开篇:润墨网以专业的文秘视角,为您筛选了八篇数学建模的基本算法范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
关键词:工程计算能力;计算基础教育;理工类
中图分类号:G642 文献标识码:B
1问题的提出
我国大学计算机基础教育经过了三十几年的发展历程,几代教育工作者为此付出了辛勤劳动。他们针对我国理工类大学生的特点和中国国情,在当时的历史条件下提出了一系列培养大学生计算机操作技能的教学方法,形成了具有中国特色的计算机基础教育理念和体系。但是,大学计算机基础教育发展到今天如果仍然停留在以计算机基本操作为主体的教学模式上,那将与社会发展对大学生的要求很不适应。今天我们更应该强调培养大学生尤其是理工类大学生以计算机为工具的工程计算能力,并将这种能力与各自的专业结合起来,真正起到为专业服务的作用。由此我国的大学计算机基础教育应该转变为大学计算基础教育。
八十年代初期以来,我国计算机基础教育成为大学里的公共教育,面向全体大学生开设计算机基础教育公共课,并由专门的教学小组(教研室或计算中心)组织教学,依不同专业确定教学内容,因此理工类大学生计算机基础教育的教学内容基本统一。教育部教学指导委员会和全国高等学校计算机基础教学研究会相继出台一些教学指导性意见,如2004年教育部高等学校非计算机专业计算机基础课程教学指导分委员会出台的《关于进一步加强高校计算机基础教学的几点意见》(简称《白皮书》)以及1997年教育部高教司颁发的《加强非计算机专业计算机基础教学工作的几点意见》(简称155号文件),虽然针对不同学科和专业有不同的教学要求,但是培养目标和内容主要以教导学生如何操作好计算机或者说如何提高大学生计算机操作技能为主体,没有强调大学生工程计算能力的培养。以典型的理工类大学生为例,大学期间的计算机基础教育主要开设“大学计算机基础”和“程序设计”两门课程,在“大学计算机基础”课程中,主要介绍计算机的基本组成、环境以及常用软件平台,在“程序设计”课程中也只是讲解编程的基本方法,其他课程更趋向于计算机专业类学生的课程。笔者认为,开设这些课程对于提高大学生计算机操作技能和计算机应用能力起到了重要作用,但是在计算机基础教育的教学体系中没有涉及工程计算能力培养的内容,没有阐明工程计算能力与计算机基本知识和应用能力之间的关系,实际上没有认识到计算机基础教育的根本问题是要以培养大学生现代工程计算能力为目标。
随着计算机技术的迅速发展和广泛应用,作为我国高层次人才――大学生的培养,尤其是规模最大的理工类大学生的培养,应培养他们具有将计算机应用与自己专业知识密切结合的能力,这种结合实质上就是要增强大学生以计算机为基本工具的工程计算能力,而不是简单地操作计算机或使用某一个软件。回顾我国近三十年来的计算机基础教育,大部分精力花在教大学生如何提高计算机操作技能上,如:Windows基本操作、Office软件的使用等,没
作者简介:邹北骥(1961-),男,江西南昌人,博士,教授,博士生导师,研究方向为计算机教育、计算机图形学与数字图像处理。
有涉及工程计算能力的培养。造成这种结果的主要原因有以下几个方面:(1)计算机技术虽然发展很快,但历史不长,对于以计算机为工具的工程计算能力的培养没有深刻的认识。(2)存在误区,误以为培养大学生的操作技能就能提高学生应用计算机的能力。(3)师资问题。大部分从事计算机基础教育课程的教师都是学计算机专业出生的,对于计算机与其它专业的融合问题缺乏了解。(4)大部分从事计算机基础教育的教师很少参与实际科研项目的开发,缺乏软件开发经验,不能体会计算机软件开发中的计算问题和工程计算能力之间的关系。
如果说这种现象的出现是由于历史造成的,或者说是历史发展的必经之路,那么从现在开始,我们就应该高度重视大学生工程计算能力的培养,真正提高他们运用计算机的能力,发挥计算机技术在其它各专业领域的作用。
2工程计算能力培养
什么是工程计算能力?本文所述的工程计算能力是以现代计算机为工具的工程计算能力,也就是以计算机为工具的计算方法的掌握和运用能力。多年以来,“计算方法”或“数值分析”课程是理工类大学生一门重要的基础课,它教给学生用数值求解方法解决工程问题,其中涉及到基本的以计算机为工具的计算方法,如:递归求解等。然而计算机技术发展到今天,特别是软件开发技术和方法的发展,使得以计算机为工具的计算方法变得更加丰富和神奇,非计算机专业,尤其是理工类专业的大学生应该尽可能多地掌握这些方法,以便他们能更好地融入到自己的专业领域。笔者认为,理工类大学生工程计算能力培养应包含以下几个方面。
2.1建模能力
建模能力实质上就是数学建模的应用能力。在理工类大学计算机基础教育中,应该大力加强数学建模方法的学习,大力加强数学建模训练。理工类大学生面临不同领域工程问题,应用计算机求解这些问题的基础是数学建模。在过去几十年的计算机基础教育中,我们忽略了这一方面的培养,使得大学生的计算机应用能力受到限制。因此从培养大学生尤其是理工类大学生工程计算能力的角度出发,应普遍开设数学建模课程。
2.2数据组织能力
工程计算能力培养的第二个方面是数据的组织能力。在计算机专业人才的培养中,是通过“数据结构”课程来教学生基本的数据组织方法。笔者认为,对于非计算机专业尤其是理工类专业的大学生,应该为他们开设“数据结构”课程。我们应该认识到,“数据结构”课程中介绍的数据组织方法,如:堆栈、队列这些基本结构和树、链表等这些复杂结构绝不只是计算机专业学生需要学习的,非计算机专业尤其是理工类计算机专业学生同样需要学习,而且对于他们来讲,这门课程更为重要。有一种观点认为:“数据结构”课程有较大难度,一般理工类学生学习起来比较困难。其实不然,历届研究生入学考试成绩表明,理工类大学生大多通过自学学习“数据结构”课程,而且相当一部分学生成绩优异。
数据结构是程序设计的基础,没有掌握好数据的组织方法,不会运用数据结构表达工程问题中的数据,又怎么可能学好程序设计课程?又怎么能编写好程序?几十年来的计算机基础教育强调了程序设计能力的培养,但没有开设“数据结构”课程,实际上像一座空中楼阁,基础很不牢固。
2.3算法设计能力
算法是计算机计算的步骤描述,是实现计算机求解问题的关键。培养理工类大学生的工程计算能力,需要教给他们基本的算法思想和常用的算法。例如:基本的算法包括排序、递归、查找等。设想一个理工类大学毕业生,如果大学期间对于计算机常用算法理解得比较深刻,应用得比较好,对于他在实际工作中利用计算机解决问题就会变得轻而易举。反之,如果对基本算法一无所知,如:不知道什么是递归算法,不知道什么是排序算法,那么对一些基本的工程问题他都会一筹莫展,甚至无法求解。因此基本算法的学习对于理工类大学生而言是非常重要的。
2.4程序设计能力
工程计算能力培养的第四个方面是程序设计能力,它是工程计算能力的实际载体,用计算机解决实际工程问题最终要落实到计算机程序的开发,也就是人们常说的编程。在学习和掌握数学建模、数据结构和算法设计的基础上,以一门具体的程序设计语言为模板,学习程序设计的基本方法,学习程序的基本结构和运行规律,掌握顺序结构、分支结构和循环结构等对于理工类大学生工程计算能力的提高是极其重要的。
3计算机基础教育与计算基础教育
面向非计算机专业大学生的计算机教育一直沿用“计算机基础教育”这个名称。笔者认为:“计算机基础教育”是围绕计算机本身的计算机科学与技术方面的专业基础教育,面向非计算机专业学生的计算机教育应该用“计算基础教育”这个名称,其本质是要培养非计算机专业大学生以现代计算机为基本工具的工程计算能力,而不是关于计算机本身的科学与技术。长期以来,我国从事非计算机专业计算机教学的教师忽视了这一细节,有意或无意地将非计算机专业大学生的计算机教育引向了计算机科学与技术专业教育的道路,越来越多的课程设置与计算机科学与技术专业的核心课程一致了,如:“计算机网络技术”、“微机接口原理”、“多媒体技术”等。如此下去不仅大大增加了理工类大学生课程学习的负担,而且没有提高理工类大学生工程计算能力。因此我们需要从观念和教学理念上转变,要清楚地认识理工类大学生工程计算能力的培养并不需要为计算机专业类学生开设的那些课程内容,只是需要围绕“数学建模”、“数据结构”、“算法设计”和“程序设计”四个方面的基础课程。
4实施方案建议
综上所述,面向理工类大学生以计算机为工具的工程计算能力培养需要从数学建模、数据结构、算法基础和程序设计四个方面进行,所有的教学要求、内容和目标都应该围绕这四个问题展开。笔者建议,针对理工类大学生的计算基础教育课程体系可以有两个方案,一个方案是紧缩方案,开设的课程概括上述四方面内容,设置两门课程,分别为“大学计算基础”和“大学计算机程序设计”;另一个方案是扩展方案,开设四门课程,分别对应上述四个方面的内容,即“大学数学建模方法”、“数据结构基础”、“算法基础”和“程序设计基础”。两种方案的内容、要求和课时见表1和表2。
表1方案1(压缩型)
课程名称 主要内容 要求与目标 学时建议
大学计算基础 1.计算机的基本知识 掌握计算机基础知识 80
2.数学建模方法介绍 掌握基本的数学建模方法
3.数据结构基础 掌握常用的数据结构
4.算法基础 掌握常用的算法
大学计算机程序设计 1.程序的基本概念
2.C语言程序设计 掌握计算机程序的原理和运行方式
掌握C语言编程方法 48
表2方案2(扩展型)
课程名称 主要内容 要求与目标 学时建议
大学数学建模方法 1.计算机的基本知识 掌握计算机基础知识 80
2.数学建模方法介绍 掌握基本的数学建模方法
数据结构基础 1.数据的组织方法 掌握数据的组织方式 48
2.基本的数据结构及其应用 掌握队列、堆栈、链表等基本数据结构的应该
算法基础 1.算法的基本概念 掌握算法的思想、流程、表达方式及其与程序之间的关系 48
2.基本算法及其应用 掌握常用的算法
程序设计基础 1.程序的基本概念
2. C语言程序设计 掌握计算机程序的原理和运行方式
掌握C语言编程方法 48
5结束语
教育理念和观念的转变需要全体教育工作者形成共识,提出的方案需要通过论证和实践检验,建议相关部门
组织一部分长期从事非计算机专业计算机基础教育的教师、学者进行研讨,针对理工类大学生计算机基础教育和计算基础教育的内涵进行讨论,明确理工类大学生计算机基础教育因面向工程计算能力培养,文中提出的实施方案可在高水平大学试点。
参考文献:
关键词:数值计算方法;数学建模;必要性;途径
中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2013)24-0047-02
随着计算机的飞速发展,几乎所有学科都走向定量化和精确化,从而产生了一系列计算性的学科分支,如《计算物理》、《计算化学》、《计算生物学》、《计算地质学》、《计算气象学》和《计算材料学》等,而《计算数学》中的数值计算方法则是解决“计算”问题的桥梁和工具。因此掌握数值计算方法的基本理论及其应用对理工科大学生从事专业研究具有重要意义。那么如何加强学生对计算方法思想的领悟?如何增强学生运用计算方法思想解决实际问题的能力?在计算方法教学中融入数学建模思想是值得我们认真思考的问题,也是解决学与用关系的一个非常有意义的尝试。笔者参加了山东省精品课程数值计算方法的建设,又结合近几年的教学体会,提出以下几点认识。
一、数学建模思想融入数值计算方法教学的必要性
1.传统数值计算方法教学的不足之处。值计算方法,也称数值分析或计算方法,是专门研究各种数学问题的数值解法(近似解法),包括方法的构造和求解过程的理论分析。课程中有大量的、冗长的计算公式,所涵盖的知识面宽,各部分内容自成体系,因而给人的感觉是条块分割严重,逻辑性、连贯性不强。在传统的数值计算方法教学中,主要是讲解定义、公式推导和大量的计算方法等。很多学生在学习的过程中甚至考试结束之后仍然不知道自己所学的算法能在什么地方应用,导致学生学习目的性模糊,学习兴趣减少,因此加强培养学生的数学建模能力具有十分重要的意义。
2.数学建模思想在数值计算方法教学中的作用。所谓数学建模[1],就是将某一领域或部门的某一实际问题,通过做一些必要的简化和假设,明确变量和参数,并依据某种“规律”,运用适当的数学理论,建立变量和参数间的一个明确的数学关系式,这个数学关系式即为数学模型,建立这个数学模型的过程即为数学建模。建立实际问题数学模型的过程如下[2]:实际问题建立数学模型求解模型检验模型结果修改模型再求解模型(可循环多次)实际问题的合理结果。在这个过程中,只有一小部分模型能解析求解,大部分数学模型只能数值求解。这就要用到数值计算方法课程中所涉及的算法,如插值方法、最小二乘法、曲线拟合法、方程迭代求解法、共轭梯度法等,这就启发我们将数学建模的思想融人计算方法的教学中,提供数值方法实际应用的源泉,体现数值方法的价值和意义,使数学教学不再是无源之水,无本之木,不再显得那么空洞,从而把以往教学中常见的“要我学”真正地变成“我要学”。
二、数学建模思想融人数值计算方法教学的途径
将数学建模的思想融人数值计算方法教学中是很有必要的,但具体如何融入呢?结合教育的实际,笔者提出以下几点建议。
1.原则。课堂教学的主要内容和地位而言,数值算法是课堂教学的主要内容,数学建模仅作为一种教学方法而存在,是学生认知的一种途径,它为数值计算方法教学服务,是教学工作的一种延伸和补充,处于从属地位。数值计算方法为主,数学建模为辅,二者不能平分秋色,更不能本末倒置。因此,数学建模思想渗透到数值计算方法教学中的量不能超过一个度,否则,数值计算方法课就会变成数学建模课。
2.在解决应用问题的讲解中渗透数学建模的思想与方法。值计算方法中的数值方法都有很强的实际应用背景,每一种方法都直接或间接与工程应用有关。教学中通过对实际应用背景的描述,可以激发学生的学习欲望和探究心理,从而对学习内容及过程产生强烈的兴趣和需要。这就要求授课教师了解其他相关学科课程,让学生知道所学的知识在不同领域的应用。例如:在信息技术中的图像重建、图像放大过程中为避免图像失真、扭曲而增加的插值补点,建筑工程的外观设计,天文观测数据、地理信息数据的处理,社会经济现象的统计分析等方面,插值技术的应用是不可或缺的;在实验数据处理问题中,曲线拟合得到广泛应用;在汽车、飞机等的外型设计过程中,样条技术的引入使其外型设计越来越光滑、美观。
3.数学实验中渗透数学建模的思想与方法。机环节是数值计算方法这门课程重要的组成部分,也是检验学生理解授课内容好坏的“试金石”。授课教师可以结合实际和所学数值算法设计一些综合性的问题,让学生去解答。学生通过查阅资料,认真研究,建立模型,设计算法,编程上机,调试运行,得出结果。这个过程既提高了学生编程上机能力,对所学算法有了更深刻的理解,而且对提高学生应用所学的计算方法知识解决实际问题的能力也有很大帮助。
4.在案例教学中渗透数学建模的思想与方法。案例教学[3],就是在课堂教学中,以具体案例作为教学内容,通过具体问题的建模范例,介绍数学建模的思想方法。所选教学案例要尽可能结合学生所学专业,并且涉及相应数值算法而又能体现数学建模思想。这样既使学生掌握了数学建模的方法,又使学生深刻体会到数学是解决实际问题的锐利武器。下面具体举一个例子给予说明。例:三次样条插值案例.在工程技术和数学应用中经常遇到这样一类数据处理问题:在平面上给定了一组有序的离散点列,要求用一条光滑曲线把这些点按次序连接起来。解:传统的设计方法是工程技术人员常常用一条富有弹性的均匀细木条,让它们依次经过离散数据点,然后用“压铁”在若干点处压住,在其他地方让它自由弯曲,然后沿细木条画出一条光滑曲线,形象的称为样条曲线
在力学上,通常均匀细木条可以看作弹性细梁,压铁看作是作用在梁上的集中载荷,“样条曲线”就模拟为弹性细梁在外加集中载荷作用下的弯曲变形曲线。设细梁刚度系数是A,弯矩为M,样条曲线的曲率为k(x)。由力学知识:Ak(x)=M(x),M(x)是线性函数,k(x)=■当 时(即小挠度的情况),上述微分方程简化为Ay"(x)=M(x),y(4)(x)=0因此,“样条曲线”在每个子区间可近似认为是三次多项式。通过此数学建模案例可以让学生体会三次样条的基本特征:分段三次光滑,整体二次光滑。
总之,在数值计算方法教学中融入数学建模思想,不但搭建起数值计算方法知识与应用的桥梁,而且使得数值计算方法知识得以加强、应用领域得以拓广,在推进素质教育和培养创新能力上将会发挥重要的作用。
参考文献:
[1]丁素珍,王涛,佟绍成.高等数学课程教学中融入数学建模思想的研究与实践[J].辽宁工业大学学报,2008,10(1):133-135.
[2]曾国斌.试论数学建模与高等数学教学[J].湖南理工学院学报(自然科学版),2008,21(3):92-94.
[3]何莉.在高等数学教学中培养学生数学建模能力[J].科教文汇,2008,68.
关键词:TRIZ理论;发明原理;创新思维;数学建模
TRIZ理论是新型的创新理论,是引领科技发展的航标。数学建模是应用数学的理论知识解决生活中实际问题,当然需要创新,将TRIZ理论知识的创新思想应用到数学建模中必将起到积极的作用,那么如何应用TRIZ理论知识辅助数学建模的比赛与学习,探讨如下:
1 TRIZ理论与数学建模思想的统一性
1.1 思维方法的统一性
TRIZ理论的思维方法之最终理想解的定义是,尽管在产品进化的某个阶段,不同产品进化的方向各异,但如果将所有产品作为一个整体,低成本、高功能、高可靠性、无污染等是产品的理想状态。产品处于理想状态的解称为理想化的最终结果。数学建模解决问题的最终结果也是努力追求低成本、高功能、高可靠性、无污染等。也是希望能量消耗的极限趋向于零,实现有用功能数量趋向于无穷大。由以上可见,由于数学建模与TRIZ理论在最终理想解确定的方向完全一致。
1.2 解题思路统一性
无论是数学建模还是TRIZ理论解决问题时基本沿着固定的步骤进行求解。数学建模一般情况下也是按照固定的步骤求解,途径模型分析,模型假设,模型求解模型检验等。二者在解决问题的思路上都是打破传统的思维方式,从而开辟一条更加理想的创新道路,得到更加科学合理的方案。
2 应用TRIZ理论知识辅助数学建模的比赛与学习
TRIZ理论为解决问题提供了有效的方法,搭建了问题的解决与方法的平台。我们知道方法得当会使解决问题带来意想不到的方便。在数学建模的比赛与学习中,曾出现的生活中的数学问题,如果有TRIZ辅助其寻找解决的方法,那就会使解决问题的时间缩短,达到事半功倍的效果。
2.1 应用TRIZ理论的发明原理解决数学建模问题
例 2008年全国数学建模比赛C题5.12汶川大地震使震区地面交通和通讯系统严重瘫痪。救灾指挥部紧急派出多支小分队,到各个指定区域执行搜索任务,以确定需要救助的人员的准确位置。本题就是一个简单的搜索问题:有一个平地矩形目标区域,大小为11200米×7200米,需要进行全境搜索。且出发点在区域中心;搜索完成后需要进行集结,集结点(结束点)在左侧短边中点;每个人搜索时的可探测半径为20米,搜索时平均行进速度为0.6米/秒;不需搜索而只是行进时,平均速度为1.2米/秒。每个人带有GPS定位仪、步话机,步话机通讯半径为1000米。搜索队伍若干人为一组,有一个组长,组长还拥有卫星电话。每个人搜索到目标,需要用步话机及时向组长报告,组长用卫星电话向指挥部报告搜索的最新结果。在问题的分析过程我们就可以应用TRIZ的发明原理解决问题,在40个发明原理中进行科学的筛选。解决此问题我认为,恶化静止物体的长度,改善时间的浪费,查询矛盾矩阵表,选择第十四个发明原理,即曲面化原则,它就很适用。按照曲面化原则中“从直线部分过渡到曲线部分”的提示,考虑按圆形路径搜救,在节省时间的同时还不会存在盲区,这为问题的解决开辟了良好的思路。沿着这样的思路应用数学知识很快就会设立正确模型。20个人在同心圆的路径上搜救,如图1所示。当路线与搜救矩形的长边相切后,路线变为矩形内部的圆弧,如图2。
安排好每名搜救队员的具体行走路线后,首先计算完整圆内最先走完的人用时,确定弧的走法,计算出最后一个走完弧并回到集合点的人一共用的时间,就是搜索完整个区域的时间。所以,有了TRIZ理论做基础为问题的解决提供了良好的思路,使参赛者不走弯路直接可以找到解决问题的方法,达到事倍功半的效果,为大学生数学建模比赛试题的完成赢得了时间。
2.2 应用TRIZ的思维方法解决数学建模问题
例周游先生退休后想到各地旅游。计划走遍全国的省会城市、直辖市、香港、澳门、台北。请你为他按下面要求制定出行方案:(1)按地理位置(经纬度)设计最短路旅行方案;(2)如果2010年5月1日周先生从哈尔滨市出发,每个城市停留3天,可选择航空、铁路(快车卧铺或动车),设计最经济的旅行互联网上订票方案;(3)要综合考虑省钱、省时又方便,设定你的评价准则,修订你的方案;(4)对你的算法作复杂性、可行性及误差分析;(5)关于旅行商问题提出对你自己所采用的算法的理解及评价。在解决问题时,我们可以采用TRIZ理论的最终理想解的解题步骤进行思考,最终理想解为研究问题指明了方向,我们可以按照以下步骤进行科学的分析:(1)最终目的是花最少的钱,在最短的时间内到达最多的城市;(2)理想解是省时、经济、方便;(3)达到理想解的障碍是路线的选择;(4)出现这种障碍的结果浪费时间和金钱;(5)不出现这种障碍的条件是合理的选择路线和方法,创造这些条件存在的可用资源是列车时刻表。在解决问题时利用改进了的分级处理方法,利用“列车时刻表”实际依次查出任一城市与其它城市之间的最经济旅行费用数据,并列出数据表,以据阵的形式用到算法中,由于数据的准确性较高,即结果的可靠性也较高.又因为本模型的问题比较全面,结合实际情况对问题进行求解,所以建立的模型能与实际紧密相连,使得模型具有很好的通用性和推广性,将矩阵利用局部作用算法,通过C++编辑,得出结论通过数据表列出矩阵。由此可见,TRIZ理论知识对数学建模的比赛和学习所起的重要作用,尤其是比赛,在相对较短的时间内确立最终结果的理想方向和方法,为比赛赢得了宝贵的时间,是赢得比赛的关键。
总之,TRIZ理论知识的创新思想与方法对数学建模的学习与比赛起到指引方向、辅助思考的作用,为理想解的探究起到积极的影响,有待于我们进一步研究。
参考文献
[1]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社(第三版),2003,8.
一、小学数学模型思想
在整数的运算中,学生掌握的整数四项基本单向运算的方法是小学接触的数学模型,十进制是表示数的基本模型,是日常生活中使用最多的计数方法。一年级学生接触的“凑十法”与“破十法”就是以其为基础“一看(看大数)、二拆(拆小数)、三凑十、四连加”的思考过程,实际上就是学生在教师指导下建立的较为复杂的数学模型。因此,在小学生的数学教学过程中,不可避免地要用到数学建模思想。
二、开展数学建模活动的途径
数学建模活动的开展是为了培养学生的思维能力以及创新能力,因此,在小学数学教学中要革新思想,用数学建模的思想去进行数学教学。开展数学建模活动需要老师和学生的共同努力,老师要加强对数学建模的重视,在教学过程中渗透建模思想,学生要积极配合老师,团结合作共同完成建模过程。
数学建模的过程离不开资料的收集,因此,教师可以结合教材创造数学情境,让学生在学习的过程中获得“搜集资料、建立模型、解答问题”的体验。例如,西师版教材中三年级上的第九章的总复习――数学文化:中国的四大发明之一――指南针,四面八方,平年、闰年的来历,可以通过让学生收集资料,并解答相应的问题,通过合作、收集资料、解答的过程体验数学建模。
上好实践活动课程对学生模仿建模有很好的指引作用,老师在教学过程中给学生提供信息资料,引导学生进行问题分析以及资料的收集,提高学生的思维能力。结合教材内容,对教学内容进行整合,并融入生活中。例如,西师版教材中实践活动――做一个家庭年历,结合生活实际,同时在要求学生理解年、月、日概念的情况下,考虑当下的问题背景:今年是什么年份,有几月,一月有几天,并对年历进行设计规划,是一个很好的建模过程。
改编教学习题,使数学建模成为一种自觉行为。例如,在西师版小学数学中关于圆柱体和正方体体积的计算中,通过建立数学关系,探讨圆柱与正方体的关系,在体积相同时,圆柱的底面半径、周长、高与长方体的长宽高的联系(圆柱的底面半径等于长方体的高,底面周长等于长方体的长,圆柱的高等于长方体的宽),进而解决练习题中关于圆柱和长方体体积的转变计算。
三、数学建模思想在小学数学教学中的应用
1.教学方法的改革就课程设置的目的层面而言,数学建模和数学实验课程在传授数学理论知识的同时,注重培养学生的数学应用能力,所以,对于这门课程的课堂教学主要采取了以下两种改革方法:(1)开展案例教学,适当加入讨论式教学法.在每堂课前,教师要花费一定的时间,搜集与所讲授建模方法相关的生活实际案例,在教学中教师通过这些教学案例引出相应建模的基本思想方法,通过解决这些实际问题,激发学生的学习兴趣,还可借机根据相关问题展开讨论.这样可以避免教师的“满堂灌”现象,还可以活跃课堂气氛,提高学生的课堂学习的积极性,使传授知识的过程变为学习知识、应用知识的过程,真正地达到提高学生素质和培养学生能力的教学目的.案例的选择方面,形成了以下原则:要有明确的教学目的性;要有趣味性;要有原始性;要根据教学对象的不同有所侧重性;要有创新性.(2)开展实验教学法.针对数学建模与数学实验课程学习过程中学生实践动手能力严重不足的问题,采取了依据建模方法设置每节课的实验环节和综合性的实验项目,包括MATLAB、LINGO两个软件的使用和数学建模中各种模型的求解以及一些综合性实验项目,使学生在计算机上的实践和对模型的简化处理后求解,这样,不仅有效地培养了学生数学软件使用能力,还培养了学生分析问题、解决实际问题的能力.
2.考核方式的改革数学建模与数学实验是解决生活问题的数学应用性活动,不适合期末一张卷的闭卷考核方式.为突出数学建模与数学实验课程本身的特点以及满足教学基本要求,重点培养学生数学应用能力和实践创新能力,在成绩考核方面,采用了1∶4∶2∶3考核模式,即平时表现分、基本建模和实践能力训练分、创新能力训练分、期末上机考试分四个部分.平时表现10分用来约束学生逃课和激励学生学习,包括出勤、课堂回答问题和课堂讨论三方面,表现突出者每次都要加分、超出部分可以代替其他训练分数.基本建模、实践能力训练和创新能力训练共60分,用来加强学生对基本的建模思想方法、程序算法、方程求解以及模型应用等方面的掌握及应用.基本建模和实践能力训练部分,要求学生学习完一些章节的内容后,自愿三人组合为一队,完成教师布置的和随机抽取的2-3个问题的建模与求解,并撰写实验报告,这可以为数学建模竞赛打基础;创新能力训练部分是指学生在学完一些章节后,要求学生单独完成一些综合实验报告.这些报告题目贴近生活,开放性强,答案基本不唯一,有一定难度,要求单人单题,互不重复,这样不仅有效地避免学生的抄袭现象,还充分发挥学生的想象力和创造力,提高学生的创新能力.期末上机考试30分,用来考查学生综合运用所学知识解决实际问题的能力.
3.数学建模培训与竞赛选拔机制的改革改革建模竞赛的培训方式,采用系列专题讲座法.结合课程团队教师自身的专业和科研方向,分配以相应的专题进行讲座.这样能人尽其才,培训过程也显得更为深刻和生动,效果也会明显提高.要使学生在数学建模竞赛中取得好成绩,需要有一个科学合理的竞赛选拔机制.各高校一般采用的都是三级或者四级竞赛选拔机制.三级竞赛选拔机制是校内赛、几省联赛、国家赛;四级竞赛选拔机制多一项国际竞赛.很多高校根据自己的实际情况采取不同的方式.牡师院采用的是三级竞赛选拔机制.即在每年4月份组织校内赛,按照事先制定的规则和方法,教师先做专题讲座后,学生参赛.大赛结束后,选拔出色队员参加东北三省赛;接下来在4月末开始组织参加东北三省建模联赛,大赛结束后,选拔出色队员参加国家赛;最后在9月份组织参加国家赛.
2改革取得的主要成效
我们团队自2006年实施相关课程教学改革以来,教学效果明显提升,学生的素质和能力培养有了质的飞跃,具体表现为以下四点:(1)参加校内竞赛人数不断上升.2009年初次举办校内竞赛,全校只有42人参加.2010年参赛人数达到120人,竞赛规模有所改观.2011年参加校竞赛的人数上升到164人,这一规模基本上达到了预期.在竞赛过程中,大学生逐渐意识到了这项赛事的重要性,竞赛组织形式由此也实现了由教师鼓动报名,到学生主动报名的转换.竞赛规模的不断扩大,佐证了牡师院广大学生在数学应用方面的认识水平有了巨大提高.(2)数学建模竞赛成绩提高明显.2009年以前,牡师院在2年的建模竞赛中只获得省奖6项,现在牡师院的竞赛总体成绩已呈明显的上升趋势.(3)学生数学应用实践与创新能力明显提高.现在,学生已完成大学生创新性实践项目5项;近3年,已有近90名参赛队员以优异成绩考取研究生,部分研究生入学后,因为其出色的建模能力被导师重用;一些学生在毕业后选取了和建模密切相关的行业(如证券业).牡师院第一届参加全国赛的6名队员目前分别在IBM、网易、中兴、高校任职或攻读博士学位.(4)教师的教学和科研水平明显提高.数学建模竞赛培养了一批新型的数学教师队伍.近几年先后主持教改项目6项,发表教学论文若干篇、主编教材2部,参编教材1部;获得教学、科研成果奖励2项;共承担各类科研项目11项;科研论文22篇,获奖4篇;出版专著2部;教练组的每个成员都根据自己的专业特长参与到了不同的项目当中.这一举措极大地提高了教练组成员的科研能力,提高了教学水平.
3结束语
一、过好阅读关
在考试里面,失分较多的题目,很多时候不是学生真的不懂做,而是没有认真的读题目,没有弄懂题意,就匆匆下笔。因此,数学应用题的教学跟阅读有着很大的关系,必须过好阅读第一关。许多学生为了尽快完成作业,只是模仿做题,根本没有养成认真阅读教科书的习惯。根据这种情况,我从低年级抓起,强化阅读。首先,课前预习时,划定具体的阅读的内容并提出阅读要求,课堂上进行各种形式的检查,达不到要求的重新阅读;句、段、例、注释,都要读懂,从中获取准确的信息。其次,根据学生的知识水平和教学目标每天在黑板上写一道应用题让学生阅读,在上课时让学生复述,并指出相关的数量关系,培养学生主动获取信息的意识。
(一)掌握阅读的方法
首先,粗读识大意。应用题一般文字比较多,信息量比较大。这就要求学生需要快速地阅读一遍,了解题目的大体内容:题目简述的是哪一类问题,已知条件是什么,问题是什么,涉及到什么基本概念其次,细读抓关键。找出题目中关键词语和关键句子,这是实现综合认知的起点。学生在粗读基础上逐字、逐词、逐句进行细读,弄清其含义和内在的联系。比如,“不少于”、“最少”、“都是”、“增加到”、“增加了”等关键词语在解题中经常起到关键作用,必须抓住、抓准。
(二)提高阅读的能力
首先,让学生高度的认识到阅读在数学学习中的重要作用,尤其是在应用题的学习中更加重要。培养他们主动阅读的习惯,使其积极地阅读教材;其次,精心指导学生阅读,教会他们阅读的方法,循序渐进。例如,可让学生做阅读笔记,进行阅读小结,培养学生的阅读概括能力
二、学会建模
(一)重视课本,打好基础
教材中有许多丰富的实际问题,如体积问题、航行问题、细胞分裂问题等,这些问题都是数学建模的最基本的素材。教师可以根据学生的知识能力水平和教学目标选编一些典型的熟悉的实际问题进行练习,以便加强学生的数学建模意识,培养学生的数学建模兴趣,选取的练习题既要简单新颖,又能让学生能够独立完成,但是在严格,列式、分析、求解、书写等方面都要严格、规范,让他们尝到数学建模的乐趣,打牢基础。
(二)归类整理
应用题文字多,信息多,在阅读理解、信息筛选方面要求很高,同时还得提取已有信息,实现信息迅速转换,把实际问题转换成数学符号、数量关系,达到建立数学模型的目的。在提取已有的信息时,必须注重提取线索的作用。提取的线索与记忆痕越接近,越有效。因此,在教学中必须加强对学生归类整理的指导,并提供基本的建模思路,使学生能快速、准确地进行数学建模。
(三)联系实际,抓好源头
数学应用题基本上来源于生活实际、社会实践和科学实验,学生对一些概念和专业性术语往往艰难理解或者理解不够深。这样,教师可以利用放假或周末时间组织学生参加社会实践,搜集数学建模的素材,探讨建模的方法。比如,到农村了解农民增收的评估,到工厂了解产品的生产,到规划设计部门了解城市规划问题,到银行学习借贷利息的计算等,都可以大大丰富信息学习的内容,提高学生的学习积极性,强化学生们应用意识。
(四)改题编题
在数学教学中,教师可以大胆鼓励学生改编教材中的习题、例题,比如改变已知条件、改变数量关系、改变结论等,、反复琢磨,真正体会编题者的目的。另外,也可让学生在网上搜集素材,编制新题,进行建模练习。对编题有新意的学生要加以表扬,充分调动他们学习编题的积极性。
(五)举办讲座
根据各年级不同的教学进度,每个学期可以举办一到两次应用题学习的专题讲座,归纳教材内容,梳理建模的思路,归类学生存在的问题,以便巩固教学成果,增强学生的数学建模能力。高一年级可以把函数应用题、数列应用题作为重点。高二年级可以把不等式应用题作为重点。高三年级可以把探索性应用题作为重点。
三、过好运算关
(一)思想要高度重视
很多学生只注重列式,认为思路对了就没有问题了,对简单的计算粗心马虎,对复杂的算式缺乏耐心,究其原因是因为思想不够重视,不注意锻炼良好的运算习惯。因此,要加强思想教育,让学生明白计算失误带来的严重后果,平时就注意培养可靠的运算习惯。
数学建模可以为数学理论和金融问题搭建一座桥梁。数学模型在金融领域已经有广泛的应用,如证券投资组合模型、期权定价模型等。数学建模教育在金融人才培养中的作用是其他学科无法替代的,可以归结以下几方面:
1.提高学生的应用
数学素质以及学习兴趣数学建模教学是案例教学,以实际问题为背景,利用数学思想方法解决实际问题,可以很好地将数学理论与金融实际问题紧密结合。如在量化投资中,可以基于智能算法建立套利模型;利用最优化方法研究资产组合模型等。数学建模教学可以避免抽象理论知识的讲授,让学生认识到数学在金融中的重要应用价值。同时,激发了学生学习数学的兴趣,发现了数学的无穷魅力,提高对数学的认可度,体会到数学是一种重要工具。数学建模课程中讲授了大量的数学建模思想方法,如时间序列分析、最优化方法、微分方程、智能算法等。常言道:授人以鱼,不如授人以渔。通过数学建模的学习与训练,可以拓宽学生的知识面,提高学生应用数学解决实际问题的能力。
2.培养学生的科研创新能力
数学建模是一个不断探索的创造性过程。从不同的角度理解,同一个问题会得到不同的数学模型以及求解方法,没有统一的标准答案,这为学生留出自由发挥的广阔空间。在建立数学模型之前,必须查阅大量的资料,获得自己所需要的信息。数学建模最终解释实际问题必须以论文的形式呈现。经过数学建模训练之后,学生的创新能力有了显著的提升。例如我校获得国家二等奖的小组,被选中参与量化投资大赛,最后也获得了全国二等奖。因此,数学建模教育有助于提高学生的文献查找能力以及论文撰写水平、培养学生探索、研究能力、创造性地运用综合知识解决实际问题的能力。
3.增强学生的综合素质数学
建模教育除了培养学生应用数学的能力之外,还有一个目的就是为参加数学建模竞赛做准备。数学建模竞赛是以小组为单位开展工作,3个人分工明确,但又不可独立开来。面对复杂的赛题,3个人只有共同思考、互相启发、各司其职、、攻坚克难才能在规定的时间内完成。这种竞赛模式培养了学生团队合作精神以及攻坚克难的毅力,为今后能更好地适应工作中的挑战奠定基础。除以上之外,在数学建模过程中还培养了学生想象能力、抽象思维能力、发散思维能力、开拓创新能力、学以致用能力、综合判断能力、计算机编程能力等。而这些能力恰恰是21世纪金融人才应该具备的素质。可以说一次参与,终身受益。数学建模为培养应用型创新型复合型金融人才提供了有效手段。
二、地方金融类院校开展数学建模教育措施
1.重视数学基础知识
在金融中的应用高等数学中,我们可以用泰勒级数去近似一个抽象函数。教师在讲授这节内容时,可以将其用于研究债券价格的变化以及波动性。在概率论中,概率分布研究不确定事件发生的可能性。二项分布在金融中最常见的应用是关于债券价格的变化。概率分布可以用于预测资产价格或资产收益率的未来分布。如果在高等数学、线性代数、概率论与数理统计等公共基础课上适当引入以金融知识为背景的例子,学生将更加深入体会到所学的抽象内容在现代金融的有用武之地,有助于提升学生学习数学的兴趣。然而,要在数学基础课堂上将数学知识与金融专业知识相结合又是不容易的。数学基础课程大多数为公共基础部承担,大部分教师没有金融背景。因此,在招聘数学教师时应该适当考虑有金融背景的数学教师。
2.将数学建模思想方法与现代金融相结合
现代数学包含各门学科知识和数学方法。数学建模课堂上,教师讲授大量的数学建模思想方法,如优化理论、多元统计分析、预测方法、回归分析、现代优化算法、综合评价法等。而数学建模教学采用的是案例教学法,如果能将其与现代金融相结合,有助于提升利用数学知识的能力,同时可以加深理解专业知识。以量化投资中多因子选股模型为例,在选股的时候,人们经常使用的方法是基于基本面或技术面。新兴的量化投资也慢慢发展起来,相比传统方法,量化投资更加客观、理性。多因子选股模型是采用一系列因子作为选股标准,建立过程主要为候选因子的选取、有效性检验、冗余因子剔除、综合评分模型的建立和模型的评价与改进。这一建模过程为数学建模思想方法与现代金融相结合提供了很好的范例。
3.开设金融建模与编程或数学实验选修课
大数据时代对金融人才提出了更高的要求。互联网金融、大数据金融要求金融人才必须具备一定处理数据、分析数据、计算数据的能力。目前,一些金融行业要求求职者必须具备一定编程能力,特别是熟练使用Matlab以及C语言。通过开设金融建模与编程或数学实验选修课可以培养学生的编程能力以及计算能力,为今后就职奠定基础,增加就业筹码。对于一个金融问题,通过问题假设、分析、建立模型,之后,还得借助计算机求解。比如金融分析中的优化问题、回归分析方法等。事实上,这些方法都有现成的函数可以调用。各种数学软件都有各自的优势所在,而对于金融模型,笔者更青睐于使用Matlab软件。Mtalab的编程语言和规则简单,较容易入门。在金融领域有以下几种工具箱:金融数据工具箱、计量经济学工具箱、金融衍生品工具箱、优化工具箱、统计工具箱。使用这些工具箱可以进行投资组合优化和分析、预测和模拟等。比如我们可以基于Matlab平台,采用蒙卡洛模拟方法模拟新股申购中签过程。
4.以竞赛或立项为载体,提升建模能力
目前,数学建模活动在我校开展两年以来,先后组织学生参与全国数学建模竞赛、“华东杯”数学建模竞赛等,取得了一项国家二等奖以及多项省赛区一等奖。我校数学建模课程为全校公共选修课,学生参与数学建模活动热情还有待进一步提升。事实上,金融院校的学生学习了统计学、多元统计分析、运筹学、计量经济学、时间序列分析等。学完这些知识再经过适当培训完全可以胜任数学建模比赛。为了更好地发挥数学建模对金融人才的积极作用,我们必须通过各种形式宣传、引导学生了解数学建模比赛,同时学校应该给予更多的政策支持,组织、鼓励学生参与数学建模竞赛、统计建模竞赛、创新创业训练项目。以竞赛或立项为载体,项目为驱动,利用数学知识解决实际问题,特别是将数学知识与金融专业知识相融合,为应用型创新型金融人才的培养提供新途径。
三、结语
关键词:数学建模;基础课;模型
中图分类号:G642 文献标识码:B
一、在高等数学课程中渗透最优化模型、微分方程模型及几何模型思想
在高等数学课程中,在“一元函数的极值与最大最小值”和“多元函数的极值及其求法”部分,可以使用实际问题作为例题,通过符号假设、分析问题、列最优化的函数及约束条件,使用导数求解,判定是否是极值及其极值类型,判定是否为最值及其最值类型,这就是一个小的最优化模型问题的建模及求解过程。在授课中不能只强调理论知识的推导和计算技巧,要提到最优化模型,还要重视从实际问题到优化模型的建模过程,也就是目标函数和约束函数的来源。
微分方程是高等数学中的重要内容,重点是区分常微分方程的类型,针对每种类型的微分方程会求解,对有阻尼的情况下物体自由振动、串联电路的振荡等问题会建立方程,这也是小的微分方程模型,教学时可以提到经典的人口问题的模型方程以及信号灯问题、湖水污染问题等。
积分学是高等数学的核心知识之一,一元函数的定积分和二元函数的重积分可以求一部分几何图形的面积,二重积分和三重积分可以求一部分立体图形的体积,利用积分也可求物体的质量、引力、质心等。这些都是几何模型和初等模型的体现,在讲解相关的知识点时对这些定积分的应用要着重进行分析性讲解。
二、在概率论与数理统计课程中渗透概率模型和统计回归模型思想
概率模型是如何用随机变量和概率分布描述随机因素的影响,建立比较简单的随机模型,主要用到概率的运算、概率分布、期望、方差等基本知识,如报童问题、随机人口模型、传送系统的效率、航空公司的预订票策略等,在讲解这些基础知识时,可以适当引入案例教学。
当无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型时,往往需要搜集大量的数据,通过对数据的统计分析来建立模型。在学习数理统计知识时,可以使用实际数据,如一个周期内牙膏的销售量、冠心病与年龄的关系等,既能更贴近实际生活,又能在解决问题时体现统计的重要作用,真正让学生体会到各种统计方法的实际意义。
三、在线性代数课程中渗透矩阵在实际生活的作用
矩阵理论是线性代数课程中很重要的一部分内容,线性代数是一门较抽象的课程。将数学建模思想融入这门课程教学中,可以有效弥补教材中实例少、理论联系实际不足的现状。矩阵在图论中也具有非常重要的作用,有邻接矩阵、关联矩阵、可达矩阵等,著名的求解最短路问题的Dijkstra算法也是使用了矩阵的记号方便迭代运算。MATLAB软件专门以矩阵的形式处理数据,一直被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作中。
四、在离散数学课程中渗透离散模型思想
离散数学课程中的一阶逻辑和命题逻辑部分,教材中基本都以实际的小型问题作为例题,包括选派出差问题等,为学生建立相关的离散模型提供了可能。在图论部分,可达问题、最短路问题、图的着色等知识都是直接联系实际的。在这门课程的教学中,适合采用实际案例进行案例式教学,如层次分析模型案例、循环比赛的名次、公平的席位分配等。
总之,在数学类基础课程中应适当融入数学建模思想,通过精炼课程内容,增加、改进实际应用问题的例题及练习题,改进授课电子课件,提高学生应用数学知识的能力,提升教学质量,实现培养创新应用型人才的目标。
参考文献: