首页 > 文章中心 > 智能建造的前景

智能建造的前景

开篇:润墨网以专业的文秘视角,为您筛选了八篇智能建造的前景范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

智能建造的前景范文第1篇

一、引言

随着改革开放程度的加深,英语教育已经普及,并逐渐尝试改变传统教育模式,发展更为国际化的英语教育,而多元智能理论的出现为英语教育带来了新的命题和尝试。高职英语教学为突出其自身特点及解决存在的问题,尝试在教学之中应用多元智能理论,以期改善教育效果,实现新的突破。

二、高职英语教学现状及问题

随着经济发展以及国际交流的加强,英语已成为普遍需要的技能。但我国高职英语教学并没有完全挣脱出传统应试教育的模式,仍存在许多问题和不足。学校方面英语教学环境建设不完善,没有提供一个供学生发挥交流的平台;此外对英语教学投入不足,无法营造一个英语学习的良好氛围,无法鼓动学生学习的积极性。教师团队方面,教师没有采取灵活新颖的教学手段,没有针对现状对课程结构做一个调整和把握,灌输式的教学方式以及照本宣科的教学内容无法调动起学生的学习积极性,教学效果不尽如人意;另外对于学生的个性及特点没有足够的关注,没有因材施教,容易挫伤学生的自信心,失去学习动力。学生方面,由于基础较为薄弱,英语水平也不尽相同,统一单调的教学模式下极易忽视英语的重要性,并丧失学习动力,甚至对自我水平产生怀疑。对英语应用程度不高,抱着应试的心态学习英语。

二、多元智能理论对高职英语教学的启示

多元智能理论的提出重新定义了智能这一概念,认为我们每个人主要拥有八种智能即空间智能、逻辑一数理智能、运动智能、人际交往智能、音乐智能、语言智能、内省智能、自然观察智能。多元智能理论给教育领域带来了新的启示,起初较多地应用于幼儿教育中,后来又推广至中学、大学乃至研究院,给教育带来了新的面貌,有着广阔的前景。

多元智能理论对于高职英语教学具有重要意义,并且在高职英语教学中具有具有较强的可行性。在多元智能理论的指导下,建立多样多元智能平台场所,改善教学环境,营造轻松愉悦的学习氛围。改变传统教材,选取更为实用、新颖的教材。以人为本,根据学生特点,找到发挥每个学生特长的教学方式,采取多样的教学手段,从听、说、读、写等多方面入手,激发学生多元智能的发展。

三、多元智能理论在高职英语教学中的应用与作用

1、改善教学环境与内容,营造多元智能下的学习氛围

每个学生有其自身的特质,根据多元智能理论,发掘出学生出众的智能方面,并根据学生所擅长的智能,建造不同的学习方式与环境。除了发展优势智能,多元智能的学习环境也有助于学生全方面的发展,有利于学生自身学习积极性的提高和个人能力的综合发展。环境对于语言学习来说本就是至关重要的,改变以往统一单调的学习环境,建造适合高职学生学习英语的环境,给予不同特性的学生不同的建议与引导,真正做到因材施教。

教学内容要求多样新颖,教师在制定教学内容时,需要站在多元智能的角度上去选择,选择的范围要广阔、选择的领域要多,不能只局限在某一个部分,素材的丰富会引起学生的更大的兴趣。另外,教师应多给学生自主学习的机会,如让学生选取自己感兴趣的方面进行讲解、展示等,会产生出不同的火花。语言学习中听、说、读、写方面,都可以根据多元智能的理论采取不同的训练方式,取得更为显著的效果。

2、丰富教学手段,建成多元智能活动平台

现如今出现了各种各样的教学手段,但实际去应用的教学手段很少。教师习惯性地运用传统式的教学手段,没有适应时展做出相应的改变。多元智能理论要求教师教学手段的多样化:例如空间智能要求利用多媒体、投影等设备,去给学生以空间上的学习体会,欣赏电影、观看图片等;根据音乐智能要求可以进行英文歌曲的演唱等;人际交往智能则可以通过举办各类英文比赛亦或者交流活动来实现,如英语角、英文短剧比赛等。像这样根据多元智能理论的内涵从不同方面去挖掘学生潜能,并给予学生英语学习的动力。

3、改变教学评价模式,实现多元评价

在以往的高职教育教学中,教育评价模式一直比较单一,即在评定成绩时只看重语言及数理逻辑部分。而多元智能理论应用在高职英语教学中就要求评价模式的多元化。也就是说,在对学生评定的时候,除了看到作业、考试所显示出来的部分外,更要关注到学生其他方面的动态,如学习态度、学习积极性、自我展现等。

智能建造的前景范文第2篇

1数字建构的特点

广义的数字建筑是一个宽泛的概念,只要设计、施工或管理和运行过程中运用了数字化工具,如AutoCAD、智能管理系统等的建筑都纳入数字建筑的范畴。而本文探讨的“数字建构”主要指在建筑设计和建造的各个阶段和各个层面运用数字化的工具模拟实现建筑目标的状态和过程,其中以算法设计(AlgorithmicDesign)和参数化设计(ParametricDesign)为典型的核心技术。数字建构是继现代主义运动后,又一次基于技术革新的设计革新。它体现了以下一些特点:“数字建构”是一种建筑设计方法和工具的变革,与当今时代最先进的信息技术紧密结合,展现了新技术强大的革新能力。不论是设计过程还是成果表达以及项目实施,都必需通过现代的计算机、网络技术才能实现,这是数字建构与以往建筑设计最大的区别。数字建构通过以计算机为代表的技术工具,大大提高了建筑设计的效率,其工具本身的能动性和自主性更加强大,可以帮助人类进行能动的分析和思考。技术工具在建筑设计中承担的角色和作用更加重要,已从以往的辅的“助手”角色上升为互动性的“伙伴”角色。利用计算机强大的储存和计算能力,数字建构实现了在多重、复杂、多变条件下,对多元组合进行无限的比较和优化,并达到史无前例的精确性[2]。计算机技术的不断进步使人类克服了人脑的生理局限性。虽然现代医学技术能够证明人脑的记忆能力是非常强大的,但是就普通人所具有的记忆力和计算能力与计算机相比较而言,是非常微不足道的。在传统的建筑设计过程中,建筑师只能依赖自己的直觉和经验,选择少数的几个或者数十个可能性较大的方案进行比较和优化。而数字建构下,建筑师只需在计算机方案的生成过程中,设定限制条件,即可剔除不符合条件的方案,建筑师最重要的作用是在众多的方案中做出合理的判断,选择最优方案,省却了不同方案生成过程中的时间和精力;还可以在施工前进行全过程的模拟建造,发现不合理的部分立即进行修正,避免实际建造中许多不可预知的浪费和危险。进入实际建造的过程时,一切都按照程序的指令有条不紊地高效推进,有效地减少了人工误差(当然机器的故障离不开人的监督和制定应急措施)(图1~3)。数字建构追求个性化与高效率、高精确率的结合。传统的手工制作虽可实现个性化制作,却不得不面对效率低下的制约;而以往批量生产则是以牺牲多元化为代价、大量制作统一标准的产品实现高效的目的。多元化只能是在有限的产品类型中进行组合而产生变化,这一定程度上限制了个性化、多元化的发展。数字建构依靠从设计到生产全过程的数字控制,可以在高效和节约的前提下,实现产品的多元化和个性化设计的完美结合(图4)。例如,在建筑设计创作过程中,传统设计需要大量制作模型进行方案对比。而现在可以采用参数化设计,依靠计算机技术,对某些影响形式的参数进行控制和调整,就可以在短时间内得到大量的阶段成果进行比较,从而节约了时间和人力。数字建构体现了可控性与不可预知性的结合。当前数字建构一个突出的特征就是将设计过程以程序逻辑的理性方式进行处理(常常是超出常人大脑的能力),将感性的形式转化成一种理性的计算过程。在数字建构的设计过程中,虽然设计条件的设定是由建筑师来决定的,但是由此而呈现的多元化形态有可能是建筑师无法预先想象的。它用计算机编码的精确手段模拟,替代建筑师大脑的模糊推理,但是最终的决策仍然离不开建筑师的艺术审美和功能技术的理性判断。这对于强调个性化设计的建筑师来说,提供了更加丰富的选择性。建筑师对设计过程的控制无需像传统设计那样深入到所有的细节(那样耗费的精力和时间太高了),而是对条件和程序的控制与调节,决策权却仍然掌握在建筑师的手中。

2数字建构的缘起与发展

数字建构当前受到许多建筑师和广大民众的欢迎和追捧,除了因其紧贴时代的技术步伐之外,更由于它在建筑造型上符合当代社会审美趣味的需求,为个性化和多元化提供了新的可能性和相应的技术保障。现代主义建筑所奉行的一元线性的机械推理造型路线,造成了单调乏味的国际式建筑风格,被建筑师们所诟病。后现代主义为突破现代主义的局限,回归传统风格,但其无病或过度夸张的做法,让普罗大众难以接受。但鉴于建筑作为一门实用科学,大多数当代建筑师在仍然坚持理性根基的同时,不断探索造型上的多元化策略。在推进建筑学的道路上,数字建构在平衡理性与多元化上为当代建筑师提供了新的可能性。使得一些表面看来非常复杂的形式通过理性的数字控制手段而获得表达,与那些随机的、即兴发挥的风格截然不同,为普罗大众提供了重新解读建筑的可能性,也从传统理性的现代主义找到了思想发展体系上的脉络。传统的平立剖表达方式以及人脑的思考局限等因素使多元复杂的建筑造型受到制约,而计算机技术使得原来技术上的障碍得以突破。通过虚拟三维建模技术,数控技术解决了现实制造和建造工艺上的精确性和复杂性问题,实现了从虚拟到现实的跨越,这是传统二维图纸表达所无法达到的。从历史发展的递进关系来看,数字建构应当是工业化建构的更高阶段的形式。因为数字建构必然依靠工业化的更高阶段——数控自动化工业的支持才能得以实现,从这层意义上来说,工业现代化仍然是建筑现代化的基础。西方工业革命后建筑技术和思潮的发展,充分体现了这种新的趋势。中国社会目前虽然经济发展迅速,但在建筑领域尚未完全实现工业现代化的建造过程,期待着引进先进技术而缩短与发达国家的差距,实际上面临着多重的困难。因其缺乏强大的工业现代化生产的支持,数字化生产和建造能力显得底气不足,步履蹒跚。

3数字建构对建筑创作的影响

数字建构是促进当代建筑创新的有力工具。最突出的一点是它克服人脑的生理局限性。强大的记忆功能、高效的统计分析和高强度重复性劳动,“能想人之不能想”;其次,它克服传统建筑工艺的局限性,能够模拟制造复杂的造型,“能做人之不能做”(图5)。数字建构对于建筑创作的影响既是巨大的,也是革命性的,体现在以下几个方面:

首先,数字建构作为一种系统化的工具,极大地改变了建筑设计的过程。对于建筑师而言,虽然我们从传统的图板丁字尺已经过渡到了计算机辅助设计阶段,但是设计过程的生产方式仍停留在传统的孤立分散式的合作设计阶段。数字建构是一种整体的系统化的设计方法,将传统的分阶段分技术工种的分散设计操作,转化为即时同步的协同设计过程。

其次,给建筑师带来根本变化的是内在思考方式的变化:作为使用了上千年的建筑师图纸语言,从二维图纸转换成了计算机三维(甚至四维)模拟表达。数字建构的设计过程,不再是从二维到三维的想象过程,而是直接从三维着手进行空间动态式的设计和调整,二维图纸只是三维模型的输出表达结果而已。建筑师不再需要通过阅读二维图纸想象出三维的空间形态。建筑师、工程师乃至业主则可以随时观摩三维模型,甚至可以模拟不同时间、不同人群使用空间的场景,随时进行调整和修正。建筑师与业主之间的交流,可以直接模拟观看建成之后的效果,甚至可以利用3D技术实际体验空间的变化。

此外,数字建构作为一种智能化的技术,对建筑的建造逻辑产生了巨大的影响。当前许多运用数字建构技术设计的建筑大多因其独特的造型而为大家所认识和追捧,实际上数字建构解决的不单是外观造型的个性化问题,而且是对空间设计和建造的数字化和智能化控制与管理。数字化技术改变当代人的生活和工作方式,也挑战着传统审美观念,在复杂和多样化的造型之下,把直观的视觉形象与理性的算法逻辑、把设计与建造的过程有机地结合起来,逐渐形成了新的审美标准[3]。数字建构对于建筑的建造逻辑带来了新的变化,体现在对传统石材、木头、钢材和玻璃等材料的拓展运用,将原来静止受力状态所不可能实现的空间结构,通过动态多元的受力分析,使材料性能得到极致的发挥。此外,也改变了各种材料传统组合的构造节点和做法,形成了新的加工、组装和建造的模式。数字建构所具有的智能化和信息化特点,对于建筑内部环境的物理性能控制与调节起到积极的作用。根据室外环境的变化(朝向、温湿度、风速等),以节能环保为原则,能动地调整护构件的形式和方位,形成符合可持续发展的最优的绿色建筑方案[4]。

智能建造的前景范文第3篇

一位耄耋老人从1996年开始,每天坚持在云南呈贡县老干局和文化广场播讲新闻两个多小时。15年来,“新闻联播”的听众达100多万人次。

85岁老人邓毅夫讲的都是平时普通老百姓最关心的话题,大到中国的外交关系,小到省会的节约用水,老人如同一台智能电脑,把前一天的主要新闻整理成文,然后用简单朴实的语言传播给大家。

(达娃梅朵朱涛伊)

小编杂评:听众达百万可真是个惊人的数字,其影响也许会令某些媒体羡慕吧!

英国老人发明“飞碟”

英国68岁的老人杰夫•哈顿发明了一款碟状无人驾驶飞行器。由于在军事侦察方面应用前景广阔,这一发明已获得英国专利,并受到美国军方的青睐。

哈顿发明的“飞碟”直径约0.76米,由顶部一个电动推进器提供动力,还装有掌握操控的副翼。与直升机相比,它没有安装旋翼,因此不用担心当它撞到墙体时旋翼会折损。(馨华)

小编杂评:谁说世上没有飞碟?哈顿告诉世人,飞碟不但有,还来自地球。

创办农耕博物馆

农村生产工具已渐渐被机械化工具所取代,一些农具也已成为人们记忆中的东西。但江西省新余市水北镇有一位退休老人张正根,专门雕刻农家用具,收藏“农耕记忆”。

6年来,老人雕刻出农具160余件,许多人纷纷出高价要买张正根的作品,但都被他婉言谢绝,他表示要将这些宝贝永远保存下来,供后人欣赏,教育后人。

(王世强)

小编杂评:很多城里孩子对农业生产一无所知,老人的作品正好起到了科普的作用。

意大利老人建造世界最大迷宫

意大利著名艺术杂志《FMR》的创刊人弗朗科•马里亚•里奇退休后将全部精力投入到园林建设中,他用竹子篱笆建造了一座世界上最大的迷宫。

智能建造的前景范文第4篇

关键词:桥梁健康监测;损伤识别;状况评估;传感元件;

中图分类号:U445 文献标识码:A 文章编号:

引言

桥梁的生命过程一般包括规划与论证、设计、施工、运营管理以及养护维修等几个阶段,以往人们往往只关注设计与施工阶段,但桥梁在建造和使用过程中由于受到环境、有害物质的侵蚀,车辆、风、地震、疲劳、人为因素等作用,以及材料自身性能的不断退化,导致结构各部分在远没有达到设计年限前就产生不同程度的损伤和劣化。由于缺乏对桥梁的科学监测与管理,桥梁的健康状况信息得不到及时反馈,国内外,因桥梁的突然倒塌与破坏造成人车坠毁的重大事故屡见不鲜,不仅影响了交通还带来了巨大的经济损失。在这种情况下,人们对现代桥梁的质量和寿命才逐渐关注起来,尤其是随着桥梁分析理论、施工技术、材料性能的迅速发展,桥梁的结构越来越柔,跨度越来越大,对桥梁结构进行健康监测就显得尤为重要。本文首先概述了桥梁健康监测技术的概念及重要意义,然后对其系统构成及应用实例也作了简要介绍。

桥梁健康监测技术简介

桥梁健康监测系统(Bridge Health Monitoring System,BHMS)是一个融合了现代信息技术、计算机技术、网络技术、现代检测技术和结构损伤诊断技术、安全性评估技术等的新兴技术。1997年,Housner等对结构健康监测进行了定义:“在现场进行结构特性,包括结构响应的无损检测和分析,其目的是:如果有损伤,则进行损伤识别、确定损伤的位置、估计损伤的严重程度并评价损伤对结构影响后果”。即一个结构健康监测系统必须同时能够进行结构损伤检测和状况评估。

目前,大型桥梁的健康监测、养护与维修得不到应有的重视,往往是在出现问题后才亡羊补牢。传统的检测方法由于其滞后性、效率低,造成桥梁管理成本的提高与资源配置的不合理,已跟不上桥梁发展的需求。在这种情况下,建立桥梁健康监测与安全评定系统,能够大大提高检测效率,实时掌握桥梁状态变化,评价桥梁的承载能力和使用功能,以及桥梁的安全可靠性,其意义在于:

及时把握桥梁结构运营阶段的工作状态,识别结构损伤以及评定结构的安全、可靠性与耐久性;

为运营、维护、管理提供决策依据,可以使得既有桥梁的技术改造决策更加科学、改造技术方案的设计更加合理、经济;

验证桥梁设计建造理论与方法,完善相关设计施工技术规程,提高桥梁设计水平和安全可靠度,保障结构的使用安全,具有重要的社会意义、经济价值和广泛的应用前景。

系统研究方法分析

桥梁由完好到破坏是一个逐步损伤演变的过程,直接源于环境有害物质的侵蚀,车辆、地震、风及各种人为因素的影响,以及材料自身性能变化等结构损伤的存在。1971年,美国制定了国家桥梁检测标准(NBIS),提供了检测方法的细节、检测时间间隔和检测人员资格的统一指导,随后世界各国在桥梁检测方面都有了很大的发展。

目前,通常从三个方面对桥梁损伤信息进行监测:风、车辆、温度、压力等荷载等环境作用;利用无损检测技术对应力、应变、裂纹、疲劳等局部响应情况进行监测;位移、速度、加速度、挠度、索力、振动特性、状态反应等结构整体响应情况。

在整个桥梁健康监测系统中,各类高性能智能传感元件、信号采集与通讯系统、综合监测数据的智能处理与动态管理系统、结构实时损伤识别、定位与模型修正系统、结构健康诊断、安全预警与可靠性预测系统是关键部分,监测系统基本组成见下图所示。

图1 监测系统结构

结语

随着现代检测技术和计算机通信技术的迅猛发展,桥梁综合健康监测技术越来越趋于智能化、实时化、自动化和网络化。但是目前的检测系统也普遍存在一些技术问题,如缺乏有效的传感器优化布设评估标准,随着信息需求量的增多,监测指标体系越来越庞大,如何确定传感器的最优布置点就成了目前研究的热点;桥梁工程自身体积大、质量重,具有较低的自然频率和振动水平,动态响应易受环境状态、非结构构件等影响,目前还没有一个损伤指标可以全面、敏感地反映桥梁损伤状态。

参考文献

[1] 张莹.浅谈桥梁健康监测技术方法[J].城市建设理论研究,2012(5).

智能建造的前景范文第5篇

1.智能技术的基本概念

智能理论是探索人类智慧的奥秘与规律及在机器中复现人类智能的科学,是现代科学研究的前沿。目前智能理论及技术在各个领域已得到广泛的应用。但对于智能理论的研究不外乎两个方面,一方面是对智能的产生、形成和工作机制的立接研究;另一方面是研究如何用人工的方法模拟,以及研究如何提高机器,特别是计算机的科能水平,使机器成为且合感知、报理、决策的智能机器系统。前者称为自然智能理论,主要是生理学和心理学研究者所从事的工作:而后者称为人工智能(ArtificialIntelligence,简称AI)理论,主要是理工学研究者所从事的工作。因此,本文主要介绍后者——人工智能。

人工智能(ArtificialIntelligence,简称A1)是相对于自然智能(即人脑智能)而言.人工智能研究的是怎样利用机器模仿人脑从事推理、规划、设计、思考、学习等思维活动,解决迄今认为需由专家才能处理好的复杂问题。通俗一点说,就是:由计算机来表示和执行人类的智能活动。其目标是利用各种自动机器或智能机器,模仿、延伸和扩展人的智能,实现某些“机器思维”或脑力活动自动化。显然,对于人工智能的这种定义,受到了当前电子计算技术水平的制约,因此,它是一种暂时的、相对的定义。

AI是计算机研究和应用发展到一定阶段的产物,任何问题,用计算机程序进行计算分析,可以在很大程度上取代人的脑力劳动,它可加快解题运算速度和扩大记忆存储量,但这只能说是简单智能化。一个高水平的智能程序,应该与人的思考、求解方式相仿。譬如,计算机辅助设计(CAD),能不断修改、补充、构造出所需的设计对象,它通过计算系统、数据库与显示装置,配合辅助程序,与人一起完成设计工作。

2.制造智能技术的研究现状

早期,智能制造系统大量运用基于知识的专家系统来提高制造智能,例如基于ES的机床自适应控制,其智能行为体现在符号推理上。这些ES多数属于非实时型的系统,数据是静止的且与外部环境没有信息交互,是低水平的封闭式的智能系统。为了克服Es存在对领域专家的依赖性、知识获取困难、现代计算机依据VanNeumann原理,用逻辑知识表达不灵活以及通用性较差等缺陷,AI的最新研究已向基于数值计算的计算智能方向发展。

当前,用计算手段实现智能的较新方法和新理论,如FL,NN,GA,混沌,分形以及粗一集理论等科学,都属于计算智能的范畴。计算智能的灵活性、通用性及严密性明显优于基于知识的径。ES更能提高制造智能水平。现今,计算智能的研究应用重点在FL,NN,GA等方面,其在IM的研究领域主要有:智能传感器,加工过程的智能控制,制造系统的智能检测与监控,切削参数的智能优化,机械零件可靠性分析及最优化设计,机械故障智能诊断,智能学习、决策与预测等多个方面。

1943年,心理学家McCalloch与数学家Pitts合作提出了NN的第1个数学计算模型——MP模型,从而开创了NN理论研究的新时代。五十多年来,NN的研究虽一度陷入低谷,但自从1982年J.Hopfield提出HopfieldNN模型成功地解决了“旅行商问题以来,NN的研究再次进入阶段,涌现了许多研究成果,并向自组织、自适应、自学习等方向发展

综合NN几十年的发展,其典型特征如下:并行处理机制具有众多可调参数,可以描述较为复杂的系统;神经之间的连接强度可调,具有自适应能力}信息存储是分布的,具有记忆和联想能力;集体计算,有较强的计算能力;高度的冗余能力,具有一定的容错能力;具有自组织和协调能力;学习能力较强;多层前馈型NN具有高度的非线性映射能力,能完成较为复杂的非线性系统的建模}组成NN的人工神经元较为简单,能用硬件实现;黑箱型工作模式,逻辑分析难;传统BP学习算法的学习时间长,易局部收敛,学习不稳定等。

进化计算(EvolutionaryComputation,EC),也称为行为主义的AI,是自60年代开始发展的一门新兴学科。它仿照生物的进化过程,按优胜劣汰的自然选择优化规律和方法,来解决难以用传统方法解决的优化计算问题。其中GA是应用最普遍的一种EC技术。GA是根据生物进化的模型提出的一种优化算法,是一种全局意义上的自适应启发式搜索技术它依照自然界优胜劣汰的自然选择规律,经过遗传、变异演变出满足给定精度的较优解GA的中心问题是鲁棒性(Robustness)。所谓鲁捧性,是指能在许多不同环境中通过效率及功能之间的协调平衡以求生存的能力。

3.智能研究途径和方法

智能是脑,特别是人脑所具有的。那么,要实现人工智能,自然就离不开入人脑的借鉴,其中包括对人脑的结构、功能相人脑具有智能的原因、过程等的借鉴。于是就产生了如下几种人工智能研究途径和方法。

(1).结构模拟,神经计算

所谓结构模拟,就是根据人脑的生理结构和工作机理,实现计算机的智能,即人工智能。就是用人工神经元(神经细胞)组成的人工神经网络来作为信息和知识的载体,用所谓神经计算的方法实现学习、联想、识别和推理等功能,从而来模拟人脑的智能行为,使计算机表现出某种智能。

(2).功能模拟,符号推演

具体来讲,功能模拟法就是以人脑的心理模型,将问题或知识表示成某种逻辑网络、采用符号推演的方法,实现搜索、推理、学习等功能,从宏观上来模拟人脑的思维,实现机器智能。基于功能模拟的符号推演,是人工智能研究中最早使用且直至目前还主要使用的方法。

以上两种方法,是当前人工智能研究的两条主要途径。它们各有所长,也各有所短。从这两种方法所擅长处理的问题来看,它们都有一定的局限性,而且刚好互为补充。从当前的研究现状来看,人们将模糊推理与神经计算相结合,已展现出相得益彰的喜人前景。因此,将功能模拟与结构模拟相结合是当前人工智能研究的总趋势,

(3).行为模拟,控制进化

除了上述两和研究途径和方法外,还有一种基于感知行为模型的研究途径和方法。我们称其为行为模拟法。这种方法是模拟人在控制过程中的智能活动和行为特性,如自寻优、自适应、自学习、自组织等,来研究和实现人工智能。

4.智能技术的未来

智能革命的时空动力是网络革命,使信息网络发展为智能网络。智能网络的发展趋势:一是实现计算机网络的智能化,二是建造智能机网络——真正意义上的智能网络。显然,当计算机发展为智能机,智能机网络就会应运而生。

工厂智能化的关键是采用智能制造系统(IMS)。随着计算机向智能机发展,计算机集成制造系统(CIMS)必然要发展为智能机集成制造系统(IIMS),成为真正的智能制造系统。目前,一般是实现计算机集成制造系统的智能化,即将人工智能技术、专家系统、智能机器人运用于计算机集成制造系统,使之成为智能化的计算机集成制造系统(ICIMS)。这样的制造系统,也是一种智能制造系统。

农业生产也能像未来工厂那样,那么农业生产也可由自动控制进入智能控制,实现生产过程的智能化。现在,日本已经出现了植物工厂,展示了农业工厂化、自动化,乃至智能化的广阔前景。

智能机器不仅进入工厂和田间,还要进入办公室和家庭,现在已经在建造“智能大厦”和“智能住宅”,实现计算机控制、机器人服务和网络通讯,使办公室和家庭自动化推而广之,最终实现城市智能化。

正像蒸汽机的能量革命魔术般地创造出工业社会一样,智能机的智能革命也会奇迹般地创造出智能社会。智能机、智能机器人和智能网络推动社会智能化,一个全面智能化的社会,便是智能社会。

结束语:

作为高技术核心的智能技术(如人工智能、智能计算机、智能机器人等),其关键是人工智能。它们的相互作用会引发智能“核爆炸”,把人工智力和人类智力的潜能爆发出来,导致智能革命;也会奇迹般地创造出一个智能社会。因此,工业社会之后不是“信息社会”。“信息社会”无非是由工业社会向智能社会转变过程中的一个过渡阶段,而不是一种独立的社会形态。

智能建造的前景范文第6篇

关键词:智能土木结构,智能材料,自诊断智能土木结构,智能控制,嵌入式智能土木结构

1.引言

建筑起初是为了满足人类生活的舒适要求和安全要求而产生的。原始时代的建筑物是利用天然材料制造而成的能蔽风雨防侵袭的封闭空间。随着社会生产力水平的不断发展,人类对建筑的要求也日益复杂和多样化,结构作为建筑的核心骨架,人们也对其提出了更高水平的要求。现代大型建筑物如高层建筑、大跨桥梁、大型水坝、地下建筑等都要求其土木结构能提供更高的强度,以及更好的可靠性、耐久性及安全性。同时,在现代社会中,这些大型建筑物在整个国民经济中所发挥的作用已日益重要,这也尤其要求它们应具有更强的防止灾害的能力。

传统的结构大多通过提高建筑材料的物理力学性能、采用合理的结构形式、加强施工管理以及定期结构评估与维护等传统手段来达到并满足这些要求。然而,这些传统的手段均属一种消极的、被动的方式:一旦建筑物被建成并投入使用,人们便失去了对结构的全面控制,结构失效、结构灾害的发生便不以其设计者、建造者、使用者的意志为转移了,人们对它的预测及防范工作都将是一件十分困难的事情。另外,若单纯地依靠以往那种要求保证结构具有足够的刚度、强度及延性的传统结构工程设计理念,当结构所处环境因素超越某种程度以后,就会将既不经济,又达不到预期的效果。

考察众多建筑灾害实例,人们发现,在整个建筑结构的设计寿命期内,都有可能发生结构失效。其原因在于:

1)由于结构抗力的衰减、正常范围内的损伤积累而致使的强度及可靠性的降低;

2)由于材料的老化、腐蚀及力学性能的劣化(如徐变等)而导致的结构耐久性失效;

3)由于施工质量和使用不当而给结构造成的隐患以及损害;

4)由于结构长期遭受动荷载作用而造成的疲劳失效;

5)由于偶然的超载(如地震荷载、爆炸冲击荷载等)造成的破坏。

以上这些原因都对结构的强度及安全性提出传统设计方法无法满足的要求。因而,对建筑结构进行实时监测进而由结构自身作出智能化反应就显得十分必要了。

2.智能土木结构(IntelligentCivilStructure)概念的形成及研究现状

2.1智能土木结构(IntelligentCivilStructure)概念的形成

现代材料技术的发展进步促使了人类社会进入了信息时代,信息材料的生产业已实现设计制造一体化。各种具有信息采集及传输功能的材料及元器件正逐渐地进入土木工程师的视野。人们开始尝试将传感器、驱动材料紧密地融合于结构中,同时将各种控制电路、逻辑电路、信号放大器、功率放大器以及现代计算机集成于结构大系统中。通过力、热、光、化学、电磁等激励和控制,使结构不仅有承受建筑荷载的能力,还具有自感知、自分析计算、自推理及自我控制的能力。具体说来,结构将能进行参数(如应变、损伤、温度、压力、声音、化学反应)的检测及检测数据的传输,具有一定的数据实时计算处理能力,包括人工智能诊断推理,以及初步改变结构应力分布、强度、刚度、形状位置等能力,简言之,即使结构具有自诊断、自学习、自适应、自修复的能力。这就是智能土木结构概念的形成过程。

文献将智能结构定义为:“将具有仿生命功能的材料融合于基体材料中,使制成的构件(结构)具有人们期望的智能功能,这种结构称之为智能材料结构”。可见,智能结构是传统结构的功能的升华。智能结构在土木结构中的应用便称之为智能土木结构。

2.2研究现状

如前所述,智能土木结构概念是为了解决评估结构强度、完整性、安全性及耐久性问题而提出的。对土木建筑结构的性能进行监测及预报,不仅会大大减小维修费用,而且能增强预测的能力。近来出现的无损检测技术均不能对结构进行实时监测,也不能很好地预报结构的破损情况和进行完整性的评估。这些方法的致命缺点是预报方式是自外而内的,从信息传播角度看,难免会夹杂进种种干扰信息,从而使检测结果失真、低效率,甚至会导致完全错误的检测结果。在结构内部埋入传感器,组成网络,就可实时监测结构的性能,这就是智能土木结构的自内而外的预报方式。智能土木结构在这些方面有很好的应用前景,目前主要应用于高层建筑、桥梁、大坝等工程领域。

美国80年代中后期开始在多座桥梁上布设监测传感器,用验证设计中的一些假定,监视施工质量和服役安全状态,如在佛罗里达州的SunshineSkywayBridge桥上就安装了数百个传感器[2].英国80年代后期开始研究和安装大型桥梁的监测仪器和设备。在我国,香港的LantanFixedCrossingBridge、青马大桥,以及大陆的虎门桥、江阴长江大桥也都在施工期间装设了传感系统,用以于监测建成后大桥的服役安全状态[3].1993年加拿大在Calgary建造的BeddingTrail大桥上首次成功地布置了光纤布拉格光栅传感器,用以监测桥梁内部的应变状态。

在其它土木工程领域,如在采油平台、大坝、船闸等大体积混凝土结构中也曾尝试布置传感器来构建智能结构。同样,近年来发展起来的高性能、大规模分布式智能传感元器件也为民用建筑及结构的智能监测系统的发展提供了基础,智能大厦在我国已如雨后春笋般地涌现。在民用建筑结构的应用方面,对结构的智能振动控制方面的研究已有近30年的历史了[4].

3.智能土木结构理论的体系构成

3.1结构智能化历程的层次划分

传统的土木结构是一种被动结构,一经设计、制造完成后,其性能及使用状态将很大程度上存在着不可预知性和不可控制性,这就给结构的使用和维护带来不便。为了解决这一问题,发展出了在线监测结构,它赋予传统土木结构以在线监测机制,从而为探知结构内部性能打开了窗口,使人员可以方便地了解结构内部物理、力学场的演变情况,这就是结构智能化的第一层次。在在线监测结构的基础上,进一步增加了监测数据的智能处理机制,使得结构具有自感知、自诊断、自推理的能力,从而使结构实现了第二层次的智能化。

进一步在结构中引入自适应及自动控制机制,即根据自诊断自推理的成果,由在结构中耦合的作动系统做出必要的反应,从而实现智能控制结构,这就是第三层次的智能化。比如,对结构的开裂、变形行为,结构的锈蚀、老化、损伤行为,以及结构的动力振动行为做出抑制性控制,在更高层次上对结构起到保护和维修作用。

可见,在结构智能化演化过程中,按其智能化程度的不同可划分为如下三个层次:

22第一层次:自感知土木结构(Self-sensoryCivilStructure),它是智能结构的最低级形式;

22第二层次:自诊断智能土木结构(IntelligentSelf-diagnosticCivilStructure),具有对前一层次结果的智能化加工处理,包括结构内部力学物理场的自我计算,对结构特定目标参数的自我诊断,以及以做出结构自身行为的应对策略为目标的自我推理等功能。

22第三层次:智能控制土木结构(IntelligentControlCivilStructure),它是智能土木结构的最高形式。

3.23.2智能土木结构分类

智能土木结构按其材料可分为两种类型,分述如下:

1)嵌入式智能土木结构:在基体材料如钢结构、钢筋混凝土结构中嵌入具有传感、动作和控制处理功能的材料或仪器,并集成进现代计算机硬件软件技术,由传感元件采集和检测结构内部信息,由计算机对这些信息进行加工处理,并将处理结果通知控制处理器,由控制处理器指挥、激励驱动元件执行相应动作。其工作原理如图(2)所示。

属于这种类型的智能结构只需对传统土木结构加以改进即可,无须额外研究结构的传统力学性能,易于做到传统结构与智能结构的平稳过渡,故而成为研究的焦点。

2)基体、智能材料耦合结构:

某些结构材料本身就具有智能功能,它们能够随着自身力学、物理状态的改变而改变自身的一些其它性能。如碳纤维混凝土材料能随自身受力情况而改变其导电性能,只要探测到这一改变,便可以间接获得结构的内部力学信息。

按照结构智能化目的的不同,又可将其分为如下几类:

1)具有裂缝自诊断和自愈合功能的智能混凝土结构;

2)具有应力应变状态自诊断功能的智能混凝土结构;

3)具有变形、损伤自诊断功能的智能混凝土结构;

4)具有疲劳寿命预报能力的智能土木结构;

5)具有监测钢筋或钢构件锈蚀状态能力的智能土木结构;

6)具有感知和自我调节功能的智能减振(桥梁)结构;

3.3智能土木结构的研究内容

3.3.1智能化策略性研究

智能土木结构的首要研究内容就是对传统结构智能化的概念设计策略性研究。需要针对结构类型及其重要性的不同,以及现有工艺技术水平和经济资金情况等多个方面因素,合理地确定智能化目标,在兼顾技术先进性、实用性和经济节省的前提下采用合理功能层次的智能土木结构。确定了智能化目标以后,就需要着手做一些准备工作,它们是:对结构在使用中可能发生的各种行为进行预测,对结构在力学物理环境下出现的各种反应进行预估,以确定结构中需要实现智能化监控的部位,确定整体监控方案。

3.3.2传感元件(Sensor)研究

另外一项重要研究内容就是传感元件。感觉是智能土木结构的基础性功能,它利用在传统建筑材料中埋入传感元件(或利用传感、结构耦合材料)来采集各种信息,经过处理分析,才可实现自诊断、自驱动等智能控制功能。有鉴于此,应对传感元件提出一些特殊要求如下:

1)尺寸细微,不影响结构外形;

2)与基体结构耦合良好,对原结构材料强度影响很小;

3)性能稳定可靠,耐久性好,与基体结构有着相同的使用寿命;

4)传感的覆盖面要宽;

5)信号频率响应范围要宽;

6)能与结构上其它电气设备兼容;

7)抗外界干扰能力强;

8)能在结构的使用温度及湿度范围内正常工作。

可列入研究范围的元件有:光导纤维,压电陶瓷,电阻应变丝,疲劳寿命丝,锈蚀传感器,碳纤维等。

3.3.3作动材料(Actuator)研究

智能土木结构的最终目标是实现结构的智能控制,而控制是由作动材料实现的。利用某些存在物理耦合现象的材料,尤其是机械量与电、热、磁、光等非机械量的耦合材料,作为结构的作动件。可以通过控制非机械量的变化来获取结构特性(形状、刚度、位置、应力应变状态、频率、阻尼、摩阻等)的改变,从而达到作动目的。对它的要求主要有:

1)与基体结构耦合良好,结合强度高;

2)作动元件本身的静强度和疲劳强度高;

3)驱动方法简单安全,对基体结构无影响,激励能量小;

4)激励后能产生高效稳定的控制,反复激励下性能稳定;

5)频率响应范围宽,响应速度快,并可控制;

常用的作动材料有记忆型合金、压电材料、记忆聚合物以及聚合胶体等。目前有关作动元件的研究正在一些领域展开,如董聪、Crawlay等人评述了几种常用作动/传感材料的性能。

3.3.4智能结构信息处理

智能土木结构要成为有机的整体,还须借助于信息的流动控制及加工处理。只有使信息在环境、结构、传感器、信息处理中枢及作动系统之间有序地流动,并同时进行加工处理,方可使结构具有智能功能。其信息流动可如下图所示:

由此可见,应首先对数据采集予以研究。这包括各种传感器信号的A/D转换以及数据处理通讯接口软硬件的研制[8].作为一种尝试,笔者利用传统结构实验装置,实现了单片机应变仪与微机在线通讯的硬件组建及计算机数据接受软件的开发,初步的结果表明,建立土木结构在线监测是完全可以做得到的。

其次,应着重研究输入到计算机中的数据的智能化处理算法,以及相应软件的开发。算法的核心目标应为对结构内部力学、物理场的全面计算。在此,应注意算法的快速性,避免因算法过于复杂而失去了智能结构的机敏、实时特性[9].

接着,应对结构的健康诊断及安全评定方法予以研究。包括结构的数学建模,参数空间的模式识别,损伤评定,体系可靠性分析,以及人工智能的应用。

最后需要研究的是结构控制机理、结构局部损伤修复方法、结构振动控制机理等问题。

4.结论及研究建议

智能土木结构是材料科学、计算机科学、自动控制技术发展到一定程度的产物。它涉及到结构和建造的重大变革,涉及到当今土木工程、材料科学、自动控制、计算机软硬件技术、信息通讯、人工智能等众多领域内的前沿技术。正如建筑业是国民经济各部门原动力一样,智能土木结构及智能建筑不仅对于未来土木界的发展意义重大,而且对于目前主要的高科技领域而言也具有重要的意义,它的研发及实现必将进一步带动其它高科技领域的进一步提高,是土木工程界的知识经济。毋须置言,对它的研究工作应首先要求结构工程师投入极大的努力,更新观念,注意吸取其它领域的思想,成为智能土木结构研究的主体,同时还需结构工程师同相关领域的专业人员紧密配合,建立科学化的研究管理机制,才能完成这个系统工程。

在具体的研究中,笔者给出了几点建议,谨供业内参考:

1)对于土木工程中普遍使用钢筋混凝土(包括RC,PC,PPC)、钢结构的现状,建议以嵌入式智能结构的研究为重点。这样做的好处在于能最大限度地利用现有的结构理论知识,使研究的重点放在未知的附加智能化功能的研究上来,同时还能使智能化经济可行,也可做到工艺水平的传统与未来的连续。另外,这种思路还可以利用现有土木结构实验的装置和方法。

2)对嵌入式智能土木结构,研究出一种高效、实时的力学计算算法将是一项迫在眉睫的任务,只有利用监测传感系统所得到的信息进行全面实时计算,方可对结构有全面及时的了解,才能为其后的信息流动打下基础。这就需要对复杂的非线性有限元加以改进,使其胜任在线、实时、精确的计算工作。

智能建造的前景范文第7篇

关键词:变形监测 智能全站仪 监测系统

中图分类号:TP29 文献标识码:A 文章编号:1007-9416(2012)01-0167-01

1、引言

随着电子技术的发展和计算机技术的广泛应用,各种精密测量仪器不断出现,为测绘技术的发展提供了广阔的前景。工程测量所使用的光学经纬仪和电磁波测距仪已逐渐被电子全站仪所取代。近期,由徕卡公司研制的TCA系列全站仪(又称“测量机器人”),它以独特的智能化、自动化性能应用于变形监测中,使用户轻松自如地获取变形观测数据,及时进行监测预报。鉴于此,不少测量单位已开发研制了各自的自动监测系统。现简单介绍一下比较通用的变形监测系统。

2、系统总体设计思路

变形监测系统由系统硬件和系统软件两部分构成。

2.1 系统的硬件构成

变形监测系统如下图1所示,由五部分组成:监测站、控制计算机房、基准点、变形点和自动化全站仪(如TCA2003)及附加数字温度计、数字气压计和数字湿度计等。

监测站:根据现场条件,选择自动变形监测系统监测站。该站需建观测墩,安置自动化全站仪。为了仪器防护、保温等需要,并保证有较好的通视条件,还需专门设计、建造观测房。

控制计算机房:控制计算机房一般选设在办公区附近,有较好的供电条件。机房内的计算机通过通讯电缆和监测站全站仪相联。在控制房能实时了解监测站全站仪的运行情况。另外,通过埋设于机房与监测站的专用电缆给全站仪供电。

基准点:在变形区外,需建多个稳定的建在基岩上的基准点。

变形点:根据需要,在变形体上选择若干变形监测点,每个监测点上安置有对准监测站的单棱镜。

自动化全站仪:带伺服电机驱动的全站仪,如TCA2003智能全站仪等,在望远镜中安有同轴自动目标识别装置,能自动瞄准普通棱镜进行测量,可采用电子气泡精确整平仪器,具有纵、横轴自动补偿。

器,提高了仪器的整平精度。仪器内置的Flash存贮器可装载应用软件,并独立运行于仪器上,数据存贮在SARM存贮卡上,也可用通讯电缆与计算机连接有计算机控制全站仪。

2.2 系统运行模式

目前,我们接触到的系统软件有两套。一套为Apswin+MRDiff自动极坐标实时差分系统。另一套为直接用TCA2003机内的Monitoring监测软件加后处理软件。

(1)Apswin+MRDiff监测系统;Apswin是瑞士徕卡公司推出的自动极坐标系统;MRDiff是信息工程大学测绘学院研制开发的多重实时差分软件,挂在Apswin之中,平滑改正整个系统存在的综合误差。

Apswin:徕卡自动及坐标测量软件。该软件控制TCA自动化全站仪,按极坐标的方式智能化的实时采集目标点的水平角、垂直角和斜距,并显示仪器的状态信息。

MRDiff:多重实时差分平滑改正软件。该软件挂到Apswin中,主要完成大气等条件的变化对极坐标测量系统误差的实时差分改正。

(2)Monitoring监测程序+后处理软件监测系统;在徕卡新版TCA2003中,随机包含了一个Monitoring监测程序。测量员可直接用它采集数据,将数据储存在PCMCI卡中,供事后处理,即在室内用变形观测数据处理系统进行数据处理,并做精度评定。读取平差成果中的点位坐标加入变形观测数据库,并对多期成果进行比较、相邻两次观测结果比较,每期变形观测结果与初始值比较和输出变形量图表。

大坝、隧道、大桥、地铁工程和其他大型建筑物的变形监测工作中,用徕卡TCA+APSWin系统一般都能满足要求。但是在某些特殊的临时性场合,比如不允许在室外使用计算机,也不具备远程通信的条件下,选用Monitoring+后处理软件不失为一种较理想的方法。Monitoring程序的功能比APSWin简单得多,例如:当某一测点测量失败,不能复测该点,只能由人工临时修改Point Select,再补测该点,直至测量成功。它也没有容差限制,没有实时的图形显示等等。这些都可以在以后的版本中仿照APSWin的功能加以改进。总的来说,Monitoring的功能已能满足监测的基本要求,尤其是在无法使用电脑的特殊情况下,Monitoring不失为一个相当方便实用的程序。

3、结语

在新技术高速发展的当今,大地测量变形监测自动化系统具有广泛的推广应用前景,有巨大的社会效益和经济效益。尤其是已具有当今国际先进水平的APSWin+MRDiff自动极坐标实时差分监测系统,已在三屯河水库大坝外部变形监测、小浪底工程外部变形监测等工程中得到广泛应用,并在使用过程中显示了很大的优越性,取得了十分显著的技术和社会效益。

参考文献

[1]沈家俊.水电站大坝安全管理的发展趋势与展望[J].大坝与安全,2005(5):1-4.

[2]崔政权,李宁.边坡工程理论与实践最新发展[M].北京:中国水利水电出版社,1999.

智能建造的前景范文第8篇

【关键词】太阳能建筑;环保节能;应用前景

0.前言

随着能源结构的逐步调整,世界各国都把能源问题放到了关系国际民生的战略位置。我国从可持续发展、人与自然相和谐的战略高度,提出了新能源建筑的理念,提出要积极开发和推广利用可再生能源,如风能、太阳能、地热能等。太阳能作为最经济、环保的能源之一将成为未来全球能源结构的主流方向。太阳能建筑作为一项生态环保的绿色技术,在倡导绿色能源、可持续发展的今天,值得大力推广。

1.建筑节能的范畴

建筑节能,是指民用建筑在规划、设计、建造和使用过程中,通过采用新型的节能电力电气设备和新型墙体材料,执行建筑节能标准,加强建筑物用能设备的运行管理,合理设计建筑围护结构的热工性能,提高采暖、制冷、照明、通风、给排水和通道等电力电气设备系统的运行效率,以及利用可再生能源,在保证建筑物使用功能和室内热环境质量的前提下,降低建筑能源消耗,合理、有效地利用能源的活动。太阳能是典型的可再生能源,太阳能与建筑的结合体现在建筑的本体节能方面,但同时太阳能设备作为建筑设备的一种,在管理节能方面也具一定潜力。

2.太阳能建筑的概念

太阳能建筑(solar building),即用太阳能代替部分常规能源,为建筑物和居民提供采暖、热水、空调、照明、通风、动力等一系列功能,以满足或部分满足人们生活和生产的需要。所谓太阳能建筑,其利用太阳能的最高境界是“零能耗”,即建筑物所需的全部能源供应均来自太阳能,常规能源消耗为零;从而真正做到环保清洁、绿色生态。

基于以上分析,太阳能建筑的特点可以概括为3条:(1)既舒适亦健康;(2)节约一次能源;(3)减少对环境的破坏和污染。

3.太阳能与建筑的结合中存在的问题及解决方法

太阳能建筑的宗旨是在不破坏建筑立面的前提条件下,注重太阳能系统的安全性、实用性和智能性。然而,在太阳能与建筑的结合问题上,目前仍存在诸多问题。

(1)太阳能产品制造商,往往只强调产品的功能,而忽视了建筑的特点与要求,使太阳能产品与建筑物成为两个独立的部分;这样以来很可能会破坏原有建筑的整体外观形象,进而破坏环境;而且目前的太阳能产品结构较单一,建筑设计师即使在设计中考虑使用太阳能产品,也很难将太阳能产品有机地融人到设计中,使太阳能产品成为建筑设计中的“鸡肋”。

(2)建筑设计院,仍有不少建筑设计师缺乏绿色生态的理念,根本不考虑太阳能及其他绿色能源的使用,造成太阳能产品大都在建筑施工过程中临时安装,即“事后状态”下安装,结果影响到建筑群体,甚至整个城市的建筑风貌。

(3)政府规划机构,往往不能够将绿色环保的理念和相关政策很好结合。虽然很多地区已出台12层以下民用建筑必须安装太阳能热水器的强制性政策,但由于其它相关配套设施、标准的不完善,尤其是太阳能施工验收标准一块,仍存在争议点。在一定程度上影响了太阳能产品的生产,导致推广效果不好、范围不广。

针对以上问题,解决方案如下:(1)太阳能产品的生产商应更多地了解建筑设计的需求,开发推出多款适合建筑结构利用的系列和型号;(2)建筑师在设计初期,即将太阳能系统包含的所有内容都当作建筑不可或缺的元素加以考虑,使之成为建筑组成的一部分;(3)加强太阳能产品生产商、建筑师、政府机构的交流与沟通,从设计阶段即将太阳能产品与建筑真正的融为一体,并配以后期的政府激励政策、规范的市场引导机制,太阳能产品一定可以在建筑节能中发挥更大作用。相信在各领域的合作之下,太阳能与建筑必将达到完美与和谐的统一。太阳能系统与建筑设计一体化的设计思路,也将得以持续和发展。

4.太阳能建筑的典型应用模式

太阳能的应用,从技术途径看,主要分为光热转换技术和光电转换技术;从具体应用范围看,主要有太阳能热水供应、太阳能地板采暖、太阳能温水游泳池、太阳能空调、太阳能路灯等5大系列。目前我国的部分城市的小区已经率先采用太阳能热水集中供热系统,其承压运行、分户供水、智能化系统已成了住宅小区的新卖点。还有一些示范小区,利用太阳能的初期光电转换,使小区的门楼牌、指示牌、警示牌等白天吸光,夜晚发亮,既方便住户晚间出人,又节约物管费用。另外,据有关方面统计:用电热水器洗澡的费用约为0.62元/次,而利用太阳能热水器的费用则仅为0.31元/次。

5.太阳能建筑的应用前景

5.1应用空间大

我国具有丰富的太阳能资源,在正常发展和生态驱动发展两种模式下,预测2050年我国太阳能利用在总能源供给中分别占4.7%和10%。目前我国装有太阳能热水器的太阳能建筑仅约占所有建筑的1%。

5.2环保节能

据有关专家的统计,建筑物的CO2排放量占全球总排放量的30%~40%。众所周知,国家推广太阳能的目的是为了环保节能,而环保节能在另外一层意义上说就是尽量减少CO2的排放。使用太阳能减少CO2排量与绿地吸收的效果相一致。据科学计算,可以总结出如下等式:1m=的太阳能集热器“95.39kg标煤产生的热量之70.11kg=19.475m2的草坪吸收力=0.779m2的落叶乔木吸收力=1.5m2的绿地吸收力。从以上数据,我们可以明显地看出建筑应用太阳能的环保节能效应。

6.结语