十六烷值70);2005年1月29日通过鉴定,同年年底启动百万吨级工业化示范工程。

直接法:将煤磨碎制浆,而后加入供氢溶剂及氢气,在高压高温下加氢液化。

从20世纪30年代起,世界上许多国家都在研究开发煤直接液化制油技术,二战时期的德国曾将直接液化技术工业化,产量达到400万t/a。早期的技术液化压力高,油收率低,投资大,50年代由于世界石油廉价而无竞争力停产。随着70年代世界上出现石油危机,美国、日本、俄罗斯、澳大利亚、加拿大、中国、英国等又重新研究开发煤制油技术,近年来该技术在降低加氢液化压力、催化剂的使用、油渣分离等方面有了很大进展,提高了该法的整体效率。目前,世界上较先进成熟的直接液化技术主要有:

H—Coal工艺。是美国碳氢化合物研究公司研制。以褐煤、次烟煤或烟煤为原料,生产合成原油或低硫燃料油。原料煤经破碎、干燥后与循环油一起制成煤浆,加压至 21MPa并与氢气混合,进入沸腾床催化剂反应器进行加氢液化反应,经分离、蒸馏加工后制得轻质油和重油。该工艺的特点是:高活性载体催化剂,采用固、液、气三相沸腾床催化反应器;残渣作气化原料制氢气。建有600t/d工业性试验装置。

SRC溶剂精炼煤工艺。以高硫煤为原料,将煤用供氢溶剂萃取加氢,生产清洁的低硫低灰的固体燃料和液体燃料。可分为SRC-Ⅰ及SRC-Ⅱ法,SRC-Ⅰ法以生产固态溶剂精煤为主,SRC-Ⅱ法以生产液体燃料为主。主要有以下特点:反应条件缓和,固液分离分别采用过滤和减压蒸馏技术;煤中黄铁矿就是催化剂,不外加催化剂,反应剂活化氢主要来源于供氢溶剂。建有50t/d的中试装置。

CTSL工艺。是美国碳氢化合物公司在H—Coal工艺基础上发展起来的催化两段液化工艺。特点是反应条件缓和,采用2个与H—Coal工艺相同的反应器,达到全返混反应器模式;催化剂采用专利技术制备的铁系胶状催化剂,催化剂活性高、用量少;在高温分离器后面串联有加氢固定床反应器,起到对液化油加氢精制的作用;固液分离采用临界溶剂萃取的方法,从液化残渣中最大限度回收重质油。

EDS供氢溶剂工艺。是美国埃克森公司于1977年开发成功。原料煤经破碎、干燥与供氢溶剂混合制成煤浆,与氢气混合预热后进入反应器,进行萃取加氢液化反应,煤液化产物进入分离后得到气体、石脑油、重油和残渣。该工艺的主要特点:采用供氢溶剂对煤进行萃取加氢液化;采用了循环溶剂,非催化反应,循环溶剂在进入煤的加氢反应前先在固定床反应器中用高活性催化剂加氢使其成为供氢溶剂;溶剂加氢和煤萃取加氢是分别进行;采用减压蒸馏进行固液分离。1985年完成了日处理煤250t的工业性试验装置。

IGOR工艺。德国直接液化新工艺—IGOR+工艺。德国开发的IGOR工艺是在IG工艺的基础上改进而成的。原料煤经磨碎、干燥后与催化剂、循环油一起制成煤浆,加压至30MPa并与氢气混合,进入反应器进行加氢液化反应。液体产物经 ( 个在线固定床反应器加氢后,分离成汽油、柴油等。该工艺特点是将液化油二次加氢反应器与高压液化装置联合为一个整体,省去了由于物料进出装置而造成的能量消耗及工艺设备。1981年在Bottrop建成日处理煤200t的工业性试验装置。

此工艺的特点;1固液分离采用减压蒸馏。生产能力大,效率高 2循环油不含固体,也基本上排除沥青,溶剂的供烃能力增强,反应压力降至30MPa;3液化残渣直接送去汽化制氢;4把煤的糊相加氢与循环溶剂加氢和液化油提质加工串联在一起套在高压系统中,避免了分立流程物料降温降压又升温升压带来的能量损失量降低限度;5煤浆固体浓度大于5%,煤处理能力大,反应器供料空速可达0.6%Kg.Lh(daf).经过这样的改进,油收率增加,产品质量提高,过程氢耗量降低。总的液化厂投资可节约20%左右。能量效率也有较大提高,热效率超过60%。

NEDOL工艺。20世纪80年代,日本开发了NEDOL烟煤液化工艺,该工艺世纪是EDS工艺的改进型,在液化反应器内加入铁催化剂,反应压力也提高到17-19MPa,循环溶剂是液化重油加氢溶剂,供氢性能优于EDS工艺。NEDOL工艺过程由5个主要部分组成1煤浆制备2加氢液化反应3液固蒸馏分离4液化粗油二段加氢5溶剂催化加氢反应。此工艺的特点;1总体流程与德国工艺相似2反应温度455-465℃,反应压力17-19MPa,空速36t/m3,h 3催化剂使用合成硫化铁或天然黄铁矿;4固液分离采用减压蒸馏的方法5配煤浆用的循环溶剂单独加氢提高溶剂的供氢能力,循环溶剂加氢技术是引用美国eds工艺的成果,6液化油含有较多的杂原子。进行加氢精制,必须加氢提高来获得合格产品;7 150t/d装置建在鹿岛炼焦厂旁边

FFI低压加氢液化工艺。是俄罗斯在开发研制的煤直接加氢液化成液体燃料的新工艺。以褐煤和烟煤为原料生产液体燃料产品和化工产品。利用此工艺于1987年建立了日处理煤5~10t的工艺开发装置,还进行了年生产300万t液体产品的工业企业的工厂设计。该工艺的特点是:原料准备阶段采用了先进的高效振动碾磨机;采用了瞬间煤涡流舱干燥技术,使煤发生爆炸式湿度分离、热粉碎和气孔爆裂,干燥时间大大减少;采用了高效可再生催化剂钼酸铵和三氧化二钼,85%~90%的催化剂可以经再生回收;煤液化压力降至6~10MPa,降低了设备制运费用、减少了气体压缩及液体泵送的电能消耗。

神华集团煤直接液化技术。该文原载于中国社会科学院文献信息中心主办的《环球市场信息导报》杂志http://总第522期2013年第39期-----转载须注名来源煤直接液化项目所选厂址位于陕西省榆林地区和内蒙古鄂尔多斯境内,神府东胜煤田属世界七大煤田之一,资源赋存条件好,埋藏浅,煤炭属低灰、特低硫、特低磷、中高发热量优质动力煤和化工用煤.

由于神华集团综合能力占据优势,神华集团开发了中国神华煤直接液化工艺,世界上第一套大型现代煤直接液化工艺示范装置。项目选址内蒙古鄂尔多斯市马家塔。先期建设一条每天处理6000吨干煤的煤直接液化生产线,年产液化油100万吨。 先期工程2004年8月现场开始开工建设,2007年建成投产,目前2012年连续运行时间243天,实际年产油品86万吨,神华100万吨工业示范工程对今后技术及产业发展至关重要。

延长煤油混炼技术。2012年4月,世界首个采用德国IGOR煤直接液化技术工艺煤油共炼工业示范项目在陕西靖边开工建设,这意味着我国煤制油战略又添新技术。一旦成功,将对我国乃至世界能源格局产生深远影响。该煤油共炼试验示范项目,将依托陕北地区油、煤资源优势和榆炼的基础设施条件,建设45万吨/年 悬浮床加氢裂化装置及相应配套技术研究设施。

目前国内为有多个设计院正在配合研究完成中国新工艺工艺开发的基础研究,逐步形成国内工程设计、管理、施工能力、设备开发并逐步实现国产化,2010~2020年后是中国煤直接液化产业化发展重要时期。

3、煤间接液化和直接液化的优缺点

间接液化工艺

优点:

合成 条件较 温和。无论是固定 床、流化床还是浆态床,反应温度均低于350℃,反应压力2.0—3.0MPa。

转化率高。如SASOL公司SAS工艺采用熔铁催化剂,合成气的一次通过转化率达到60%以上.循环比为2.0时,总转化率即达90%左右。SheⅡ公司的SMDS工艺采用钴基催化荆,转化率甚至更高。

煤种适应性强。间接液化不仅适用于年轻煤种(褐煤、烟煤等),而且特别适合中国主要煤炭资源(年老煤、高灰煤等)的转化。

间接液化的产品非常洁净,无硫氮等污染物,可以加工成优良的柴油(十六烷值75),航煤,汽油等多种燃料,并且可以提供优质的石油化工原料。

工艺成熟,有稳定运行的产业化工厂。煤间接液化的大型工业过程在南非经过50年的生产实践。目前已经形成了年产500多万吨油品和约200万吨化学品的产业,是南非的支柱产业。

缺点:

油收率低。煤消耗量大,一般情况下,约5—7t

原煤产lt成品油。

反应物均为气相,设备体积庞大,投资高,运行费用高。

目标产品的选择性较低,合成副产物较多。正构链烃的范围可从C1至C100;随合成温度的降低,重烃类(如蜡油)产量增大。轻烃类(如CH4,C2H4,C2H6等)产量减少。

直接液化工艺

优点:

油收率高。例如采用HTI工艺。神东煤的油收率 可高达63%到68%。

煤消耗量小。一般情况下.1吨无水无灰煤能转化成半吨以上的液化油,加上制氢用煤,约3—4吨原料产1

吨液化油。

馏份油以汽、柴油为主,目标产品的选择性相对较高。

油煤浆进料,设备体积小,投资低,运行费用低。

缺点:

反应条件相对较苛刻。如德国老工艺液化压力甚至高达

70MPa。现代工艺如IGOR、HTI、NEDOL等液化压力也达到17-30MPa。液化温度420—470℃。

煤种适应范围窄。直接液化主要适用于褐煤、长焰煤、气煤、不粘煤、弱粘煤等年轻煤。

出液化反应器的产物组成较复杂。液、固两相混合物由于粘度较高,分离相对困难

氢耗量大,一般在6%-10%。工艺过程中不仅要补充大量新氢,还需要循环油作供氢溶剂,使装置的生产能力降低。

工艺不够成熟。目前国内只有神华一套产业化装置在运行,而且运行不稳定

4、煤制油经济性比较

表1是神华煤直接液化和间接液化的技术经济对比,从表中可以看出,煤制油直接法的吨油成本是1400元,间接法的成本是1600元,每生产1吨油需要水5至6吨,而间接法需要9至12吨,直接法2.4吨煤可生产1吨油,而间接法需要4.4吨煤。采用直接液化法进行煤制油,煤的热能利用率为47.6%,而间接液化法的利用率仅为28.6%,即大部分热能在煤制油的过程中被消耗掉。正是由于煤制油需要大量的水及能量的巨大浪费,使得我们国家难以下决心进行大规模的进行煤制油的产业建设。

由于直接法对煤的质量要求较高,需要质量较优的煤,因而其应用受到原料的限制。

关于经济性问题;与直接液化相近与产品结构及市场价格关联紧密、原油价格关系,高油价下有较好的经济效益。

5、未来煤液化的发展方向

煤炭的清洁高效利用既是我国能源发展的战略选择,也是当前节能减排最重要、最现实的手段。从电力和优质燃料两个方面的重大需求看,煤基多联产系统显然是未来洁净煤发展的重要方向,煤基多联产是指利用从单一的设备(气化炉)中产生的"合成气"(主要成分为CO+H2),来进行跨行业、跨部门的生产,以得到多种具有高附加值的化工产品、液体燃料(甲醇、F-T合成燃料、二甲醇、城市煤气、氢气)以及用于工艺过程的热和进行发电等。

该技术以煤炭气化为“龙头”,将多种煤炭转化技术通过优化组合集成在一起,以同时获得多种高附加值的化工产品和多种洁净的二次能源。煤基多联产系统通过气化把两大系统:燃料/化工产品生产系统、动力生产系统统一结合起来进行物质与能量交换,使动力系统达到合理利用能源和低污染排放,又使化工产品或清洁燃料的生产过程低能耗与低成本,是一个实现多领域功能需求和能源资源高增值目标的可持续发展能源利用系统。

国外发展现状:

自20世纪80年代起,美国、欧盟和日本等国政府分别制定和实施了IGCC和煤炭联产研发计划。1998年,克林顿政府制订了愿景(21Vision)能源工厂发展规划,鼓励煤炭联产系统关键技术的研发。一些国际上著名公司,如BP公司、Texaco公司、GE公司、Shell公司等都在进行煤炭联产系统的研发2003年初,美国政府宣布开始执行未来电力(Future Gen)项目,2008年初对该项目进行了重组,重点支持IGCC或其他先进燃煤电站。

自2004年欧盟开始执行HYPOGEN项目,该项目以建成煤气化为基础,生产电力和氢并进行CO2分离和处理的近零排放电站为目标。德国提出了COORETEC计划,旨在研究开发以化石燃料为基础的近零排放发电技术。

日本于1993年在“新能源产业技术综合开发机构”(NEDO

)内设立“洁净煤技术中心”(CCTC)制订了阳光计划。日本新能源开发机构于1998年提出了以煤气化净化、燃气发电和燃料电池发电为主要内容的EAGLE多联产计划。

国内发展现状:

国内研究所和大学与国际同步,在20世纪末开始了现代意义上的煤炭多产品联产概念的探索,并已开始进行系统研究和相关单项技术的研究开发。

国家中长期科技发展规划研究提出,“将多联产技术作为能源科技发展的战略重点方向之一”。煤气化、煤制油、燃气轮机等多项单元技术已被列入国家“973”、“863”计划。

有关科研单位和企业分别提出了符合各自发展特点的多联产工艺路线,有的已经开始进行系统集成研究。中科院工程热物理研究所在国家863计划和中科院知识创新工程重大项目的支持下,与山东兖矿集团合作进行76MW发电和年产24万吨甲醇煤气化合成甲醇、联合循环发电部分联产示范工程的建设,华能集团公司、神华集团公司等大型企业已经制定了多联产发展规划,计划到2015年前后实现初级系统的工业应用,并逐步向先进系统发展。其中,中国华能集团公司处积极探索参加Future Gen国际合作项目的可能外,还对比美国“未来电力”项目提出了“绿色煤电”计划。

目前, 中国“十五”期间启动甲醇-燃气发电示范工程、启动两项煤制油-联产发电示范项目、兖矿集团陕北100万吨合成油联产发电示范、潞安矿业集团16万吨合成油联产发电示范、启动三项IGCC发电示范项目(华能天津、华电浙江、广东顺德 )

对我国发展煤基多联产技术的建议

因地制宜,合理选择技术路线,根据我国能源的供需特点,将发展煤化工、生产液体燃料和实现洁净发电共同作为多联产的发展方向。具体技术路线的选择,应由企业根据国家导向、所在地区条件、煤种煤质、产品市场等情况自行确定。

加强规划,完善政策,加强多联产发展的整体规划,做好科技规划与产业规划的衔接、产业规划与配套政策的衔接,同步推进初级系统产业化和先进系统的技术研发。

启动示范工程,加强技术攻关建议成立国家多联产技术研究中心,集中优势科研力量,对关键技术、系统技术和专属性技术进行攻关。

加强领导,快速发展。以煤为主并且在相当才时间内难以根本改变的能源结构决定中国必须高效洁净利用煤炭资源。从电力和优质燃料两方面的重大需求和国内外煤基多联产技术发展状况来看,煤基多联产系统显然是未来洁净煤发展的主流趋势。多联产能源系统是综合解决我国21世纪面临的能源问题的重要途径,具有十分重要的现实意义。

(作者单位:延长油煤共炼新技术开发公司)

煤气化生产技术范文第4篇

生态园区已成为继经济技术开发区、技术产业园后的第三代园区建设模式。其中,能源规划是实现生态园区能源系统建设目标的基础,也是实现园区其他各项建设指标的保证。立足能源与环境的可持续发展,一些中国企业正在“重新定义能源”,并以生态园区为实验基地,依托能源科技创新,建立一个全新的能源体系和能源状态,从而通过技术创新“制造”能源。

“泛能网”构建生态园区

近年来,关于生态园区、能源生态城的说法不绝于耳,但很多人并不清楚真正意义上的生态园区。这种新型的能源生态城概念不仅强调环境的生态,更关注能源的生态。也就是说,更多考虑的是能源的循环,对能量实现梯级利用、余能最大回收,对能源全生命周期进行智能化管理,实现“能源的综合利用”,并最终将能源全部“榨干吃净”。

举个例子,用煤发电的有效温度在1000~1300℃之间,如果继续沿用传统的利用方式,1000℃之下和1300℃以上的煤炭能量就被白白浪费了。这导致能源利用效率低下,同时还会产生极大的环境污染。

“过去,能源是单一的生产,造成效率低下的本质是能源、资源和职能的过度浪费,未被开发的资源错位。对此,我们提出了一个概念,就是泛能网技术。它是实现能量流、信息流和非能源物质流相互耦合的智能协同网络化技术,关注能源生产、应用、储运和再生的全过程。”新奥集团首席技术官甘中学博士表示,新奥志在建立真正的新能源体系,打造“能源新常态”。

根据甘中学的描述,基于泛能网技术,我们可以看到生态园区的内能源将呈现一种“智慧”状态:在园区内天然气、太阳能、气电联产、煤气化生产、微藻生物能源、地热等多种能源生产方式并存,以最佳方式保障整个城市的能源稳定供应。城市中的泛能站,则将天然气、电能转化为汽、电、热等能量,并根据不同消费载体的能源用量、时间段、使用形式等,实现能源的优化补给和调度。而这些调度、优化、传输、使用、流转等环节,都能在泛能服务平台上一览无余。

这样的画面,未来将会在中德生态园中真实上演。中德生态园控制性能源详细规划由新奥集团编制,它是利用泛能网技术将能源、资源和信息耦合在一起,实现区域内的节能减排和可持续发展。在中德生态园的泛能网规划中,我们将建设一个大型的能源供应站,在各个小区再建一些小型的泛能站,实现1拖N的整体能源供应系统,保证整个能源系统的稳定。

新奥泛能技术中心技术人员以办公和居民用电系统举例说明:居民用电系统晚上负荷高,白天负荷则接近于零;而办公用电恰与之相反。原有的居民区与办公区需要分别建设1个100万千瓦时的配电设施才能满足用电需要,而利用泛能网技术,完全可以各建一个50万千瓦时的配电设施,根据白天居民区用电少而办公区用电多的特点,可以把居民区盈余能量传送到办公区,夜晚则做反向传送,将办公区盈余能量传回到居民区,如此可以在降低能源设施建设成本的前提下,满足两个不同区域的用能需求,从而在总体上减少能源浪费。

技术创新“制造”能源

在化石能源面临枯竭的警钟下,如何利用技术创新“制造”能源,成为所有政府和能源企业必须思考的问题。

事实上,能显著达到节能减排效果的“能效改进”本身即是一种新的能源。来自国际能源署的报告显示,工业部门消耗了世界1/3的能源,而工业部门中高达1/4的能耗可以通过应用节能技术和行为优化来加以避免。以新奥泛能网技术为代表的能效改进工程,在应用端解决了能源的高效利用问题,在一定意义上等于“增加了”能源。这些被称为没有“剪彩”的能效改进工程,虽然不是一种直接性的可再生能源,但是它的意义却丝毫不亚于新能源的开发。

当然,能效改进并不能彻底解决能源枯竭的问题,如何在能源生产端找更好的新型能源和替代能源?新奥通过不断创新和探索,形成了清洁能源循环生产技术。这是一系列以煤为基础的清洁转化技术总称,主要包括地下气化、煤催化气化及微藻生物吸碳技术等。煤炭通过催化气化和地下气化两种方式,被转化为合成气,这种合成气可以直接用于发电,或转化为甲烷(天然气的主要成分)等产品,转化过程中产生的二氧化碳、废水等物质,通过微藻生物吸碳技术吸收利用,又可以转化为生物柴油、化工原料及其他高附加值产品。

中国煤炭资源最为丰富,然而也面临品质不高的现实。新奥的这些技术不仅实现了煤的全价开发和清洁利用,促进了化石能源和可再生能源的融合、转化,而且在提高可再生能源使用比例的同时,也降低了煤生产与利用过程中二氧化碳等温室气体的排放。

煤气化生产技术范文第5篇

关键词:煤炭技术;灾害预警技术;煤层气开发技术;综采技术;开采集约化

中图分类号:TD327 文献标识码:A 文章编号:1009-2374(2011)30-0111-03

近年来,我国煤炭技术的发展与应用改变了煤炭产业原本的落后面貌,煤炭技术水平已经成为实现产业现代化、提高煤矿企业安全生产水平、促进煤炭经济稳步发展的关键性因素。我国煤炭技术在“十一五”期间得到了突破性进展,在煤炭资源勘探、开采、利用以及灾害防治、节能减排等方面取得了一大批科技创新成果。然而我国煤炭技术在基础理论研究等方面还存在不足,需要在“十二五”期间继续加大科研创新力度,为煤炭经济的进一步发展提供可靠的保障。

一、我国煤炭技术发展现状

(一)形成煤炭资源勘探及地质保障体系

近年来,我国在盆地构造、煤岩煤质等方面进行综合研究,掌握了煤炭资源分布等规律,综合勘探体系日益成熟,通过结合高分辨三维地震勘探技术等技术已能探明地质条件,井下钻进技术和配套设备已实现国产化,钻机可达一千米。无线电波透视等探测技术得到广泛应用,微震等监测技术提高了矿井灾害预警能力,地质保障体系已经初步形成。

(二)提高了深厚冲击层矿井建设水平

我国的钻井等凿井技术处于国际领先水平。研发的钻机钻径可达13m,钻深可达700多米。钻造成井深达660多米,直径达到10.3m,使用冻结法凿井的冻结深度达到730多米,穿过冲击层580多米。地面预注浆进入黏土材料时代,深度可达1048m。

(三)综采技术取得突破

我国自主研制了刮板输送机等综采配套设备,实现成套装备国产化,综采技术及设备适应3~6m厚度的煤层,综采工作面年产可达6Mt以上。综放工作面可以在13m厚度的煤层达到10.39Mt的年产量,刷新世界纪录。利用连续采煤机等技术,综掘成巷速度达到300米/月以上,最高可达800米/月左右,煤巷锚杆支护率超过60%,个别矿区甚至达到100%。无轨运输系统得到广泛应用,锚杆钻机、薄煤层采煤机、履带行走支架等开采设备的应用使开采量得到大幅提升,已能够在0.9m厚煤层实现自动化开采,月产量达36.7kt,在0.8~2.0m煤层实现安全高效的无人开采。

(四)煤层气开发技术得到新突破

通过深入研究,我国的煤层气开发技术在地面与煤矿区取得了基础理论、装备等方面的进展,初步揭示了煤层气成藏机理等规律,探索了协调开发模式,形成煤层气勘探技术,建立了煤矿区煤层气一系列的技术体系。与此同时,开发了水平长钻孔设备等机械装备,水平成孔深度超过1000m,松软突出煤层可以实现168m的成孔深度。开发了瓦斯共采等技术及设备,形成煤与瓦斯共采体系。

(五)灾害预警技术得到突破

我国在煤与瓦斯突出理论方面的研究得到新的突破,不仅完善了煤与瓦斯突出的力学作用机理,掌握了煤岩动力灾害过程的相应规律,还掌握了矿井突水的形成条件,了解了采动影响区裂隙场等的分布与形成规律,为灾害预警技术的研发提供了基础理论的支持。与此同时,相应设备的研发与应用也取得了新进展,开发出最新的煤矿安全监控系统,能够高精度探查矿井地质构造,促进了重大灾害预警能力的大幅度提高。

(六)环境保护取得了新进展

通过巷道矸石充填等技术,实现了矸石不上井,将环境保护工作与煤炭开采同步化。利用充填复垦、疏排降法复垦等技术将恢复生态学以及景观生态学应用到煤矿区治理中,煤矿区污染治理工作取得新的进展,环境保护能力得到进一步提高。

(七)煤炭加工技术得到新突破

重介选煤相关技术已经处于国际领先水平,相关工艺得到广泛推广,主要生产环节实现了自动化监控并落实了全厂集中控制。目前,我国自主生产的选煤设备可达4Mt/a,通过完善煤泥水澄清、利用、回收体系实现了煤泥的循环利用,水煤浆技术及设备也取得了突破。

(八)煤炭气、液化技术得到新进展

我国的灰熔聚煤气化技术、航天炉等技术得到进一步完善和推广,已建成6t/d、1Mt/a中试装置与示范装置,间接液化技术已建成180kt/a示范装置。煤制天然气产业化进程还处于初步阶段,加氢气化等技术还处于研发中,已建成1.3Gm/a规模的生产线。我国在电极碳等煤基碳材料取得丰硕成果,促进了工业化生产水平的提高。煤制甲醇等化学品产量居于世界第一,煤化工系统等相关技术取得新突破,工业生产系统实现动态融合,可靠性超过同类系统,并在燃烧室等技术上突破了国外垄断的局面。

二、煤炭技术发展的目标

随着煤炭工业对资源、环境以及安全等方面要求的持续提高,煤炭技术在促进产业可持续化发展的进程中还需要实现以下目标:首先,我国在煤炭开发基础理论等方面的研究还比较落后。受煤炭禀赋条件、自然灾害等因素以及煤炭工业发展与环境协调的影响,我国还需要解决众多关键技术障碍和绿色开采、利用等问题。其次,我国煤炭开发逐渐向西部推移,东部资源需要深部开发技术的支持,中部资源需要环境保护技术方面的技术,西部资源需要特厚煤层开采和转化等技术的支持以及火灾防治等技术的保障。再次,我国煤炭产业正处于产业结构调整期,提升现代化生产水平对煤炭技术的创新提出更高的要求,综采综掘设备研发、管理信息化等能力仍需提高,小型煤矿和小块段煤炭的相关技术还需要进一步攻关。最后,环境保护、节约发展等对煤炭技术创新提出新的要求,必须在综合精细勘察、保水开采、粉尘治理、噪声治理、地热利用、沉陷治理等方面进一步攻关,在煤层气开发和灾害预警与治理等方面进行突破,以促进煤矿产业的可持

续发展。

三、煤炭技术发展的趋势

结合我国煤炭技术发展的目标,可以预测“十二五”期间煤炭技术的发展趋势。煤炭技术发展需要依托企业,发挥市场导向作用,建立产学研一体的技术创新体系,以攻克重大关键技术。

(一)为煤炭资源开发提供地质保障

精细勘探技术与地质灾害探测能够提高煤炭资源开发的效率和安全性,未来将在采空区、戈壁等地质条件下提高勘探精度,加强地质灾害预测预报能力。

(二)提高大型矿井建设水平

随着煤炭资源开发战略的西移,我国将针对西部煤矿生产规模大、井筒直径大、地层不稳定以及斜井多等特点加快斜井冻结技术、特殊凿井技术的研究力度,并开展软岩钻进、井筒施工、硬岩截割、粉尘控制等技术和钻爆法、岩巷全断面掘进设备的研究。

(三)提高煤炭开采集约化水平

目前我国的采掘设备还落后于国际先进水平,中小煤矿自动化、机械化水平低,未来我国将开展自动控制、新型蓄电池、防爆柴油机、软启动和薄煤层开采、保水开采、生产智能监控等研究,提高开采效率和生态环保水平,提高中小型煤矿开采水平,降低大型煤矿对国外设备的依赖程度。

(四)提高管理水平

目前,我国优先发展物联网等信息化技术,以保障煤矿企业安全生产。针对全球能源形势,我国需要加大煤炭经济相关研究的力度,及时调整政策和措施,完善煤炭工业会计准则,将物联网技术应用于煤矿企业成本管理、物流、储备、安全培训等方面。

(五)提高煤与煤层气开采水平

我国煤层气赋存条件十分复杂,开发难度大,抽采效率低,未来我国将在煤层气富集规律、煤储层保护、井壁稳定、分层连续压裂、煤层气低压集输、煤层气高效抽采、煤与煤层气协调开发等方面开展研究,使煤层气开发紧密结合煤炭开采,实现协调发展,推进煤层气产业化进程。

(六)提高灾害防治能力

随着我国煤炭开采条件的不断变化和开采深度的逐渐加大,煤矿动力灾害尚未得到有效防治。未来我国将针对灾害特征开展制灾机理、灾害信息探测预警、煤与瓦斯突出综合防治、隐蔽火源探测等技

术的研究,进一步健全灾害防治体系,以提高灾害防治水平。

(七)提高应急救援能力

未来我国需要加强灾变条件下搜救侦测方面的研究,对救生技术与装备加大研发力度,实现救援方案的快速生成和计算机辅助决策系统,进一步完善适合我国煤炭行业灾害事故情况的标准管理系统。

(八)提高煤炭清洁利用水平

一方面我国将开展尘害防治、热害防治等方面的研究,以提高职业危害防治水平;另一方面我国将发展煤洁净转化、资源综合利用等技术,以提高煤炭资源和能源利用率。

四、结语

综上所述,我国煤炭技术需要重点强化与生态环境相协调的资源开发等方面的基础研究,大力攻克资源整合煤矿与矿井多源地质灾害防治等关键技术,着力构建绿色生态矿山建设等示范工程。大力推广科技成果,促进高新技术产业化,提高煤炭生产技术与装备的应用水平。

参考文献

[1] 徐建慧.增强自主创新能力 实现科技兴煤[J].中小煤矿,2007,(1).

煤气化生产技术范文第6篇

一、煤炭在我国能源结构中的重要作用

煤炭是我国的主要能源,是国民经济和社会发展不可缺少的物资基础。我国煤炭资源丰富,煤炭资源分布面积约60多万平方公里,占国土面积的6%。根据第三次全国煤炭资源预测与评价,全国煤炭资源总量5.57万亿吨,煤炭资源潜力巨大,煤炭资源总量居世界第一。已查明资源中精查资源量仅占25%,详查资源仅占17%。探明储量达到10202亿吨。其中可开采储量1891亿吨,占18%,人均占有量仅145吨,低于世界平均水平。国务院制订的《能源中长期发展规划纲要(2004-2020)》(草案)指出“要大力调整优化能源结构,坚持以煤炭为主体,电力为中心,油气和新能源全面发展的战略”。鉴于我国“多煤、贫油、少气(天然气)”的特点,在今后一段相当长的时间内,能源结构仍然以煤炭为主,煤炭在一次能源消耗中占70%左右。2004年煤炭占我国一次能源生产的70%以上,在我国能源结构上占主要地位,有举足轻重的作用。

根据我国全面建设小康社会的需求,煤炭消费的趋势将有明显上升。在煤炭消费用户的构成中,电力、冶金、建材、化工4个行业煤炭消费量占煤炭消费总量从1990年的50%提高到2004年的84%,其中电力占51.8%,冶金11.64%,年占27%提高到2004年的51%,将近增长一倍。

二、我国煤炭工业发展现状

进入21世纪,我国煤炭工业快速发展,2000年全国产煤9.9亿吨,2001年产煤11.04亿吨,2002年13.8亿吨,2003年16.67亿吨。2004年全国产煤19.56亿吨,占全国一次性能源生产总量的74.3%,当年煤炭销售量为18.91亿吨,占全国一次性能源消费总量的65%,生产力水平显著提高,产业结构调整取得重大进展。一些企业开始跨地区、跨行业的产业联合,煤、电、化、路、港、航产业链开始形成,形成了一批在国内领先、在国际上具有一定竞争力的大集团,如神华集团、山西焦煤集团、兖州矿业集团等。我国煤炭产量急剧上升,得到了全世界的关注。

煤炭是我国能源安全的基石。煤炭工业是我国重要的基础产业,我国的煤炭产量已是世界第一位,是煤炭生产大国,现在我国煤炭工业已具备了设计、施工、装备及管理千万吨露天煤矿和大中型矿井的能力。现代化综采设备、综掘设备和大型高效露天剥、采、运、支成套设备在大中型煤矿大量使用。同时,我国煤炭开采技术装备总体水平低,煤炭生产技术装备是机械化、部分机械化和手工作业并存的多层次结构。技术和装备水平低。全国煤矿非机械化采煤60%。大中型国有重点煤矿装备水平较先进,但设备老化程度较大;小型矿井生产技术装备水平极低,煤矿生产工艺落后,作业人员过多、效率低。保障煤炭供应是国家加强煤炭工业宏观调控的重点之一,挖掘煤炭生产潜力,加快大型煤炭基地建设,是重要措施。为此,只有大幅提高大中型煤矿产量,才能在保障煤炭稳定供应的前提条件下,遏制小煤矿发展和淘汰小煤矿,完成煤炭生产结构优化调整。1998年12月以来,国家对煤炭产业结构进行了重大调整,关闭了五万多处小煤矿,淘汰了一批落后的生产能力,通过宏观调控,煤炭生产形势好转,供求关系趋于平衡。目前我国煤炭生产企业2.5万多家,其中规模以上的企业约占60%左右,2005年计划关闭2000多家小煤矿。

三、我国煤炭工业存在的问题和与国际先进产煤国家的差距

1、我国煤炭企业规模小、产业集中度低我国煤炭企业的突出特点是,规模小、效率低、安全状况不好,产业集中度低。据煤炭行业统计数据分析,2002年国有重点煤矿占52%,国有地方煤矿占18%,乡镇煤矿占30%。按井型划分,大型矿井占32%,中型矿井占18%,小型矿井(含乡镇煤矿)占48%。2004年,全国约有煤矿2.5万处,95%以上的小煤矿,矿井年产能力不足3万吨的矿井约占40%,煤炭产业的集中度只有15%,远远低于世界主要产煤国家的水平。国际先进的产煤国家,煤炭产业规模集中化,世界排名前10名的大公司,依靠核心竞争力,做强做大,提高了全球煤炭产业的集中化程度。2003年10大煤炭公司的煤炭产量约占全球产量的18.81%,有5家公司的煤炭产量超过1亿吨,其中排名第一的皮博迪公司达到1.83亿吨,力拓公司达到1.43亿吨,美国前4家企业的煤炭产量占本国煤炭总量的46.9%。

2、我国煤炭装备落后,机械化、自动化程度低、缺少大型成套设备.我国煤矿生产基础薄弱、国有煤矿连续紧张生产的矿井占总数的近50%,矿井主要生产设备严重老化,超期服役的占30-40%,部分乡镇煤矿设备简陋、生产条件差,有的根本没有机械设备,仅为人工开采,不符合有关煤炭法规要求,当前我国资源破坏和浪费严重。部分煤炭企业存在着“采厚弃薄”、“吃肥丢瘦”等浪费资源现象,全国煤矿平均资源回收率为30-35%左右,资源富集地区的小型矿井资源会回收率只有10-15%。据煤炭行业统计数据分析,2002年我国国有重点煤矿采煤机械化程度为77.78%,综合采煤机械化为62.98%,掘进机械化程度为81.15%,综合掘井机械化程度为15.03%,地方国有煤矿机械化程度更低。当前全国采煤机械化程度仅为42%,除国有大中型煤矿采掘机械化程度达到75%之外,大多数煤矿生产技术水平低,装备差、效率低。特别是乡镇煤矿,基本上是非机械化开采。2004年乡镇煤矿产量占我国煤炭总产量的39%。对不适宜用放顶采煤的5.5米以上煤层,要采用一次采全高是最合理有效的采煤方法,但目前国内没有相适应的高产高效的综采成套设备。而国外美国久益(JOY)公司、德国德伯特(DBT)公司和德国艾克夫(Eickhoff)公司,都具有成熟的高煤层一次采全高的高产、高效综采成套设备。神华集团引进的成套设备年产突破1085万吨,工作面长度突破300米,最长的工作面已超过400米,工作面总装机功率已超过5000kw。而国际先进的产煤国家,煤炭生产呈现出大功率重型化、自动化、集约化、按照环保的特点。国外先进的采煤设备向大功率、重型化发展,设备储备系数大、运行可靠性高。DBT(德国德伯特)、JOY(美国久谊)和Eickhoof(德国艾克夫)等采矿设备公司都制造出具有自动化功能的产品。美国联邦2号矿在工作面实现了跟机自动移架。澳大利亚Batana煤矿实现了自动割煤和跟机自动移架。特别是信息技术在煤矿生产中得到广泛应用,先进煤矿广泛采集工作面设备运行参数和环境安全检测信息,在工作面集中显现并通过以太网传输到地面计算机,实现远程运输和故障诊断。运输系统、供电系统和通风系统均无人值守。实行集中远程操作、视频监视,辅助有专人巡视。井巷布置集约化,生产系统和环节少、实现了生产高度集中。通常是一矿、一井、一面生产。有些先进的长壁工作面每班只需6人,其中采煤机司机2人,维修工1人,机头集中操作工1人,另外2人替换休息。高度重视工作环境的改善和人体安全防护。实现计算机监测安全信息,监测探头遍布整个矿井。液压支架具有跟机自动喷雾和移架自动喷雾功能;采煤机上方安装导风板,减少煤尘进入人行空间。采煤机运行的下风侧几乎无人作业。

3、煤矿安全生产事故多我国煤矿安全生产方面,重大瓦斯事故多发,煤矿事故的总死亡人数达到了高峰,2004年我国生产约20亿吨煤,事故死亡约六千人,这几年煤炭产量大幅度增长,煤矿百万吨死亡率还是下降的。由1994年的5.59人下降到2004年3.08人,美国生产约10亿吨煤死27-31人,百万吨死亡率约为0.039;波兰百万吨死亡率为0.09;南非百万吨死亡率为0.13;俄罗斯百万吨死亡率为0.34。我国百万吨死亡率是美国的约100倍,俄罗斯的约10倍,印度的约12倍,大大超过煤炭先进生产国家。据有关专家讲,矿井安全检测仪表,安全设备均在设计中作了考虑,多数事故都是矿井管理问题,真正因设备问题而发生事故较少。先进产煤国家依靠大型、强力综采技术装备已经完成从普通综采机械化向矿井高效集约化和自动化生产的过渡。高产高效煤矿的建设不仅提高煤炭生产效率,实现煤矿集约化生产,并为煤矿生产过程中的安全监测、监控创造条件,从而有效的预防和控制煤矿安全生产事故。先进产煤国家安全生产上十分重视,不仅有健全的安全生产法规体系,还有严细的生产安全措施,严格的煤矿生产准入制度,而且实现了计算机监测安全信息,监测探头遍布整个矿井,保证了安全生产。

四、煤炭工业发展对矿山机械设备的需求

1、我国煤炭工业发展趋势

据煤炭行业发展规划相关内容,“十一五”期间,我国将新建煤矿3亿吨左右,其中投产2亿吨。国家将在“十一五”期间,对煤炭行业的工业结构进行调整,大力整合、改造、关闭小煤矿,同时适度加快大型煤炭基地的建设,开工一批现代化大型煤矿、置换落后的生产能力。“十一五”期间煤炭行业现代企业制度要进一步得到完善,大型煤炭企业集团基本形成,到2010年要形成5-6个亿吨级生产能力的特大型企业集团,5-6个5000万吨级生产能力的大型企业,产量将占全国煤炭总产量的60%左右。通过新建和老矿井技术改造,全国将建成300处高产高效矿井,高产高效的矿井产量将占全国总产量的50%左右。“十一五”期间,国家将建设神东、晋北、晋东、蒙东(东北)、云贵、河南、鲁西、晋中、两淮、黄陇(华亭)、翼中、宁东、陕北等13个大型煤炭基地,这些基地的储量,占全国储量的70%以上,作为煤炭供应规划和建设的核心。初步预测全国煤炭需求量:2010年为25-27亿吨、2020年为30-32亿吨,均占能源需求量的60%以上。据相关部分统计,2004年国有重点煤矿原煤产量9.22亿吨,超过其核定生产能力50%以上,煤炭生产能力严重不足。经测算,到2020年,新建和在建的国有煤矿的生产能力约为7.1亿吨。如果届时中国小煤矿的产量仍保持目前的6亿吨,按需求预测的高端方案,未来20年中国需新增煤矿产能17亿吨,年均8500万吨;按需求预测的低端方案,未来20年中国需新增煤矿产能13亿吨,年均6500万吨。

2、对矿山机械设备的需求

“十一五”期间,煤炭工业的生产技术水平将明显提高。国家将建成140个高效安全现代化矿井,国家将加大对煤矿建设项目的支持力度,已先后有17个煤炭建设项目,由国家开发银行出具贷款承诺,还将100多个高档普采工作面升为综采工作面,100多个普采工作面升为高档普采工作面。这样,中国大型煤矿采掘机械化程度将达到95%。中型煤矿的机械化程度将达到80%以上;大型煤矿国内先进水平装备率达到20%,国际先进水平装备率达到6%,中型煤矿国内先进水平装备率达到10%,小型煤矿机械化、半机械化程度达30%以上。据此分析,煤炭需求的急剧增长,上述煤矿采掘机械化指标还会有所突破,这为煤矿装备的发展提供了广阔的市场前景。

(1)井下综采重点设备

我国煤炭开采90%以上的井工开采的,井工开采占煤炭开采的主导地位。为迅速提高我国综合装备水平,要以科学发展观为指导,采取跨越式发展模式。在“十一五”期间应以日产2.5-3万吨(年产1000万吨左右)的综采成套设备国产化为突破口,全国实现综采成套设备国产化,推动我国矿山机械工业的发展。

预计从2004年到2020年,每年新增综采工作面成套设备为30套、普采工作面成套设备50套,每年设备更新量约为现有的基数的六分之一。粗略估算,2010年采煤成套设备年需求量将达到500台套左右。高产高效综采技术的核心是井下工作面综合机械化采煤输送设备,主要有采煤机、刮板输送机、液压支架和带式输送机。急需开发研究的电牵引采煤机:装机总功率为2000kw左右,供电电压为3.3KV、采高范围为5-6m,生产能力达3000t/h左右。

重型刮板输送机:输送能力3000-5000t/h,铺设长度250-400m,链速1.4m/s,装机功率3×700或2×1000kw,供电电压为3.3KV。

液压支架:最大工作阻力12000KN,立柱最大缸径ф480mm,支护高度6m,架间距1.75-2m,支架降移升时间8-12s,采用电液控制系统。

大型带式输送机:装机功率1500-4000KN,电压3.3KV,带宽≥1.4m,带速≥5m/s,运量≥5000t/h,距离50000m以上,托辊寿命5万小时以上,减速器寿命7万小时以上。

(2)井下综掘设备

我国目前综掘机械化程度比较低,仅为12.81%,远远跟不上综采机械化的发展,其中掘进机虽有较大的发展,但整体技术水平仍比国际先进水平有较大差距。

需研究开发先进的掘进机:其截割功率300kw以上,截割断面最大可达42m2,经济截割硬度达f12,可靠性要求,齿轮寿命在20000h以上,轴承寿命在30000h以上,力争整机掘进10000米无故障。

同时要结合我国国情和煤矿实际工矿,开发研制集切割、装运、行走、锚杆支护、机载、除尘等功能为一体的掘锚联合装备机组,可大大提高掘进速度。

(3)全自动刨媒设备

我国薄煤层储量约占总储量的21%左右,但是由于煤层薄,作业空间小,工作条件恶劣,薄煤层高产高效开采技术一直是我国煤炭工业研究探讨的重要难题。刨煤机作为一种“浅截深、多循环”的采煤设备,是实现薄煤层高产高效的有效途径。提高薄煤层机械化水平加快薄煤层资源的开采进度,不仅可以充分利用有限的资源,提高矿井整体生产能力,同时,也有利于保障煤矿的安全生产。开发研制大功能、高强度、高效率、紧凑型的全自动刨煤成套设备势在必行。全自动刨煤成套设备(采高0.6-1.8m),主要包括刨煤机、配套刮板输送机、薄煤层液压支架、顺槽转载机、破碎机等产品。我国目前主要从德国DBT进口主机——刨煤机及配套刮板输送机,由北京煤炭机械厂配套薄煤层液压支架,张家口煤矿机械有限公司配套转载机和破碎机。到目前已进口六套(铁法2套、晋城、西山、阳泉、大同各1套)。开发研制的全自动刨煤成套设备:其生产能力1000吨/小时,铺设长度250-300米,适应煤层厚度0.8-2米,适应煤质硬度F≤3.5,适应煤层倾角≤25度,功率2×400kw(刨头部分)、刨煤方式为双速混合式,上行速度0.88米,下行速度1.76米,刨深≤120毫米,上行90毫米,下行30毫米、下链牵引,牵引链38毫米D级,刨煤机采用智能控制系统,能自动监视故障性质和位置。

(4)矿井提升设备

目前我国约90%的原煤是靠井工开采的,矿井提升设备是井工开采的咽喉设备,它不仅关系到矿井的产煤量,而且直接影响到人身和整个矿井的安全。我国煤炭产量到2020年将达20-32亿吨,估计每年需新增大型、特大型矿井提升机约30台套,考虑到更新改造,综合估算在“十一五”期间平均年需各类提升机150-180台套,其中大型和特大型约占20%,中小型约占80%,每年新增提升机产值5.4亿元左右。开发研制适用于年产1000万吨的特大型矿井提升设备,其规格为6×4、7×4多绳提升机、最大拖动功率单机为6000KW、双机为2×4000KW、最大提升速度14×16米/秒,整机使用寿命为25年。

采用恒力矩、恒减速液压控制系统:采用计算机数字控制自动化运行,提升速度及容器位置的监控全由电气自动检测、反馈、调整。实现提升机的全自动化监控运行。

(5)露天矿井开采成套设备

露天开采占我国煤炭总开采量的10%左右。露天开采与井工开采相比具有煤炭资源利用率高,开采成本低,作业现场和工作人员更加安全等优点。所以,发展露天开采更有其井工开采无法相比的作用和意义。大型露天矿设备从设计、制造到使用的技术性强,世界各国都争相把最先进的技术成果用在大型露天矿设备上,因此发展大型露天矿设备可以带动机械、电气、液压、信息等行业的发展,推动和促进我国民族工业的发展。当前世界露天矿开采特点是:高度集中化开采与集约化经营;开采工艺的多样化;企业管理的计算机化与智能矿山;合理充分利用资源,重建生态环境保持可持续发展等几个方面。在我国大型煤炭基地建设总体规划方案中,神东、晋北、蒙东(东北)、云贵、黄陇(华亭)、陕西等基地都建有大型露天煤矿,仅霍林河、伊敏河、胜利、平朔哈尔乌苏2000万t采选项目中16-45m3矿用挖掘机市场需求量就可达30-50亿元;哈尔乌、武家塔、马家塔采选项目等需大型拉铲15-20亿元,又比如对半连续开采工艺设备仅蒙东要建7个5000万t级煤炭基地,建设一批保证胜利一二三号、百音花、伊敏河、宝日希勒一号和二号等超过千瓦吨级大型露天煤矿,加上神府、哈尔乌苏和原有五大露天煤矿的改建及二、三期扩建,移动式、半移动式破碎站需求量在40-60台(套)之间,要求移动式(半移动式)破碎站的生产能力达到每小时2000-4000吨(碎煤),最高达到每小时6000吨(碎岩)。在上述煤矿建设中对矿用卡车的需求量,估计,“十一五”期间需100t级矿用车在250辆左右。当前需要开发研制斗容28m3、45m3的大型机械式正铲,斗容70m3、90m3、100m3臂长约为100m的大型拉铲,降低电能消耗17%,减少机械零部件应力载荷约30%,提高零部件使用寿命,使平均无故障时间达到国际先进水平。开发研制斗轮挖掘机,争取与国外合作制造3600m3大型斗轮挖掘机,达到国际先进水平。开发研制移动式、半移动式大型破碎站,其生产能力4000-6000-8000t/h,破碎物料强度≤150Mpa,给料粒度1500×1500×1500-2500×2500×2500mm,排料粒度≤350mm,立机形式新型双齿辊破碎机(中心距1500-1800mm,辊长2500-4000mm,功率2×300-2×500KW)。开发研制带宽2m的大型带式输送机,功率3×1400KW,运输量12000t/h,半固定式单机长8820m,移置式单机长5270m,在-45℃低温下能正常运行。争取与国外合作,开发研制载重170-360t的大型电动轮自卸车,并达到国际同类产品的先进水平。

(6)煤炭洗选加工设备煤炭清洁洗选加工技术是资源综合利用的基础,是提高煤炭热效率的有效途径,也是保障国民经济可持续发展和环境保护的需要,煤炭洗选加工业在政策扶持、科技进步、市场拉动、投资增加和环保要求的推动下,呈现出快速发展、总体推进、扩量提质、增效降污的可喜局面,原煤入洗比例不断提高。到2004年末,全国共有年入洗3万吨及以上的选煤厂2000余座,设计能力7.5亿吨以上,原煤入洗量为5亿吨左右。2005年,全国原煤入洗能力将突破8亿吨,入洗量将达到6亿吨,入洗比例达40%,根据煤炭工业规划,到2010年原煤入洗率达50%,原煤入洗量提高到11亿吨,炼焦煤全部入洗,动力煤入洗率达到40%以上。据此计算,每年将新增8000-10000万吨原煤入洗,按400万吨规模洗选煤厂计算,每年将新增25座大型洗选煤厂,加上现有洗选煤厂的技术改造每年约需洗选煤设备250套左右,洗选煤设备的发展潜力很大。为适应煤洗选加工的要求,应开发研制单机处理能力为1000-2000m3/h的新型浮选机,其主要参数能够实现自动控制。开发研制筛子面积≥28m3的高可靠性大型直线振动筛。开发研制入料粒度25-400mm、处理能力为300-400T/h的高效液压动筛淘汰机。开发研制筛篮直径≥1.4米,处理能力≥300T/h的大型卧式振动离心脱水机和400m2高效精煤压滤机、处理能力≥35T/h的沉降式离心脱水机等高效脱水设备。开发研究并解决300-400万吨/年的大型选煤厂的集中控制和智能化管理技术与装备,实现选煤的全过程的主要工艺参数,煤炭灰分、水分、发热量、悬浮液密度、入料浓度、流量、旋流器入口压力、跳汰机床层厚度、松散度、浮选加药量、耙工浓缩机溢流水的浊度、皮带输送机的煤流量等指标的在线检测、实现跳淘机、浮选机、重介旋流器、压滤机等主要分选设备单机自动化控制系统和选煤厂全厂的综合自动化控制系统。

煤气化生产技术范文第7篇

关键词:资源税 煤炭产业 经济发展

中图分类号:F810.42 文献标识码:A

文章编号:1004-4914(2012)11-156-02

改革开放以来,我国经济社会面貌发生了翻天覆地的变化。与此同时,经济增长也付出了沉重的资源环境代价。自资源税开征以来,我国颁布了《中华人民共和国资源税条例(草案)》、《中华人民共和国资源税暂行条例》、《中华人民共和国矿产资源法》、《矿产资源补偿费征收管理规定》、《关于修改的决定》等来不断的完善资源税法规。2011年11月1日,修订后的资源税暂定条例已在部分地区正式施行。此次改革煤炭资源税并没有列入改革范围,但是权衡对资源和环境以及产业结构调整的积极影响,煤炭资源税改革势在必行。作为煤炭资源大省的山西,煤炭资源税改革,必将对山西经济的各个方面带来深远的影响。

一、煤炭资源税改革的必要性

(一)煤炭资源税按量征收杠杆作用不明显

现行的煤炭资源税采取按产量征收的形式,致使资源税对市场价格不敏感,不能反映市场供求关系带来的价格变动以及煤炭资源的稀缺性、不可再生性。按产量征收使企业在资源开采中产生了大量的资源浪费和环境破坏的现象。因此,现行的煤炭资源税仅仅被定位为增加财政收入、调节资源级差收入的一般税,并没有运用税收杠杆的调节作用,为国家的经济和政策目标服务,不能起到节约资源,保护环境,或者引导企业节能减排的作用,不符合我国建设资源节约型社会的目标。

(二)税费结构不合理

现行的煤炭资源税额偏低,地方性收费过高,从总体上反而造成了企业沉重的负担。煤炭企业除缴纳相关税收外,还要交纳矿产资源补偿费(销售收入的1%)、矿业权价款(30元/吨)、可持续发展基金(19-22元/吨)、矿山环境恢复治理保证金(10元/吨)、煤炭转产发展资金(5元/吨)和采矿排水水资源费(3元/吨)、煤炭企业管理费和矿区管理费等。这不仅不能够充分体现资源的优劣和稀缺程度,也不能有效发挥节约资源和保护生态环境、促进企业可持续发展的作用。

二、煤炭资源税改革对山西经济的影响

(一)对煤炭产业经济稳定性的影响

从短期看,煤炭资源税改革,必然会普遍增加煤炭企业的税负。由于煤炭是基础能源,煤炭产品需求具有刚性特点,即使价格上涨,需求量也不会有很大下降,这就使得煤炭企业具有转嫁税负的客观基础。煤炭因税负增加而致成本上升,一定程度上会通过价格提升来转嫁成本,会对整个经济的稳定产生不利影响。

(二)对煤炭产业经济效益的影响

从长远看,煤炭资源税改革,有利于国有资源的合理开发、节约使用和有效配置,同时有利于合理调节税费结构,促进煤炭企业的健康发展。这主要在于煤炭产业内部生产结构的优化需要一定的时间,同时政府的财政收入投资效应的发挥也需要一定的时间。而当煤炭产业内部生产结构优化得以实现和财政收入的投资效应充分发挥的时候,山西的煤炭产业将是一个高附加值,节能高效性产业,将会有更大的经济效益。

(三)对煤炭产业发展趋势的影响

煤炭资源税的调整,将使得煤炭产业内部生产结构实现有效整合和煤炭生产企业生产竞争秩序的规范,必然影响山西煤炭产业的发展趋势。本文认为山西煤炭产业将沿着能源型、节约型、清洁型方向发展,即高效能源、高回采率、洁净煤生产,有利于山西经济的可持续化发展;煤炭企业生产将实现集团化、规模化经营,即通过煤炭企业生产有效整合,有利于增强山西煤炭企业的综合竞争实力,变山西的煤炭资源优势为煤炭经济优势。

三、面对煤炭资源税改革的对策建议

煤炭资源税改革对煤炭企业是把双刃剑,会加大企业的税收负担是毋庸置疑的。因此,煤炭企业必须做好应对措施。

(一)提高资源回采率

煤炭资源的不可再生性和易消耗性决定了其稀缺性。在有限的开采区域内,煤炭企业要想获得更大的产出,就不能一味地追求开采新矿。提高回采率而非开采新矿的优势在于:一方面企业可以省去勘探、购置新设备等成本,而对已开采的煤矿进行回采,也可以增加产出;另一方面企业也可以提高资源的利用率,减少对环境的影响。

(二)提高技术水平、加强资源的综合利用

在经济回暖期,面临增值税和资源税的提高,煤炭企业必然要努力压缩由此产生的附加成本。企业内部的消转需要通过多种途径实现:提高技术水平;加强资源的综合利用,控制资源的浪费行为。

提高技术水平可以通过购买或技术入股等方式实现,有自行研发实力的大型企业可以进行自主研发,并结合国家的税收优惠政策可以双方面有效的压缩成本。例如在煤炭行业,可以应用物联网技术,改造提升山西煤炭及煤层气产业。通过物联网可以缓解煤炭管理和运输效率等难题。同时,在煤炭行业利用物联网的感知系统可实现对人、物、环境等有效监控和检测,预防事故。从而实现由间断性检查向连续实时监控的管理模式,针对关键技术难点,组建由企业生产技术部门、科研机构或其他组织形成的联合开发、优势互补、利益共享、风险共担的技术创新合作组织。

另外,开采过程中往往会出现伴生矿的状况,对于伴生矿也应当适度采掘,合理利用。降低资源浪费的重点在于控制整个生产流程。

(三)整合产业链条,形成规模效益

兼并重组可以产生协同效应,提高企业的经营和管理能力,也会提升企业的竞争力。同行业的兼并收购比较容易实现,也较易整合。因此国家鼓励大型煤炭企业收购中小型煤炭企业,扩大企业规模,利用规模效应提高企业盈利能力。但在兼并时管理部门要注意兼并的质量,以及兼并以后的合理整合。

煤炭被人称为黑色的金子,可利用的地方非常多,但长期以来,山西省煤炭工业以初级产品加工见长,煤炭巨大的经济价值不仅没有得到充分利用,反而给环境造成了较大压力。我们应该努力让这“黑色的金子”散发出更多的光芒。按照“立足煤、延伸煤、超越煤”的发展理念,山西省煤炭工业积极推进煤炭工业优化升级,坚持煤电、煤焦化、煤化工、煤建材、煤气化、煤变油等相关产业并举,以低消耗、低排放、高效益为目标,以资源循环利用、多联产、洁净化生产为方向,构建循环绿色经济体系。

四、结束语

资源税改革是近年税改的重点之一,既要考虑国家利益与企业利益之间的关系如何处理,又要考虑环境保护和资源保护,以及合理开发和利用的等一系列问题。政府和煤炭企业等利益相关各方都十分重视这项改革,新一轮的煤炭资源税改革,对煤炭行业和煤炭企业将产生重大影响。因此,各煤炭企业必须做好准备以应对即将来临的改革。

参考文献:

1.国务院《关于修改的决定》.发文字号:国务院令2011年第605号

2.国家税务总局关于修订后的《资源税若干问题的规定》的公告.发文字号:国家税务总局公告2011年第63号

3.《中华人民共和国资源税暂行条例》.发文字号:国务院令[1993]第139号

4.张月玲,张玉倩等.资源税改革对煤炭企业的影响分析.会计之友,2011(6)

5.杨芝青,乔旭辰.煤炭资源税调整对山西煤炭产业的影响.经济论坛,2006(6)

煤气化生产技术范文第8篇

机械工业是为国民经济提供技术装备和为人民生活提供耐用消费品的装备产业。国民经济各部门生产技术的进步和经济效益的高低,在很大程度上取决于它所采用机械装备的性能和质量,机械工业的技术水平是衡量一个国家科技水平和经济实力的重要标志之一。

经过近50年的发展,机械工业已经成为我国工业中具有相当规模和一定技术基础的最大产业之一。1997年实现销售收入13651亿元,占全国工业的21%;利润257亿元,税621亿元,分别占全国工业的15%;出口创汇363亿美元,占全国外贸出口额的20%。其发展速度高于同期工业的平均增长速度。

近年来,机械工业企业自主开发创新能力有所增强,1997年科技人员总数达48万人,技术开发经费支出达85亿元,占全行业销售收入的0.62%,有57家大型企业建立了国家级技术中心,有9%的企业建立了专门技术开发机构,行业整体技术水平有了明显进步,主要表现在:为国民经济提供成套技术装备和汽车的能力有较大提高;产品结构正向合理化方向发展。

尽管机械工业的综合技术水平近几年有了大幅度提高,但与工业发达国家相比,仍存在着阶段性的差距。主要问题在于:

1.科技进步对机械工业增长的贡献率目前仅为34%,先进国家高达70%以上。

2.产品设计技术、制造工艺及装备、制造过程自动化技术、管理技术落后,是制约机械产品水平的主要因素。

3.机械产品技术水平不高,达到80年代末、90年代初国际先进水平的仅占18%,达到80年代中期国际水平的占27%,其余产品均在80年代以前的水平线上。

从总体上看,机械工业技术开发能力和技术基础薄弱,发展后劲不足;技术来源主要依靠引进国外技术,对国外技术的依存度较高,对引进技术的消化吸收仍停留在掌握已有技术和提高国产化率上,没有上升到形成产品自主开发能力和技术创新能力的高度。

(二)技术发展的总体目标

以数控机床、电力电子应用及自动化技术、大型农业机械和施工机械、轿车关键技术、环保装备五个方面作为重点,以发展和应用先进制造技术为手段,以高新技术和产品的产业化为突破口,以提高企业技术创新能力和竞争力为目标,提高企业技术创新水平。到2001年,提供1000种具有自主知识产权和较大市场需求潜力的产品。主要产品品种的40%达到90年代初国际水平,5%达到国际先进水平,90%的重点骨干企业产品标准接近或达到国际先进企业标准。

(三)技术发展的方向和重点

1.以数控机床为代表的基础机械

数控机床是先进制造业的基础机械,是最典型的多品种、小批量、高技术含量的机电一体化产品。目前世界数控机床年产量超过15万台,品种超过1500种。1997年我国数控机床产量已达9051台(占机床总产值20%以上),但由于国产数控机床不能满足市场需求,在国内市场上的占有率逐年下降,每年仍需大量进口数控机床,进口额度大幅度增加。1996年进口达13924台(价值12.46亿美元)。

目前我国数控机床技术发展中存在的主要问题是:

(1)产品成熟度差,可靠性不高

国外数控系统平均无故障时间(MTBF)在10000小时以上,国内自主开发的数控系统仅3000~5000小时;整机平均无故障工作时间国外达800小时以上,国内最好只有300小时。

(2)产品品种少,不能满足市场需求

国外数控机床品种已达到1500种,国内只有500多种,且性能水平低,高速、高效、高精度产品几乎没有。

(3)创新能力低,市场竞争力不强

生产数控机床的企业虽达百余家,但大多数都未能形成规模生产,企业效益差,创新能力低,制造成本高,产品市场竞争能力不强。

(4)数控机床行业的专业化零配件及部件的协作生产配套体系不健全,大多数企业都是“大而全、小而全”的结构模式。

近期我国在数控机床的发展方面,要采取跟踪高级型、发展普及型、扩大经济型,以普及型为主的策略,重点发展:

(1)经济适用、量大面广的产品

经济适用的普及型数控车床、加工中心、数控铣床。

(2)高速、高效和专用、成套数控机床

高速、高效数控车床及加工中心;高效数控锻压成套装备,其中包括,可自动换头冲压机床、复合式柔性冲压中心、四边折弯机等;大型精密模具数控成套装备,其中包括数控仿型铣床及龙门式数控铣床、智能化电加工机床等。

(3)数控机床专业化配套系统

新一代数控及伺服系统系列产品;数控机床高速主轴、电主轴电机系列产品;数控机床机械手、刀库及动力刀架系列产品;数控机床高速配套零部件及辅件系列产品;其中包括,高速滚珠丝杆、高速陶瓷轴承、高速防护装置等系列产品。

发展目标:

(1)扶植重点企业开发经济适用、量大面广的数控机床并形成批量生产,使这些企业产品的市场占有率有明显提高,成为名牌产品;

(2)发展数十种高速、高效、专用、成套数控机床系列新品种,以满足汽车、农机、航空、模具等行业的需求;

(3)数控机床关键配套产品:数控系统,满足国内数控机床50%的配套需求;高速主轴及电主轴年产达千套;机械手、刀库、动力刀架及数控机床高速配套零部件、辅件系列产品满足国内50%的配套需求。

2.电力电子应用及自动化技术

电力电子技术是集微电子、计算机和自动化技术于一体的综合技术,是节能节材的最佳技术之一。目前,国外电力电子技术已经发展到以IGBT为代表的第三代,并向智能电力电子时展,我国现在仍处于以晶闸管为代表的第二代。国内电力电子市场品种满足率仅35%,新产品市场基本上被国外产品占领。

现场总线智能仪表和总线式自动测试系统是集自动化技术、计算机技术和通信技术于一体的新一代自动化仪表系统,已成为世界范围自动化技术发展的热点,是当代工业自动化的主要标志。我国仍处于由模拟式仪表系统向数字式仪表系统过渡的模数混合式仪表系统阶段,水平落后10~15年,因此在低技术产品市场上还占有80%左右份额,但在高技术产品市场的占有率不到60%,新产品市场几乎全为国外产品占领。

因此,抓住当前时机在2~3年内以IGBT,现场总线智能仪表和自动测试系统为突破,攻克重点技术和产品,并实现产业化。这一领域重点发展:

(1)IGBT器件及其装置,大功率晶闸管及其装置

研制新一代双极晶体管IGBT、高品质大电流IGBT等大功率晶闸管制造技术,并开发变频调速装置、逆变开关电源、大容量整滤源等的工程应用。

(2)现场总线智能仪表

研制开发变送、执行、配套等类现场总线仪表。产品产业化技术开发、并开展示范工程的应用研究。

(3)自动测仪系统和设备

开发总线式自动测试系统的基础产品,形成适度规模,同时建立用于机电产品和社会公益事业的典型自动测试系统,做好示范和推广应用。

3.大型农业机械和施工机械

(1)农业机械

工业发达国家农机产品在不断采用新技术的基础上,正向高效、节能、保护农业环境方向发展。目前我国已能生产14大类、3000多个品种的农机产品,但是产品的综合技术水平仅相当于国外70年代水平。主要问题在于:

1)产品水平不高,品种不全综合技术经济指标落后,可靠性差,寿命短。以拖拉机为例,MTBF值国外可以达到330小时以上,而我国仅100余小时。品种上:大型缺,小型杂,不成系列。

2)产品生产达到经济规模的少,重复生产、小规模生产,难以保证质量。

农机领域重点发展:

1)促进农业生产产业化的大中型拖拉机及配套农具拖拉机平均无故障时间从110小时提高到300小时以上;

2)联合收割机联合收割机可靠性系数从0.5~0.7提高到0.9以上;

3)主要农产品加工机械(含烘干仓储机械)农村产业化和中西部地区脱贫致富需要的农产品深加工机械;

4)节水灌溉设备喷、滴灌设备将灌溉水的有效利用率由大水漫灌的40%提高到80%以上。

农机产品的使用可靠性及寿命指标普遍提高一倍以上,主要产品的技术标准与国际标准接轨。

(2)施工机械

施工机械是国民经济大型工程项目建设必须的关键设备。我国已初步具备16个大类,3100多个品种规格产品的生产能力,部分产品已开始进入国际市场。但与国民经济发展要求和国际先进水平相比较,差距还是很大。一是产品的综合技术水平不高,尤其是产品的质量、寿命、可靠性、安全舒适性等指标以及机电一体化等高新技术的应用与国外先进水平还有很大的差距;二是产品结构性短缺,成套服务能力差,远不能满足需要,如路面施工机械基本上还要靠进口;三是大部分企业生产规模小,制约着行业经济效益的进一步提高。

施工机械重点发展:

1)推土机、液压挖掘机、轮式装载机;

2)汽车起重机、大型叉车;

3)摊铺机、压路机;

4)无开挖式管道铺设机;

5)江河湖库清淤设备。

发展目标:

大型工程机械可靠性指标达到400小时,寿命指标达到10000小时。

4.轿车关键技术

我国汽车工业长期以卡车为主要产品,改革开放以后,轿车产品得到了快速发展。1998年轿车产量达到52万辆。

我国汽车工业存在的主要问题:

(1)重复建设严重,造成无序竞争,难以集中形成实力,发挥规模效益。

(2)自主开发能力薄弱,大多数企业“九五”期间仍偏重于对生产环节进行改造,包括多数中外合资的零部件企业对产品开发能力建设几乎没有投入。目前,国内对轿车产品尚不具备自主开发能力,机电一体化的高新技术零部件产品还必须引进技术。

近期轿车重点发展:

(1)经济型轿车

以轿车车身为突破口,利用技贸结合、与国外公司合作等方式,先抓车身联合研制,并建立经济型轿车的公用设计数据库,与CAS、CAD、CAE、CAM等技术结合,形成我国汽车工业在经济型轿车方面的自主开发能力。

(2)轿车动力总成

消化吸收引进技术,与国外有实力的企业进行合资、合作、联合开发,在国产汽油机上普及电控燃油喷射技术(EMS),并研究开发缸内直喷(GDI)技术,开发应用电控机械变速器(AMT)技术。

(3)轿车关键零部件

以机电一体化汽车电子部件为突破口,从引进技术、合资入手,在保证高起点、大批量、专业化生产的同时,要集中力量抓紧下一代新产品的研制开发和应用,重点是电控防抱死制动系统(ABS)、安全气囊(AirBag)、高效稳定的汽车尾气三元催化转换器,并达到与整车同步或超前发展。

(4)高附加值专用汽车和客车

重点开发各类高性能专用底盘。对专用汽车以低底盘车辆和沙漠越野车辆为主;客车以低地板城市客车为主,要求具有良好的动力性、操纵性、舒适性和低污染。

5.环保装备

环保产业是防治环境污染、改善生态环境、促进资源优化配置、支持资源综合利用的支柱产业。全世界环保机械的年销售额约2000亿美元,集中于美国、欧州、日本等经济发达国家。我国环保机械行业基础弱、起步晚,年产值仅100多亿人民币。随着各方面对环境保护的日益重视,可持续发展战略的实施,市场需求不断增长,环保机械将成为机械工业新的经济增长点。

环保机械行业主要差距在于:

(1)产品结构不合理,品种少

初级产品所占比重较大,具有当代水平的机电一体化产品少,急需的大型成套设备不能满足现实市场需求。在目前3000多种环保机械产品中,约有五分之一的产品由于性能、可靠性、适用性、结构设计等原因,应该限制生产或限期淘汰。大型烟气脱硫、脱氮成套设备、大型城市污水处理厂成套设备、大型城市垃圾处理厂成套设备目前主要依赖进口,高浓度有机废水、难降解工业废水处理

技术及设备发展缓慢。

(2)产品质量、技术水平比国际先进水平落后20年

相当多的产品没有行业或国家标准,产品规格型号、基本性能参数不统一,质量检测无依据。

(3)生产企业规模小、开发能力薄弱

规模小、装备条件差、检测手段不全的中小企业占全行业企业总数的78%。年产值在3000万元以上的企业仅占全行业的3.2%,并且主要集中在电除尘器、袋式除尘器等少数几种产品生产领域。

近期环保机械重点发展:

(1)烟气脱硫设备

循环流化床锅炉及炉内脱硫脱硝技术(CFPBC、PFBC技术)、大型整体煤气化燃气蒸汽联合循环技术及装备(IGCC技术)。

(2)城市污水处理成套设备

活性污泥法、氧化沟法、移动曝气法为主体的城市污水处理成套设备,以日处理10~25万吨污水处理厂为目标,提供污水处理成套设备、污泥利用和处置成套设备、控制和监测系统。

(3)城市固体垃圾处理和综合利用装备

城市生活垃圾分类、焚烧、堆肥技术及装备,以日处理100吨、300吨处理厂为目标,提供垃圾处理成套装备。

(4)环境监测仪器

便携式多功能多参数水质监测仪、12种总量控制的污染物监测仪、大气环境污染监测仪器和系统以及水处理过程自动控制系统等。提高产品档次、水平、可靠性和精度。

主要目标:

(1)大型成套设备的国产化率达到70%以上;一般工程项目的设备国产化率达到90%以上;高浓度有机废水和难降解工业废水处理技术及成套设备国产化率达到80%以上。