首页 > 文章中心 > 与流体力学相关的现象

与流体力学相关的现象

开篇:润墨网以专业的文秘视角,为您筛选了八篇与流体力学相关的现象范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

与流体力学相关的现象范文第1篇

[论文摘要]结合学习主体所处的时代环境变化和流体力学知识体系的学科跨度大以及对数学基础知识要求很高的特点,分析了流体力学教学中存在的问题和难点,提出大量采用实验模型和实例教学以加强流体流动现象的观察理解对提高流体力学教学效果的必要性和重要性。

前言

流体无固定形状,即使受到的剪切力再小,只要持续存在,其变形便会随时间持续增大,不像固体那样,一定的受力只能产生一定的变形。流体力学的基本理论非常严密,描述流体流动现象的数学方程非常复杂,高度非线性[1],因此学生对流体力学敬而远之的现象比较严重。此外由于因特网及电子计算机的普及,各种虚拟现象泛滥,在这样的环境下成长的学生接触和感受实际发生的各种流体流动现象的机会大大减少,对自然现象的观察和理解能力很弱。很多学生在接受流体力学教育之前所受的应试教育的影响下[2],学习只是为了在短时间内对给出的试题做出接近正解的答案获得高分,这种教育具有多大的意义,近年来许多学者从教育学的角度提出了疑问[2]。只有直面实际的流体流动现象,抓住问题的本质,才能诞生真正的学问和研究。笔者基于对本科和研究生的流体学教学中存在的难点和问题,指出了重视流体流动现象的观察和理解对提高流体力学的教学效果的必要性和重要性。

一、流体力学教学面临的问题

(一)新形势下学生所处的社会环境变化

学生从小利用电脑打电子游戏的玩耍时间和机会大大超过了自己亲自动手制作道具及模型的体感玩耍时间,通过体感玩耍接触和观察自然现象的机会大大减少。

因特网的普及使得在短时间内获得大量的信息或实时获得信息成为可能,近年来出现学生过度依赖因特网的倾向,疏远了纸质图书及相关文献这些知识比较系统逻辑性也有保证的传统信息载体。但因特网上除了正确的信息外,还有很多不准确甚至错误的信息,即使是正确的信息,各信息段之间也缺乏系统性,因此学生仅通过因特网难以建立系统的知识体系的。

手机在学生中的普及也使得学生们在实际问题时,不是自己独立分析问题,找出问题发生的原因,而是直接利用手机询问他人求得答案,这样很难培养独立制定计划,对可能事态进行预测,独立进行解决问题的能力。这恰恰是对一个未来走向社会成为一个优秀的技术人员的必经的磨砺之道。

(二)流体力学教学面临的问题

流体流动的力学模型及其运动的物理意义难以理解[3]。流体粘性产生的模型与牛顿粘性定律之间的对应关系就是最好的一个例证。大多数学生虽然能够使用牛顿粘性定律进行计算,但对运动的流体为何会产生粘性却不能正确的理解。的确,对于涉及到流体力学的某些技术或产品设计,只要懂得一定的计算即可,但是对于开发和设计全新的产品,如不能准确把握所涉及到的相关流体流动的物理本质,有时会产生完全错误的设计结果。

流体的运动状态繁多,流体力学融合领域广,要求学生掌握更多的学科预备知识,尤其对数学知识的要求更高,使部分学生觉得流体力学是难以接近的一门课。同一流动现象常常可以从多个角度进行解释,容易使学生产生混乱。比如对翼型的流体力学工作原理,可以从流体流动的动量变化、伯努利方程、压力积分、流线的曲率变化等几个方面进行解释,解释方法之多反而会使学生产生混乱,但每一种解释方法都是正确的,解释的都是一个本质,只有完全理解各种解释方法所依据的理论,才可以解除认识上的混乱,将学到的知识条理化、系统化。

描述流体流动的数学方程高度非线性化,数学上求解比较困难。描述流体流动的纳维斯方程和能量方程是否可以求解以及数学解的唯一性的证明需要微分方程、偏微分方程、多元积分等很深的数学功底,但近年来学生的数学和力学基础存在下降的趋势。

学生在进入大学前所接受的应试教育的影响很大,以考试成绩自评学习效果的认识根深蒂固[4]。实际的流体流动现象往往没有单纯的标准答案,有时甚至存在多个解,重要的是抓住流动现象的物理本质,系统的理解流体力学的基本原理。

二、教学方法对应

解决上述问题的根本方法,笔者认为只有从流体力学教学上,直面涉及流体的各种现象,使学生准确的把握物理本质。为此在流体力学课堂上,广泛采用流体模型教学和实例教学,增加学生观察理解各种流动现象的机会,唤起他们对本门课的兴趣的同时,让他们形成为探究流动现象背后的物理本质进行思考的习惯,这对解决流体力学教学所面临的问题至关重要。

使用电吹风斜向上吹一个让学生事先准备好的气球模型,没经验的学生会意外的发现气球会向斜上方飘起。这一流体流动现象可从风从气球上部通过时,由于气球表面的影响风的流向会产生变化,也就是流线产生弯曲,根据风的动量变化必然产生使得气球浮起的升力得到解释,还可以从物体绕流边界层效应得到解释。从这一简单的模型教学,还可以解释飞机的机翼通过改变空气的流向进而获得升力的流体力学上的工作原理。

在一个装满水的塑料瓶内分别放入密度大于水和小于水的钢球和泡沫小球,然后放在一个可移动桌面上,使桌面等直线加速运动,可发现钢球运动较慢留在瓶底,而泡沫球运动较快停在瓶嘴附近。观察这一个现象引导学生:泡沫球运动得较快是因为等加速运动瓶内流体的静压在运动方向上递减形成压力梯度,小球的前进方向的压力大于等加速运动产生的惯性力,因此小球相对于塑料瓶向前运动;而作用于钢球的前进方向的静压力虽然与泡沫小球相同,但惯性力大于前进方向的静压力,因此钢球相对于塑料瓶向后移动。这一模型教学比一般教科书上关于流体等加速直线运动流体的静压分布的例题更容易使学生抓住问题本质,且能培养学生独立思考之习惯,使学生体会到透过流体流动现象来正确观察和理解把握流体力学基本规律的乐趣。

经常使用立式洗衣机的人都知道,洗完衣服后,衣兜总要被翻过来,假如原来兜里装有硬币等硬物,也会被掏出来[5]。把这个实例在课堂上讲出后,学生们甚有兴趣,追问其中的奥秘,当教师根据伯努利定律做出解释并介绍伯努利这位集物理学家、数学家、力学家及医学家于一身的瑞士的大科学家的基本情况后,学生们顿时对这位科学家充满了崇敬之情,通过大量这种实验模型及实例教学,学生们对学习流体力学这门课更有了兴趣和信心,教学效果的提高自不待言。

三、结语

本文详尽的分析了计算机、因特网、手机等现代化通讯工具普及后对学生产生的影响,由于流体力学课程知识体系的特点,这种影响产生的负面问题很多,尤其是教授成长在应试教育体制下走入大学的学生,更需要转换认识,改变教学观念,在课堂教学中广泛植入实验模型教学和实例教学,让学生直面实际存在的各种流体流动现象,通过实际的流体流动现象的观察和理解,达到生动及形象的把握这些流动现象背后的流体力学的基本定理,有效提升教学效果的同时,通过简单实验模型的制作还可提高学生的动手能力,这对学生走向社会成为一个具有创造性思维能力、独立思考的优秀技术人员也是一个必不可少的雏形磨砺。

[参考文献]

[1]黄卫星.工程流体力学[M].北京:化学工业出版社,2008.

[2]李丹,杨斯瑞.应试教育与创造性人才的培养[J].继续教育研究, 2009, 25(2): 180-185

[3]向文英,程光均.流体力学教学与实验创新[J].重庆大学学报(社会科学版),2003,18(4): 21-26.

与流体力学相关的现象范文第2篇

关键词:流体力学 教学改革 教学方法

中图分类号:G641 文献标识码:A 文章编号:1003-9082(2013)12-0220-01

一、重视“绪论”课

在正式绪论课之前,先以“引子”的方式引入流体力学的概念,并列举生活中存在的流体力学现象,例如球类运动,运输行业,长距离体育项目激发学生对流体力学的兴趣,并强调流体力学存在于自身身边,并不是高深的学问,打消学生对学习困难的顾虑。

再列举流体力学在专业中的应用,例如水力学中的管道、渠道等,空气动力学中的气象污染扩散、室内通风等,强调流体力学对于专业来说是一门重要的专业基础课,在流体力学课程的基础上架设的多门专业课如《化工原理》、《水污染控制工程》、《大气污染控制工程》均需要流体力学课程相关理论的支撑,使学生知晓学好流体力学课程的重要性与必要性。

之后再少量列举专业外流体力学的应用,如水力发电、火力发电、心脑血管疾病、石油的开采和运输、航空航天、给排水等向学生传达学好流体力学不仅可以在本专业有所发展,还可以向相关专业进行渗透,进一步激发学生学习的兴趣。

二、教学手段的改革

1.利用辅助教学手段,将抽象教学转换为形象教学

1.1针对流体力学课程制作助教型和助学型两套多媒体辅助教学软件。利用目前国际上比较前沿的软件Fluent(在美国的市场占有率为60%。凡跟流体,热传递及化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛的应用。其在石油天然气工业上的应用包括:燃烧、井下分析、喷射控制、环境分析、油气消散/聚积、多相流、管道流动等等)、Flash、虚拟现实、录像等手段针对流体力学课程制作助教型和助学型两套多媒体辅助教学软件。

1.2充分利用助学型教学软件,使授课系统化。授课前先将流体力学助学型教学软件下发至每一位学生,要求部分内容自学,部分内容课堂讨论、部分内容自行设计、搭建模型并求解,充分解决传统讲授部分学时占用过大,大部分的学时均被教师用来课堂推导、计算、分析、总结,没有充分调动学生的积极性和主动性的缺点。并将一些涉及到科技前沿应用的知识点、和日常生活非常接近的知识点以及涉及到的相似相近内容体现在助学型教学软件中,增加学生对课程学习的兴趣。

1.3充分利用助学型教学软件,加强学生实践环节训练。流体力学实验不仅涉及到经典的流体力学模型建立、计算、求解、验证还包括可以将各种模型相互组合,组合后验证经典流体力学经典公式、模型在新模型建立及求解过程中的应用。在助学型多媒体课件软件中,设计各种经典流体力学实验环节,规定学生在课余时间自己动手在虚拟的助学型教学软件中进行实验环节,达到使学生锻炼动手动脑能力的目的。另外,还可利用助学型课件软件中的典型模型组合功能,在课余辅导中,让学生自己动手建立模型。

1.4充分利用助教型教学软件,使教学不再枯燥乏味。在流体力学教学过程中,经常会遇到简单口述和简单二维图片无法阐述清楚的内容,在教学过程中辅助老师的讲授进行演示,不仅可以减少教师的无谓劳动也可以增强学生对这些知识点的理解。

2.增加习题课比例,注重实践性习题

之前的教学过程中只是对课后习题中出错率较高的习题进行课堂专门讲解,但经过一段时间的教学探索,发现这样的方式对学生的学习积极性并没有起到大的促进和改善,因此将课堂教学时间的一部分专门开设为习题课,选择有实践性甚至是直接从实践环节总结出的习题,习题给出后,并不由教师直接讲授解题思路与方法,而是选择学生上讲台,一边解题一边向大家介绍自己的解题思路,在解题的过程中有的学生就能够发现自己考虑的不周全的地方,或者下一位学生就能够指出上一位学生的出错点,这样全班学生的思想都被调动起来进行思考,题目也在大家的讨论中得到了正确的解答,学生对于这个知识点的掌握也就更加清楚明了。这样的做法虽然会压缩理论课教学时间,但是学生对于相应概念、公式、理论的理解却更加深入。让学生真正成为课程学习的主体,达到“教”与“学”的同步。

三、考核方式的改革

传统教学模式中,考试卷子可谓“分量最重”,学生对该门课程的掌握程度完全凭借一张试卷中的十几道试题体现,在题目的设置、试卷的审阅、批改过程中难免会遇到平时课堂表现不错但实际考分却并不理想的学生,因此,笔者将《流体力学》课程考核方式设定为40%平时成绩+60%考试成绩组成,平时成绩由课堂随机提问、习题课习题完成情况、作业成绩、课堂出勤率共同组成,强调在随机提问与习题课中,只要积极回答问题就会得到相应的加分,鼓励学生积极参与课堂讨论。考试试卷也由原先的重视计算题和应用题转为多种题型增强多种形式的考核,从多方面考查学生对知识的掌握程度。

也可以通过开卷或大作业形式考核学生灵活运用基本理论分析问题、解决问题的能力,题型可为一些综合性的计算题和分析题,如:简单管网的计算、简单管网系统运行工况的分析等,分值可计算入平时成绩并在平时成绩中占60%~70%的比例。

总之,改革课程考核内容是“流体力学”教学综合改革的又一项重要内容。必须多能力、全方位地考核学生,全面反映学生掌握该课程基本知识的程度和综合运用能力,动手能力。

四、结语

《流体力学》是面向应用型工程技术人才的课程,教师在教学时要注重教学理念的转变,不断进行教学方法的改革,使学生全面学习和掌握知识,进一步提高“工程流体力学”课程的教学水平。

参考文献

[1]朱俊锋,梅群,李一帆. 浅谈土木工程专业工程流体力学课程教学改革[J]. 山西建筑,2010, 36(23): 224~225

[2]施雯,王琪. 油气储运专业“工程流体力学”课程教学改革[J]. 中国电力教育, 2011, 16:129

与流体力学相关的现象范文第3篇

关键词:流体力学;课程建设;创新能力

作者简介:李伟锋(1976-),男,湖北麻城人,华东理工大学资源与环境工程学院,副教授;刘海峰(1971-),男,山东文登人,华东理工大学资源与环境工程学院,教授。(上海 200237)

基金项目:本文系2011年华东理工大学本科教育教学改革重点项目、华东理工大学《流体力学》精品课程建设项目的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)13-0103-02

“为什么我们的学校总是培养不出杰出人才?”这就是著名的“钱学森之问”。“钱学森之问”是关于中国教育事业发展的一道艰深命题,需要整个教育界乃至社会各界共同破解。钱老的话一针见血,既对我国高校人才培养中存在的创新性不足问题提出了尖锐批评,又对改革高校人才培养模式提出了殷切希望。[1]

为此,在党的十报告中明确提出实施创新驱动发展战略,指出科技创新是提高社会生产力和综合国力的战略支撑,必须摆在国家发展全局的核心位置。那么我国大学生的创新能力相对欧美发达国家为何比较薄弱?相比较而言,中国式教育比较注重学生掌握的“知识量”和解题能力,欧美发达国家教育更注重学生的独立思维和发现问题、解决问题的能力;中国教育侧重于知识获取和掌握,欧美发达国家教育侧重于创新能力培养。这种教育的结果导致中国学生的知识量大、解题能力强,弱点在于不善于“质疑”和“提问”,直接导致科技创新能力较差。这个问题的解决除了需要改革高等教育制度之外,也需要每个高校教育工作者共同去面对。

本文以华东理工大学“流体力学”课程建设为例,抛砖引玉,介绍如何通过课程改革,提升学生的创新能力。就“流体力学”课程而言,基本任务和要求是老师完成知识的讲授,学生完成听讲、作业及考试。但是,这些要求对创新能力培养而言还远远不够,为此对华东理工大学“流体力学”课程的授课内容、授课方式以及创新实践进行了改革和探索。

一、确立以人为本的教学改革思路

在我国古书中最早明确提出“以人为本”的是春秋时期齐国名相管仲。到了近现代,“以人为本思想”在国家执政方略和企业管理等方面有了新内涵和新发展。高等教育在教学上是以人为本,还是以知识为本?传统的大学教育模式,忽视引导学生探索新的知识,忽视对学生进行创新教育;以教师为中心,没有充分调动学生的积极性。我国目前仍有相当多的大学采用的是“我在上面讲,你在下面记”的教学方式,这没有把学生作为主体。因此课程改革的基本指导思想是要把以教师为中心转变为以学生为中心,教师是大学生创新能力培养的主导者,而大学生则是创新能力培养的主体。[2]

具体到“流体力学”课程内容的改革,以人为本的思想表现为教师设身处地为学生着想:当今大学生需要什么样的知识和能力?华东理工大学(以下简称“我校”)热能工程专业的本科生,将来一部分成为热能工程领域的工程师,一部分会进一步深造读研或者攻博,成为科研工作者。对于这两种学生,除了强化理论知识的学习和掌握之外,前者渴望了解流体力学在工程实践中是如何应用的,如何让书本上的流体力学知识成为将来工作中的工具和技能;后者渴望获取流体力学的科学研究思路及方法,如何利用现有的流体力学知识开展创新性的科学研究等。为了解决学生的需求,依托我校煤气化及能源化工教育部重点实验室的科研优势,对“流体力学”课程的授课内容进行了改革。授课过程中,除了基本的三大守恒定律(质量、动量和能量)以及纳维斯托克斯方程的讲解外,还着重对流体力学在工程中的应用和科学研究进展进行补充讲解。比如,我们加大了对流体力学的发展历史和最新进展的讲解,让学生了解流体力学学科中哪些已解决,哪些尚未解决,困难在哪里?哪些老问题有了新进展和新思维?在理论性比较强的部分,通过展示本团队在流体力学方面的研究成果,让学生了解流体力学科学研究的基本方法和基本思路,引导学生参与科研和投身科学;在实践性比较强的部分,通过展示本团队在技术开发和技术转让建设的工业装置上各个环节中流体力学知识是如何应用的,让学生获得直观的感受,为他们将来走上工作岗位打下基础。通过这些教学内容的改革,学生普遍反映课程容量大、学有所用。

二、引入探究型授课方式

我国以往的教育体制在一个很长的时间里把人才培养的重点放到知识记忆和应试能力上,学生对知识被动地接受或吸收,因而学生的创新能力没有得到有效的培养和锻炼。因此,我国高等教育的重点应该放在培养学生的创新意识上,大学教师在教授已有知识的同时,必须把创新理念传达给学生,引导学生去创新。[3]在“流体力学”课程授课方式的改革中,重点在以下三个方面对学生的创新能力进行了引导和培养。

1.从教师提问转变为学生提问

课堂提问是教师检验学生对讲课接受程度的一个有效手段,能强迫学生集中精力进行思考,但是对学生来说是被动的。我们在授课中,鼓励学生课堂提问和课间提问,也鼓励学生课后采用电话、短信和邮件进行提问。提问的内容可以是任何和流体力学相关的,对于这些提问,我们都给予详细的解答。特别需要注意的是,对于学生的原创思维,哪怕是很幼稚或者明显是错误的,教师也要予以肯定并进行委婉的引导。

2.引导发散性思维

“流体力学”课程的讲授中,注重引导学生进行学科交叉和发散性思维,鼓励学生运用流体力学的基本知识思考身边的自然现象,比如河流、龙卷风、泥石流、沙尘暴和海啸等,引导学生思考生物体内的生物流体力学现象等。在讲授流体尾流知识时,引导学生思考汽车、火车和飞机运动时的阻力形成的原因以及减小阻力的措施;在讲到流体输送机械和流体阻力时,从微观角度引导学生思考我们身体内血液和细胞液的输送和流动;从宏观角度引导学生思考自来水输水管网的铺设方式和阻力分布特点,进而让大家思考我国正在实施的“西气东输”和“南水北调”等大工程的技术特点和难点。通过诸如此类的引导,学生深刻领会到流体力学知识不光是书本上枯燥的公式和推导,而是和自己的身体、生活、生产实践以及国民经济的发展息息相关的。这些发散思维的引导,拓展了学生的视野,激发了他们学习和投身科研的热情。

3.引导学生质疑

大学生们思维方式中一个最大的问题就是对任何知识都喜欢抱着“非此即彼,非对即错”以及“教科书中的知识就是真理”的观念。殊不知,这些观念是创新能力培养的大敌,科技创新需要一股质疑知识、质疑权威的观念和勇气。因此,在授课过程中,我们告诉学生有些流体力学知识也是不完善的,也在不断发展和完善之中,需要包括在座的各位同学在内的众多科研工作者去继承、去发展、去完善。比如,流体力学中的湍流是公认的世界级难题,在现阶段还没有完善的公式和理论,但是近年来在不断发展和完善,通过这种存疑方式的教学,来引导学生挑战权威和经典的意识和勇气。

三、全面实施创新实践环节

提高大学生的创新能力,创新实践是重要的一环,是创新能力培养从理论走向实践的关键。为了提高大学生的实践能力和创新能力,我校每年开展各种级别(校级、上海市级和国家级)大学生创新实验计划项目,并进行一定的经费资助和跟踪管理。为此,我们每年开展多项流体力学相关的各种级别的大学生创新实验课题。这些课题分成两种类型,一种是修完“流体力学”的学生根据兴趣,通过查阅相关资料后自拟的课题;另一类是教师从承担的各种科研项目中挑选流体力学相关的小课题来供学生进行双向选择。在整个项目的实施过程中,从资料的查阅到课题的立项,从项目组成员的组建到经费的管理,从实验装置的搭建、实施到数据处理,从撰写创新实践论文到项目检查和答辩,都是由学生来实施完成的,教师只起到指导和协助的作用。学校在项目的执行过程中,主要起到监督和管理的作用,比如项目的立项答辩和筛选、中期检查和结题验收答辩以及经费使用的监督等。在项目立项、中期检查和结题验收几个环节都有严格的淘汰制,防止有的学生走过场、片面追求创新学分而不注重实效。通过实施这些创新实验项目,学生巩固了书本知识,更重要的是完成教学和科研的互动以及理论和实践的结合,培养了学生思考问题、发现问题、解决问题的能力,创新能力得到了较大提高。

四、结语

创新人才的培养是摆在教育工作者面前的一项刻不容缓的系统工程,需要努力探索新的思路和举措。在课程建设中,应贯彻学生是主体、教师是主导的教育思想,树立知识、能力和创新三位一体的教育理念,构建注重培养学生科学思维、实践能力和创新能力的新教学模式。教学过程中,应引入探究型学习模式,引导学生质疑和提问,并使学生积极参与创新实践环节。通过这些课程和教学方式的改革来综合提高学生的创新能力,以培养适应新世纪我国现代化建设需要的具有创新精神、实践能力和创业精神的高素质人才。

参考文献:

[1]马德秀.寻找人才培养模式突破 致力培养创新人才[J].中国高等教育,2006,(11):19-21

与流体力学相关的现象范文第4篇

关键词:流体力学;制冷与低温工程;教学改革

作者简介:尹雪梅(1979-),女,四川资中人,郑州轻工业学院机电工程学院,讲师;张文慧(1980-),女,河南焦作人,郑州轻工业学院机电工程学院,讲师。(河南郑州450002)

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)10-0098-02

目前,郑州轻工业学院(以下简称“我院”)的制冷与低温工程专业已被评为国家级特色专业。为了加强制冷与低温工程专业学生能力的培养,造就人才,有必要对制冷与低温工程专业的教学进行全面的改革。

“流体力学”是制冷与低温工程专业的一门重要的专业基础课,主要分为流体静力学和流体动力学,研究流体平衡、运动规律、流体和周围物体之间的相互作用力及其实际应用的科学。由于流动现象和流动规律及其影响因素十分复杂,故其具有理论性强、概念抽象和公式较多、实际工程应用广、对学生的综合分析处理问题的能力要求较高等特点。[1]加上学生对流体流动机理普遍缺乏感性认识,导致“流体力学”课程历来被公认为是教师难教、学生难学难懂的课程之一。[2]因此,迫切需要进行“流体力学”课程教学改革,使学生学好本门课程,提高课程教学质量,使学生能更深刻地理解和掌握专业理论知识,培养学生的综合分析应用能力和创新能力,全面提高专业素质。

分析目前我院制冷与低温工程专业“流体力学”课程教学的现状,发现存在以下主要问题:首先,“流体力学”理论性强,概念多而抽象,难以理解,学生普遍缺乏对流体力学问题的感性认识,学习兴趣不高;其次,课程中公式繁多,推导过程复杂,且大多涉及到“高等数学”的偏微分方程,另还涉及到“大学物理”、“理论力学”、“材料力学”等方面的知识,学生理解困难;另外,学生对所学的知识不能灵活应用。因此怎样激发学生的学习兴趣,选择合适的教学模式组织教学,全面实现该课程教学目标,提高教学质量,是该课程教学亟待解决的问题。

一、改革教学方法

学好“流体力学”这门课对于制冷与低温工程专业的学生来说至关重要。让学生理解流体静止和运动的规律及其影响因素,不仅能为学生学习后续的专业课程提供必要的理论基础,也能为学生以后分析解决实际工程中的实际问题提供理论指导。怎样才能让学生学好这门课,笔者结合自己的教学经验,认为可以从以下几方面着手。

1.激发学生学习兴趣

学生是学习的主体,而“流体力学”又是大家公认难学的课程,因此学生的学习积极性高低决定着“流体力学”这门课教学的成败。

要提高学生学习“流体力学”的积极性,首先要上好“绪论”课。“绪论”课是学生接触和了解“流体力学”这门课的窗口,也是教师的教学水平和教学方式的第一次展示,“绪论”课上得好不好直接影响到“流体力学”课程教学的成功与否。通过“绪论”课让学生对“流体力学”的发展及其广泛的工程实际应用有一个大致的了解,使他们充分意识到“流体力学”知识和我们的生活及国家的建设密切相关,深刻理解“流体力学”知识在今后的学习和解决实际工程问题中的重要作用。[3]

教师在讲授一些理论知识之前,可先举出很多贴近生活的有趣实例或者先提一些问题来激发学生的学习兴趣,启发引导学生积极地思考。例如在讲液体的粘性之前,可以先问学生:在水中游得快还是在油中游得快?为什么?又如在描述流体运动有两种方式――拉格朗日法和欧拉法时,可以将在座的学生和教室里的每个座位作为研究对象来进行类比,从而让学生很容易的理解两种方式。通过举例和提问的方式,让学生带着问题去学习,让学生亲身感受到参与教学活动是一件乐事、趣事,由愿学到爱学再到乐学。实践表明:列举事例或提问的方式可以避免学生学习的枯燥感,活跃课堂气氛,不仅可以吸引学生的注意力,激发学生学习的主观能动性,还可以使学生充分意识到本课程对今后学习和工作的重要意义,并且能加深学生对所学知识的理解和记忆,使学生分析问题和解决问题的能力得以提高。

另外,还应充分利用多媒体,通过图片、动画让学生直观了解各种流动现象,而不是停留在抽象层面,从而提高学生学习“流体力学”的兴趣。

2.巧妙讲解公式

为了定量地描述流动现象和分析流动机理,需要应用数学工具。学生要真正理解基本概念、重要公式,首先就要读懂数学,然而读懂了数学不一定意味着明白了数学符号背后所代表的物理意义。“流体力学”教学实践表明,学生从读懂数学到理解流动问题的物理本质有一个过程。教师的一个重要任务就是做好各方面的工作,帮助学生完成从读懂数学到理解流动的物理本质这一过程的转变,进一步建立起科学的思维方式。

“流体力学”在分析介绍欧拉平衡微分方程、欧拉运动方程、连续方程、动量方程、伯努利方程等理论知识时都有大量的公式,这些公式涉及一些高数、物理、力学方面的知识,特别是大量的偏微分方程,加上“流体力学”的公式推导采用欧拉法,与物理及其他力学不同,学生的观念不易改变,而且推导过程复杂,学生理解掌握很困难。如果过分强调“流体力学”知识的严密性和完整性,对每个公式的每个推导细节都逐一介绍,推导过程将会枯燥无味,学生只会被弄得糊里糊涂,兴趣全无。而如果直接给出公式,让学生死记硬背,只能让学生不知其所以然,当然也就不能真正用所学知识来解决实际问题了。

根据多年的教学经验,笔者认为:“流体力学”中公式的讲解应将重点放在概念引入、理论模型建立的思想、基本原理和主要步骤以及公式的物理意义与应用限制上。首先对基本概念力争讲透,概念清楚了,公式的讲解推演才有意义。然后重点使学生明确公式的物理意义及公式中各项参数的物理意义和几何意义,只有真正理解了公式的物理意义,才能灵活使用公式解决实际工程问题。最后应强调公式的应用范围及应用注意事项。由于流动的多样性,“流体力学”中的很多方程都是在一定的条件下得到的,如伯努利方程就有多种形式(理想流体、实际流体、流体是否可压等),在具体运用时,要根据具体情况选用正确的形式。

3.充分利用作业

学习的最终目的是让学生能够独立自主地解决实际工程问题。如果基本原理掌握了,接下来就是如何用这个原理去解决实际问题。课后作业是检查学生对所学知识理解、掌握程度的一种手段,同时也是培养学生分析、解决问题能力的一种方法。

首先应由学生独立地完成一定量的课后练习题,这是“流体力学”学习过程的重要组成部分,解题过程实质就是利用“流体力学”的基本原理和基本方程分析和解决实际问题的一个训练过程,课后习题可以帮助学生加深对基本概念和基本理论知识的理解。

然后再由教师通过习题课的方式,利用具有代表性的习题和一些学生普遍认为困难、出错多的习题,讲述流体力学原理在工程实例中的应用。在讲解习题时,重在提供条理清晰的解题思路、详细具体的解题步骤,使学生在此过程中掌握解决问题的正确方法和技巧,以便在以后的学习工作中举一反三、触类旁通、学以致用。这一过程增强了学生对流动过程物理本质的理解,将物理问题与数学工具有机地结合起来,有助于学生对与专业相关联的实际工程问题进行认真思考,有效的增强了学生分析并解决实际问题的能力。

二、改革教学手段

多媒体教学以其形象、直观、生动、具体、易于理解的教学特点,丰富的教学内容,被高等院校广泛采用,并深受广大师生的欢迎。[4]

多媒体教学在“流体力学”教学过程中发挥着重要的作用。利用多媒体,可将“流体力学”中那些难以用语言描述的流动图像、抽象难懂的知识点,如拉格朗日和欧拉法的描述,流线与迹线、层流、湍流等,通过图片、动画和视频资料直观形象地展现给学生,使其从感性认识开始建立清晰的物理概念,较容易地掌握相关内容,并使学生的逻辑思维、综合分析能力得以提升。另外一些需占用大量时间写板书表述的和不易通过板书表述的内容也可利用多媒体制作Power Point课件。如莫迪图、水头线、各种流场和一些典型的例题习题等。采用多媒体教学,授课的信息量增多了,教学内容更丰富了,学生在有限的时间内接收的知识更多了,学生的学习兴趣提高了,学生的思路拓宽了,教学质量也提高了。

多媒体教学的发展并不意味着要摒弃传统的板书教学。有很多学生认为板书能让他们有更多的时间去思考消化一些抽象的东西,更有利于对基础知识的理解和掌握。根据“流体力学”既有抽象复杂的流动机理又有大量的基本概念、基本方程的特点,在教学过程中应将多媒体教学与板书教学相结合,扬长避短,发挥各自的优势,为教学工作更好地服务。如对某些特定的流动现象,可以通过多媒体教学,加深学生对流动现象和机理的理解。而对于较重要的公式及一些重点难点内容还是采用板书教学,例如流体力学基本方程的推导过程依然使用传统教学中的板书,有利于学生集中注意力,让学生更清楚地看清步骤、方法和解题思路。这样既可留给学生足够的思考时间,又可加深学生对重要知识的理解,从而获得良好的教学效果。

三、 结束语

总之,高等教育教学改革,特别是专业课程的教学改革,是一个长期而艰巨的实践过程。“流体力学”是制冷与低温工程专业的一门重要的专业基础课,在教学中要根据学校的具体情况改革教学方法和教学手段,借助现代教育技术与手段,充分调动学生的学习兴趣,结合生活、生产、科研中的实际问题,进行深入浅出、生动活泼的讲解,揭示问题的本质,向学生传授治学方法,扩大学生的知识面,培养学生独立思考问题、分析问题、解决问题的能力,培养学生的创新精神,以取得更好的教学效果。

参考文献:

[1]王伟.土木专业工程流体力学课程教学研究[J].山西建筑,2008,34(21).

[2]吴光林.《流体力学》课程教学改革的思考[J].科技信息(科学教研),2008,(14):172-173.

与流体力学相关的现象范文第5篇

关键词:汽车;空气动力;计算流体力学

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)20-0180-03

流体力学是人们在利用流体的过程中逐渐形成的一门学科,它起源于阿基米德对浮力的研究,由于数理学科和流体工程学科相互推动而得到发展[1]。现如今已经成为航空航天、车辆、机械、环境生物等工程学科的基础之一。通过对流体力学的基础理论的学习,结合汽车工况,发现流体力学在汽车设计中具有重要的应用。

汽车自19世纪末诞生至今,汽车工业以惊人的速度发展。当今21世纪科技突飞猛进,汽车工业已成为与人类生活息息相关的时代骄子。近年来,国家加大交通设施的投资建设,高速公路、高架桥等交通网络四通八达,不仅缩短了城市之间的距离,更极大地改善了人的日常生活。为减少汽车的能耗、汽车的操纵稳定性以及改善汽车的动力性,对汽车设计中的安全性、环保性提出了更高的要求[2]。为此,本文以流体力学基本理论,对汽车行驶时的空气阻力、汽车表面受到的压力、气动升力、气动侧力等不可忽视的关键因素进行理论分析,探讨流体力学在汽车研究方面的应用。

一、基于流体力学的汽车空气阻力分析

汽车直线行驶时受到的空气作用力在行驶方向上的分力称为空气阻力。空气阻力主要分为摩擦阻力和压力阻力,期中压力阻力约占空气阻力的91%,成为汽车阻力的主要作用。空气作为流体,具有粘性,根据牛顿定律,粘性流体在流动过程中层与层之间存在相互作用,空气在车身表面产生的切向力即为摩擦阻力,这是合力在行驶方向的分力;而作用在汽车车身表面上的法向压力的合力称之为压力阻力,可分为形状阻力、干扰阻力、内循环阻力和诱导阻力。其中,形状阻力是压力阻力的主要部分,并与车身形状有直接关系,是影响空气阻力的主要因素;干扰阻力是车身表面凸起物引起的气流干扰而产生的阻力,只占压力阻力的14%;内循环阻力(12%)是空气流经车体内部时构成的阻力;诱导阻力(7%)也叫压差力,是由于流经车顶的气流速度大于流经车底的气流速度,使得车底的空气压力大于车顶,从而空气作用在车身上的垂直方向的压力形成压力差[3,4],如图1所示。

空气阻力是影响燃油消耗的重要因素。最大限度地减小整车空气阻力是降低油耗的有效方法,降低油耗的同时也能减少排放并降低使用成本[5]。有试验表明,空气阻力系数每降低10%,燃油节省7%左右。因此,减小空气阻力主要依赖于空气阻力系数的减小[4]。目前,汽车空气阻力的计算或仿真多以流体仿真为基础,从动力学理论出发,利用相应的物理模型,建立相关流体运动模型。采用的软件有PowerFLOW、FLUENT、CFD等。多年以来,PowerFLOW分析软件是汽车行业中空气动力学的重要工具。利用此软件可以分析整车的总体空气阻力数据外,也可以充分利用流场数据,研究环绕整个车身的空气流体动力学行为,研究阻力的细化、量化等,以此来指导汽车设计并优化[5]。

二、基于流体力学的汽车表面压力分析

汽车行驶时,前方气流首先与车身前部作用,使气流受阻,降低速度,在气流压力作用下,车头前部形成一个正压区,汽车周围的压强分布如图2所示。这部分气流分为两股,一部分通过发动机罩、前挡风玻璃、驾驶室顶向后流去;另一部分,通过车身下部,向车尾流去,如图2 b)中所示。流向上方的这股气流在流经车头上缘时,由于缘角半径相对较小,气流来不及转折,导致局部分离,所以在上缘角附近存在很大的吸力峰。随后,气流又重新附着在发动机罩上。

传统的汽车外形设计、压力分析等以风洞实验研究为主,实验成本极高[4,6],对汽车外形的气动特性研究十分困难。计算流体力学(CFD)是流体力学的一个重要分支,以计算机科学、数值计算方法的发展为基础,是流体力学理论分析、计算科学及数值计算方法共同发展的产物。伴随着CFD方法的不断发展、进步,利用CFD软件分析汽车气动性能成为可能。采用这一软件对空气动力学的计算,能够较为精确地分析汽车三维外流场,准确的研究汽车表面压力,可以帮助工程技术人员直观、深入地分析汽车气动特性;更重要的是相对于实验分析,CFD软件研究可以缩短汽车设计研发周期、降低成本。

三、基于流体力学在气动升力分析中的应用

汽车气动升力的来源与机翼类似,由于汽车是在地面上行驶,地面效应是影响汽车气动升力的重要因素。汽车气动升力包括压差升力和粘性升力,其中压差升力占主要部分。压差升力一方面是由于汽车上下表面曲率不同,形成上下表面压差产生;另一方面是由于地面效应,汽车底部和地面之间形成了一个类似于渐缩喷管的气流通道,使得汽车底部形成负升力。

研究表明,当汽车速度超过70km/h,车身所受的气动力成为影响汽车性能的主要因素之一[7]。汽车在行驶中,气动升力随车速的提高,对汽车的稳定性和经济性有一定的影响。气动升力的存在降低了汽车轮胎对地面的压力,影响了汽车的动力性和制动性能;同时,气动升力的存在降低了轮胎的侧向附着力和侧偏刚度,从而影响了汽车的操纵稳定性[8]。

当汽车高速行驶时,气动力对汽车各性能的影响占主要地位。随着汽车速度的增加,汽车的滚动阻力受气动升力的影响逐渐减小;而汽车的气动阻力则随着车速的增加迅速提高。研究表明,当汽车车速为70km/h左右时,汽车所受的气动阻力和滚动阻力几乎相同。当汽车车速大于150km/h后,所受的气动阻力是滚动阻力的2―3倍。显然,汽车高速行驶时,气动升力的影响则更为显著。所以为了保证安全,对高速行驶时的气动升力提出了更高的要求[9]。

空气作为汽车受力分析中的主要流体,在流过汽车车身的整个过程都受流体质量守恒、动量守恒和能量守恒等流体力学的支配。计算流体力学就是通过这些基本的控制方程来分析汽车周围流场中空气的运动。在理论方面,对气动阻力和气动升力的研究是根据伯努利提出的“路径理论”为基础进行分析[10],这一理论基础便是流体动力学,理论中要充分考虑雷诺数、流态等基本流体动力学要素;在数值计算上,也主要是基于气动力学计算的流体模型进行分析。当今社会,车辆的设计速度和公路允许的行车速度越来越快,所以解决高速行驶时发飘的问题是非常有必要而且是保障驾驶安全的重要举措。

四、流体力学在气动侧力分析中的作用

危险不一定来自背后,危险也会来自侧面。在高速下发生的交通事故,除了气动升力的作用外,还有相当一部分是由于气动侧力的作用。当气流与汽车的纵对称面平行时,是不存在气动侧向力的。但在汽车实际行驶中,气流不会总是与汽车的纵对称面平行,当气流与汽车存在横偏角时,汽车都会产生气动侧向力。也就是说侧向力的来源就是由于受到了侧向气流的作用。在实际h境中侧向来流的来源比较复杂,如自然界阵风、汽车驶过大桥、车辆超车等情况。

气动侧力对汽车性能影响的研究是一个较广泛的领域,而且对汽车主要性能有着不可忽略的影响[11]。汽车受侧向风时,在车身侧板处就会产生强烈的气流。这一气流的存在不但破坏了驾驶室与车身之间正常的小涡流状态,而且还会形成旋涡稠密气流区,增大车身正前方的阻力,使汽车相对原直线行驶方向发生偏移,造成潜在危险[12],因此,气动侧力也是汽车设计中必须分析的一个重要因素之一。

自然界中的侧向风变化非常复杂,侧风的方向、波长的变化等都对流场产生重要影响,所以气动侧力的分析相对更加复杂。采用复杂的风洞实验方法可以对侧风进行研究,但利用风洞实验再现汽车遇到侧风的复杂工况是非常困难的。而采用计算流体动力学(CFD)方法研究瞬态侧风是非常有效的,且能够提供更多的瞬态变化信息,可对实际行驶过程中的汽车气动性能进行更深入的研究[13]。

五、结语

流体力学相关理论及对应的软件在汽车研究设计中的应用受到越来越多的关注,不但可以节约成本、优化设计效果,相关软件的使用也使设计更科学、安全、环保和人性化。现代汽车设计中,车辆的设计速度和公路允许的行车速度越来越快,空气阻力是影响车辆动力性、燃油经济性等汽车性能的重要影响因素,汽车的安全性能是当今人们高质量生活水平能得以保证的前提。充分利用流体力学在汽车空气阻力、压力、气动力等方面的应用来提高车辆各方面的性能。流体力学与汽车设计相关知识的交叉,将对汽车实车造型与分析评价产生重大影响,逐渐成为汽车产品开发、设计的主要理论知识。

参考文献:

[1]解小琴.流体力学在汽车车身设计中的应用[J].四川职业技术学院学报,2015,25(6):1672-2094.

[2]简洁,张铁山,严萍华,邵成峰.空气动力学对汽车性能的影响[J].拖拉机与农用运输车,2012,39(5):37-41.

[3]谷正气.汽车空气动力学[M].北京:人民交通出版社,2005.

[4]张楠.计算流体力学软件在汽车气动问题研究中的应用[J].重庆电子工程职业学院学报,2011,20(2):125-127.

[5]章林凤.汽车空气阻力和散热性能的仿真及优化[J].汽车科技,2013,(1):31-36.

[6]王俊,龚旭,李义林,叶坚.CFD技术在汽车车身设计中的应用[J].汽车技术,2013,(4):14-17.

[7]谷正气,郭建成,张清林,金益峰.某跑车尾翼外形变化对气动升力影响的仿真分析[J].北京理工大学学报,2012,32(3):248-252.

[8]张勇,谷正气,刘水长.车身姿势对风洞试验气动升力测量影响研究[J].汽车工程,2015,37(3):295-299.

[9]刘加利,张继业,张卫华.真空管道高速列车气动阻力及系统参数设计[J].真空科学与技术学报,2014,34(1):10-15.

[10]刘强,白鹏,李锋.不同雷诺数下翼型气动特性及层流分离现象演化[J].航空学报,2016,(35):1-11.

[11]于梦阁,张继业,张卫华.横风下高速列车流线型头型多目标气动优化设计[J].机械工程学报,2014,50(24):122-129.

与流体力学相关的现象范文第6篇

关键词 流体力学 工程实例 教学模式改革

0引言

“流体力学”课程是工科专业的一门重要的专业基础课,综合了张量、场论、复变函数、数值方法等数学知识,在水利、土木、建筑和热能等工程技术领域中都涉及许多流体力学问题。目前许多高校教师在讲授该门课程时还是采用传统的以教师为主导的单向传授方式,课堂中注重基本概念的讲解和公式的推导,课堂教学与实验教学环节联系较弱,导致学生学习过程中对所学知识点理解不够深刻,逐渐失去了学习兴趣。因此此次教学模式改革提出以工程实例为导向,在授课中采用工程案例分析、增加实践环节和第二课堂等综合形式教学模式,培养学生的学习热情,调动学生积极性,提高学生分析问题和解决问题的能力。

1教学改革思路

第一,由于在流体力学教学过程中,知识点比较抽象,学生难理解。因此,打破以往“满堂灌”式授课方式,针对某些重要知识点,首先教师课前布置任务,学生初步了解课堂内容,培养学生的发现问题和主观学习能力。在授课过程中,教师针对课堂讲授的内容,运用多媒体教学方式,向学生展示图片、视频、动画等信息,比传统方式更直观、更容易被学生接受,与传统板书教学方式相结合,优势互补,尤其对于推导繁琐公式,教师运用多媒体方式可以强化学生的理解。并且,教师应注重理论联系实际,通过工程案例分析和讨论等方法,讲授某些特定知识点对应的工程问题,培养学生学习流体力学课程的兴趣,激发了学习的主观能动性,加深学生对该课程内容的理解和认识,激发学生学习热情,培养学生分析流体力学问题和建立相应模型和分析计算的能力。学生通过工程案例分析,可以理解不同流态流体所对应的工程背景及其理论基础,利用课堂所学理论知识总结其流动规律。课中针对某重要知识点,教师布置相关综合训练内容,学生自主完成综合报告,在此过程中学生能够充分理解相关知识点,建立知识体系,掌握该知识点在实际工程中应用,并能够在实际生产生活中合理运用该知识点。另外,对于某些特殊的知识点,教师还可以从学生的生活经验出发,列举生活中的流体力学问题,联系生活进行讲授,具体内容为:

第二,通过理论与实践相结合的方式,在保证课堂教学的基础上,采用多种形式的实践活动,增加实验教学环节。实验教学是理论与实践相结合,是培养学生创新能力和工程实践能力的重要环节,巩固所学基础理论,能够帮助学生更好地理解理论知识,培养学生实践动手能力。在学校工科专业,实验教学显得尤为重要。在实验的教学过程中,为使学生更好地掌握重点和难点,加深学生对实验操作技能的掌握,采用“教”、“学”、“做”相结合的教学方法,以精讲多练为主。在实验操作之前,让学生理解实验流程中的每一步骤,培养学生发现问题和解决问题的能力,对知识的重点和难点有进一步的理解。此外,在实验教学环节中,重视培养学生创新能力,鼓励学生创新,为学生提供创新空间。学生通过工程流体力学实验,直观明了地观察不同流态的流动现象,量测不同流态的流动参数,分析其流动特点,再与理论相结合总结流动规律,培养学生的学习兴趣,激发学生学习的主观能动性与创新性,为学生将来更好地投入工程实际奠定基A。

第三,采用工程性质形式的试题帮助学生掌握知识点及其应用。同时,授课时增加课堂对话、采用互动式教学方法,及时了解学生掌握情况并对课程教学内容进行调整。另外,开设理论学习和实践操作的第二课堂,充分调动学生学习的积极性,并加大课外作业量,使学生通过作业消化课堂教学内容,每次作业批改结束后,通过习题课帮助学生辨析原理理解的误区、概念混淆之处等习题中出现的问题。任课教师定期进行教学研讨,对教学中的难点、重点进行讨论,群策群力,寻求好的解决方法。平时注意收集教学中的难点、重点问题,组织老师进行研究,在教学研讨时集中交流。

2教学组织过程

2.1课堂讲授

以学生为中心,以教师为导学、助学为主,利用工程案例分析、生活实例和小组讨论等形式,激发学生学习参与热情与积极性。课前布置工程案例分析,学生自行查阅资料,课堂上分组讨论,引导学生提出问题、分析问题、解决问题,培养学生主动获取已有知识和创造新知识的能力。以工程问题为主线,提出与之相互对应的课程内容,进而解释课程内容的性质、原理以及适用条件,总结解决此类工程问题的方法和规律,使得学生对于知识点内容的理解更加生动具体。

2.2增加实践环节

本专业流体力学课程共64学时,此次教学模式改革准备通过理论与实践相结合的方式,融入实践教学环节。传统体系中实验环节为辅助教学部分,各实验互相独立,综合性不强,造成学生被动学习,学生学习积极性较差。目前学校拥有两个流体力学实验室,不仅可以开展流体力学基础演示实验,学生还可以动手参与伯努利方程实验、毕托管测速实验等相关实验。在实验操作过程中,结合工程中流体流动问题,学生能够更加直观明了地观察到流体处于不同工程问题中所对应的流动现象和规律,量测不同流态的流动参数,进而结合课堂讲授的内容验证实践结果。同时,教师应为学生留有一定空间,学生可以在充分理解所需知识内容的基础之上,开展创新型实验设备的设计,这一过程充分调动学生科学研究热情,突出培养学生创新意识,教师引导学生提出问题并解决问题,培养学生科学严谨的逻辑思维及创新能力。

2.3第二课堂

流体力学课程包括流体静力学、流体运动学和流体动力学三大部分,课程讲述内容较多。针对这种知识内容多而学时短的情况,此次课程建设增加理论第二课堂和实践第二课堂。对于理论学习第二课堂,学生可通过微信或QQ等网络通讯工具,随时给授课教师留言或在线沟通,说明不懂的知识点,教师可以在网上给予学生详细的解答,既利用了课余时间答疑,又为同学提供了方便,同时又解决了课程学时的限制,极大地调动学生学习的积极性。实践第二课堂主要体现在实验室全天开放制度,在保证学生一定数量的前提下,学生可提前预约做实验。这样学生就有充足的时间来完成实验过程,既丰富了学生的课余生活,又充分地培养了学生自己动手的能力。

2.4增加综合训练

针对重点章节知识点,如伯努利方程、N-S方程等,结合工程案例,教师布置综合训练任务。学生通过上网、借阅相关书籍,获取相关资料并独立深入学习分析,再与小组成员讨论,集思广益,进而理解工程案例中方程应用原理,并与所学理论知识相联系,掌握相关知识点及模型建立方法,集中答辩汇报所学知识内容和实验数据。通过综合训练,学生可以构建相关知识体系,并联系工程实际,将其融会贯通,真正实现“理论联系实际”。在此过程中,也培养了学生团队合作、人际交往、自主探究、分析问题、解决问题及应用实践的能力。

2.5考核方式改革

对于流体力学课程考核方式,应注重教学过程中的质量控制,主要采取课堂考核、实验考核和期末考核相结合的形式,加大平时成绩所占比重,课堂考核主要包括工程案例分析大作业、课堂考试、出勤和课堂提问等形式;实验考核以培养学生动手能力为主,重点考核学生的实践操作能力和创新能力,如能设计出工程方面的创新型实验装置可以加分;期末考试就是学生的卷面成绩。

3结语

与流体力学相关的现象范文第7篇

关键词:能源与动力工程;网络教学平台;混合式教育

作者简介:代乾(1981-),男,河北沧州人,天津城市建设学院能源与安全工程学院,讲师;王泽生(1964-),男,天津人,天津城市建设学院能源与安全工程学院,教授。(天津 300384)

基金项目:本文系天津城市建设学院2012年度教育教学改革与研究项目(项目编号:JG-1207)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)05-0074-02

2012年9月,教育部颁布实施新的《普通高等学校本科专业目录(2012年)》,热能与动力本科专业更名为能源与动力工程专业。由专业名称可见该专业的内涵更加广阔和深远,从而也说明随着能源动力科学技术的飞速发展和新问题地提出,社会对人才的培养提出了新的要求。目前,大约有170多所高校设置了热能与动力工程专业。[1]随着经济的发展,能源与环境逐渐成为世界各国所面临的重大科技和社会问题。培养高素质的具有创新意识的能源工程专业人才是本学科义不容辞的责任。而热工系列课程作为重要的专业基础课程,其重要性不言而喻。合理的课程体系是体现教育教学理念的重要载体,是实现专业培养目标、构建学生知识结构的中心环节,建立适应社会主义市场经济发展需要、体现热能动力技术学科内在规律、科学合理的课程体系极为重要。[2]为了使该课程适应新的要求,非常有必要对其进行一定的改革,以培养适应21世纪社会发展需要的人才,同时对推动我国可持续发展战略具有重要的意义。

一、实施混合式教育方式

开发混合式学习方案的关键因素在于确定适当的时机,使用适当的混合方式,为适当的学生施行教学。而教师想要运用适当的混合方式需要考虑学习地点的设置、信息传输技术及时间的安排、教学策略和绩效援助策略等。[3]混合式教学模式一般可分为以下几个阶段:[4-6]

1.前期分析

学生作为学习活动的主体是有认知、有情感的,学生本身的知识水平、学习能力和社会特征都对学习的信息加工过程产生影响,教师进行学生特征分析有助于了解学生的学习准备和学习风格,从而为后面的学习环境设计和媒体的选择提供依据。

2.混合式教学的组织与管理

教师应按照教学进度有针对性地选择和设计教学活动,同时要参照已经设计好的课程目标、课程内容及其呈现形式,将其与具体的章节知识点相关联。教学活动的作用在于为学生创造具体的学习情境,并加强师生、生生之间的交流互动,因此恰当的教学策略对于教学活动的顺利展开尤为重要。

3.网络教学平台及教学资源建设

网络的对于教学来说不应当只是教学内容,而更多的应该是支持教学交互、教学评价和教学管理,教学交互、教学评价和教学管理是保证教学质量的重要环节,这就需要有一个集教学内容与管理、课堂教学、在线教学交互、在线教学评价、基于项目的协作学习、发展性教学评价和教学管理等功能于一体的网络教学平台来支撑混合式教学。本校对“工程热力学”、“传热学”、“工程流体力学”原有的教学网站进行了全面改版,并于2010年先后投入运行。其中“工程热力学”课程教学网站主页如图1所示。网站按照省部级精品课程的要求制作,网上教学内容详实,包括课程的概况、教学文件、习题及答案、实验实践教学等各种资源。学生可通过浏览网站学习更多的知识,这对课堂教育来说是一个非常有益的补充,并有助于实现教与学的互动。

二、教学内容优化

“工程流体力学”是理解能源动力系统工质流动与流量、能量分配的基础。“工程热力学”是研究如何充分和有效利用能量的学科,其基本内容是热力学基本定律和工质热物性、热过程的研究,是理解能源动力系统中能量转换基本规律和提高系统能源利用效率的理论基础。“传热学”研究热量传递的基本规律,是理解和控制能源动力系统热量传递过程的理论基础。“热工学”集成了“工程热力学”、“传热学”的基本理论和核心内容,为能源动力类安全工程专业等提供必要和少量学时的热工理论基础教育,也是其他非能源动力类专业节能技术及应用的理论基础课程。“热工测量技术”和“流体热工基础实验”课程则是关于“工程流体力学”、“工程热力学”、“传热学”的实验理论的技术基础课程,旨在揭示相关课程的实验研究目标、原理、方法以及应用。

1.热工系列课程间内容关联性分析

(1)“工程流体力学”与“工程热力学”在教学内容的关联性之处主要体现以下两个方面:“工程流体力学”中的一维无粘性重力流体流动能量方程(伯努利方程)与“工程热力学”中的热力学第一定律稳态稳流能量方程式具有相同的理论基础,后者是普遍适用的能量方程式,而后者是前者在一维无粘性重力流体条件下的特例和不同的表达方式;“工程流体力学”中的可压缩流体流动基础与“工程热力学”中的气体和蒸汽的流动研究对象及理论基础完全相同,只不过研究的侧重点不同,前者强调流动特性,后者注重能量传递与转换过程。

(2)“工程流体力学”与“传热学”课程在教学内容方面具有紧密的关联性和延续性,主要体现在“工程流体力学”中粘性流动方面与“传热学”中对流换热方面的相关内容,具体为:

1)研究对象均为传递现象,“工程流体力学”研究的是动量的传递,而“传热学”研究的则是热量的传递,其规律及分析方法具有类比性。首先,传递驱动力分别为速度差和温度差;其次,传递方式均为分子扩散和对流扩散,其中对于分子扩散基本规律两者具有类似的形式,即牛顿摩擦定律及傅里叶定律,也均有描述传递能力的物性参数,即运动粘度(m2/s)和热扩散系数(m2/s),而且流动边界层与热(温度)边界层具有相似的定义和相同的边界层结构;最后,描述传递现象的控制方程,即动量微分方程式(N-S方程)和能量微分方程,也具有相似的形式。这也是“传热学”中动热类比分析方法(类比律,即将阻力实验结果直接用于表面传热系数的计算)的理论基础。

2)如果粘性流体流经壁面且具有与壁面不同的温度时,就会同时发生动量传递和热量传递现象。此时“工程流体力学”与“传热学”研究的是同一现象的不同方面的特性,即阻力特性和传热特性。一般阻力特性是传热特性研究的基础,某些特殊情况(流动及对流换热具有耦合特征)下两者相互影响,如流体外掠平板的层流与紊流流动及对流换热、圆管内层流与紊流流动及对流换热、外掠圆柱的层流与紊流流动及对流换热、各类自由流动及对流换热等等。显然在此类教学内容中,“工程流体力学”是“传热学”的基础。

3)具有相同的分析、计算方法。正是由于动量方程和能量方程具有相似的形式,理论分析法(包括微分方程组求解及积分方程组求解)、模化实验方法(相似原理)、数值计算方法均可应用于阻力特性和传热特性的研究,甚至同一数值计算商业软件(如FLUENT、ANSYS、PHINICS等)可同时分析求解同一现象的阻力特性和传热特性。因此在研究方法上,“工程流体力学”与“传热学”是并行的或者说是相同的。

(3)“工程热力学”与“传热学”课程在教学内容具有关联性之处主要体现以下两个方面:“工程热力学”中有关热量传递只是讨论热力过程中热量传递的量,而“传热学”研究的是热量传递的机理、方式、影响因素、计算方法。在“热力学”中热量的单位是q(J/kg),而“传热学”中热量(热流密度)单位是q(W/m2),可见后者强调的是热量传递的速率及能力,而后者以前者的理论(即热力学第一定律—能量守恒规律)为基础;“工程热力学”中有关湿空气焓及含湿量变化规律与“传热学”中的热质交换有着内在联系。如电厂冷却塔中,“工程热力学”讨论了其工作原理及状态参数的变化,而“传热学”则讨论了其热湿交换的具体方式和传递速率。

2.热工系列课程教学内容体系优化原则

依据培养方案,流体热工系列课程时间安排顺序是“工程流体力学”—“工程热力学”—“传热学”(或“热工学”)—“热工测量技术”,“流体热工基础实验”课程与上述课程并行安排。因此,热工系列课程教学内容体系优化按照以下原则进行:

(1)安排在前的课程。教师除完成本课程教学内容外,须根据上述各课程之间知识点的关联性,有意识地为后续课程涉及的内容打下牢固的理论基础。“工程流体力学”课程的教师需要向“工程热力学”、“传热学”课程任课教师了解相关的内容,如一元绝热稳定流动的能量转换规律、相似原理等等,在“工程流体力学”的教学中兼顾这些内容的教学需求。

(2)安排在后的课程。教师依据上述各课程之间知识点的关联性分析,在相关内容的教学过程中,须了解前面课程任课教师的授课内容和方法,精选授课内容,避免不必要的重复,使该课程与前面课程有机衔接,且注意采取比较教学法,让学生更容易掌握课堂知识。

(3)“热工测量技术”和“流体热工基础实验”课程。课程任课教师应了解和引用其他理论课程相关教学内容,使实验教学与理论教学内容有机结合。如温度测量,教师除加强温度测量原理、仪表、标定及使用方法教学外,对于高速气流温度测量,需引用“工程热力学”中气流一维绝热流动能量方程以及滞止温度和气流温度的关系等相关理论知识,说明气流速度对温度测量误差的影响;而对于高温气流温度测量,需引用“传热学”的辐射换热相关理论,说明辐射对测温误差的影响以及消除误差的措施;而对于铠装热电偶或在加温度计套管情况下,还需引用“传热学”的通过肋壁导热的相关理论,说明套管的存在对温度测量误差的影响以及消除误差的措施。

三、结束语

经过一定时间的教学体验和学生的反馈表明,该教学模式使教学效果得到很大提高。笔者认为在以后的教学当中,要把这种模式继续深化并推广到其他课程的教学当中,热工系列课程的教学改革也必然会取得成功。

参考文献:

[1]宋文武,符杰,李庆刚,等.关于构建“热能与动力工程”大专业多方向课程体系的思考——基于培养复合型应用人才的视角[J].高等教育研究,2011,28(4):44-48.

[2]战洪仁,张建伟,李雅侠,等.热能与动力工程专业人才培养模式及课程体系探讨[J].化工高等教育,2008,99(1):19-21.

[3]Matt Donovan,Melissa Carter.Blended Learning:What Really Works[J].CLASTD,2004,(2).

[4]Driscol1 M.Blended learning:Let’s get beyond the hype[J].learning and Training Innovations[R].2002.

与流体力学相关的现象范文第8篇

关键词: 流体力学 教学方法 教学改革 自学方法

教育是一个国家的立国之本,我国自春秋战国时期就有先贤孔子开始教书育人。然而在我国传统教学中往往以教师作为主体,重教而轻学,教师在课堂上使出各种方法强化教学效果,而对学生的“学”重视不足,甚至视而不见。对于很多学科而言,这种教学方式对于学生掌握知识情况的改善确实有显著的效果,但是对于《流体力学》课程,这种教学方式影响十分有限。究其原因主要有:1.课程对数学基础要求高;2.概念理解困难,费时;3.公式多且难,学生容易失去学习兴趣。当学生处在课后不学、课上不听或听也听不懂的状态时,教师的诸多课堂教学手段在实施时就像没有观众的表演一样是达不到良好教学效果的。正是由于《流体力学》课程的这种特性,使得教学中的“学”在该课程的教授过程中显得越来越重要。这里的“学”,不应仅仅是传统教学方式中,学生在课堂上被动接受,而应包含课外自主学习。通过对过往学生学习情况的了解,有良好自学习惯和自学方法得当的学生往往《流体力学》课程成绩优于没有自学习惯的学生。正因如此,引导学生养成良好自学习惯和教会学生学会选择恰当的自学方法在《流体力学》的教学中显得尤为重要。为了达到以上教学目的,需对传统教学方法进行如下调整。

一、让学生具有主动自学的意愿

要引导学生主动学习,首先要让学生有自学的意愿,较常用的有以下两种方法。

1.上好第一堂课。

“第一印象效应”是妇孺皆知的一种心理效应,在日常生活中经常用到,如面试者注意仪表,为官者的“下马威”等。这个道理在流体力学教学中同样适用。聪明的教师通常特别注意教授第一堂课,这样更容易引起学生的兴趣,调动学生的积极性。针对工程流体力学的第一堂课,教师最好避免采用过于生硬的公式或太理论化的概念进行教授,可将现实中的一些有趣现象与课程进行联系或提及一些与课程有关且同学们感兴趣的问题。这一点得到很多教师的共识,如上海交通大学的丁祖荣教授在其《流体力学》公开课中就以高尔夫球为什么不采用光滑表面、汽车的形状怎样最优等几个有趣的例子将看不见、摸不着的力与现实生活联系在一起,使得学生对学习流体力学充满期待。“兴趣是最好的老师”,有了兴趣之后学生自然愿意投入精力学习。

2.重点强调“前车之鉴”。

这里的“前车之鉴”当然可以指流体力学考试的一次通过率较低和流体力学成绩普遍偏低的现实,但是事实证明,这种“前车之鉴”对调动学生学习的主动性效果并不显著,反而容易引起部分学生的畏惧心理,不利于学生自学积极性的提高。通常来讲最好的办法就是对比平时喜欢学习和善于自学的同学与平时没有自学习惯且学习态度不端正的同学进行对比,通过两类同学在这门课程上取得的不同学习效果使得学生意识到自学对于流体力学课程的重要性。

当然以上两种方法在增强学生自学意识上第一种效果更佳,但过于依赖学生兴趣会使学生对后续课程的趣味性要求提高,反而不利于理论部分的教学,所以教师在课程上应尽可能将两种方法结合,以期达到最佳效果。

二、让学生学会流体力学课程的自学方法

仅有自学意识和自学动力对于流体力学课程的学习是远远不够的,受制于中国基础教育,我国进入大学学习的学生多半擅长记忆,而不是对公式概念的理解和运用。记忆固然重要,但是仅擅长记忆对于流体力学课程自学而言是远远不够的。于是很多高校教师面临的问题除了专业知识的教授外,还多了本应在中小学教育中教授的自学方法。为了使学生学会力学课程的自学方法,在教学中要注意以下几点。

1.由浅到难。

所谓的由浅到难即留给学生自学的内容难度应由浅到难。有的老师为了提高学生自学能力,只要是自己不感兴趣的章节或自认为不重要的章节统统不讲解,完全留给学生自我消化。这样的方法固然能够极大地促进学生自学能力的提高,然而仅对本身自学能力较强的学生有效。这种教学方式对于重点院校的本科生,其差异性表现不明显,但对于大多数普通院校的学生而言,只有少数学生适应这种教学方式,大多数学生则会因为难度过大而过早丧失学习兴趣。因此教师在教授过程中,可先留一些较简单的问题让学生自学,等学生习惯自学且达到一定自学能力后再将部分较复杂的理论推导留给学生。

2.保证课前预习,课后复习。

自学能力不是一蹴而就,掌握方法就能立即提高的,需要不断地练习。对于流体力学这门课程而言,其学习过程也需要循序渐进,因为流体力学的课程内容包含大量模型简化、理论推导、概念理解、公式运用等需要大脑复杂加工的过程,一次的内容接触不足以使大脑完成所有的任务。因此要保证课程学习质量,对课程内容的反复斟酌是必不可少的过程。通常要使得该课程学习效果最佳,除了上课听教师的讲解外,课前预习和课后复习对于学生而言也是必不可少的。学生课前预习的主要目的是贯穿课堂知识点,整体把握课程内容的难点和自己不容易理解的。为促使学生养成课前预习习惯,教师除了在第一堂课调动学生兴趣外,还可在前一次课堂上布置少量预习任务,要求学生下一次课进行回答,但主要还是依靠学生的自觉性。而课后复习的主要目的是加深学生对课堂教学内容的理解和提高知识运用能力。通常教师可以通过布置练习题的形式达到目的,偶尔可采用小测验的形式对学生学习情况进行测试,通过测试可增强学生课后学习的动力。

3.教会思考,举一反三。

上述两点都是教师使学生了解怎样有效自学的引导手段,而流体力学不同于其他学科自学的真正关键之处则在于教会学生如何思考。

不同于诸多学科,流体力学的学习不仅仅依赖对公式和知识点的记忆,学生对知识点的理解和运用更重要。因此往往有些学生学习很用功,但是遇见问题总是无法自己解决,只能通过背题目的方式应付考试。这种学生就是典型的学习方法不得当,没有学会思考。实际上,学习流体力学知识和其他力学课程类似,大部分知识点都不脱离假设、建模、公式推导和公式运用的流程,学生在学习知识点时只要能够回答出“3W1H”,那么这个知识点就已经掌握了。

那么这“3W1H”到底是什么呢?第一个“W”就是“When could I use it?”什么时候可以用这个知识点?这就意味着学生在学习中一定要先弄清楚运用知识点的前提,力学当中的很多概念都是在一定先决条件下得到的推理,因此对于这些知识点而言,其使用不得违背这些先决条件。第二个“W”就是“What problems could I solve?”我能够解决什么问题,所有的知识都不是万能的,它仅仅只是研究或解决某一类问题的方法或手段,流体力学中的知识点很多体现的是各种物理量之间的关系,而这些关系决定了我们可以解决什么样的问题。第三个“W”是“What situation should I use it?”什么情况下我应该用这个知识点?在运用知识点解决问题的时候,一个问题往往有很多种解决思路,不同的物理量之间有多种表示关系的公式,选用公式的时候一定要找准问题的关键点,最终选择合适的公式或运用正确的知识点解决问题。最后一个“H”,指的是“How should I use it?”我怎么用这个知识点。选择了正确的知识点并不意味着你就会用了,什么地方我们该忽略掉,什么地方要补充其他知识点,都是需要考虑的问题。通过将各知识点进行组合,分析他们的逻辑、数学或物理等关系,最终才能解决要求的问题。举一个简单的例子:假设现要求某处的静水压力,这个题目只涉及单一的知识点。我们首先要分析,静水压力是什么?什么情况下才有?静水压力的求救问题属于水静力学部分的知识点,也就是当液体处于静止状态或相对静止状态时,静水压力才存在。第二步,则要分析静水压力这个知识点能解决什么问题或与其他的物理量之间有什么关系。显然和静水压力相关的有静水压强和作用面积,压强乘以面积即压力,那么我们现在的思路出来了,要解决静水压力的问题首先要了解静水压强和液体作用面积的情况,现在问题变为了考静水压强这个知识点。第三步,什么情况下我应该运用这个知识点?由于这个问题较简单,解题思路清晰,因此对于该题这一步可以跳过。最后就是怎样用这个知识点,根据静水压强的特性,其方向都是垂直于作用面,任一点处各方向上的静水压强大小相等,各点处静水压强大小不同。因此我们知道对于该物体的静水压力不能直接用某一点的压力乘以物体的面积而应该将物体上每一微面积上的静水压强与面积乘积计算得出各微面积上的静水压力再进行矢量加和。这样这个问题的思路就完整了。当然对于这个思路来讲只能保证将所有问题都分析清楚。在实际解题过程中,学生还要在不违背以上各物理量关系的前提下,想想能不能找到简化的方法,如果有,思考为什么可以这样简化,该简化方法有没有局限性。

以上就是我们学习和分析流体力学问题的基本思路。该思路貌似复杂,但当学生按照该过程接受了一定量的练习之后,便可以快速分析出某一流体力学问题的关键。同时,这个过程对于学生的自学也是至关重要的。只有真正学会这样思考的同学,才可能避免题海战术,对任一知识点都可以做到举一反三。这样的自学过程不仅是对学生自学能力的锻炼,而且是对学生分析问题能力的锻炼。而这种综合逻辑分析问题的思路不仅在流体力学学习时需要,对于其他的如数学、大学物理等很多理工科课程也是必不可少的。然而在现有的基础教育和高等教育中往往缺少的就是分析问题方法的教育,更多的是让学生通过数学学习无意识地培养逻辑分析能力。

三、让学生养成自学习惯

自学动力有了,学习方法也掌握之后,要使学习效果得到充分体现就需要学生持之以恒,真正将自学变为自己习惯的一部分。对于这一点而言,主要靠学生本身的自觉性,但是老师也可以给其少量外部刺激,促使学生养成这种习惯,如课后布置作业,定期小测验,甚至可以通过举行类似于结构大赛的流体力学兴趣大赛等形式提高学生学习兴趣,促使其自学。

通过如上教学方法改革,我所带班级的学生对流体力学课程的学习热情普遍提高,同时分析解决问题能力得到增强。但是这种教学方法也存在一个明显的缺点,即过分依赖学生自觉性,对于少部分没有自学习惯且学习态度不好的学生不仅没有促进其学习而且使得个别学生为自己的缺勤找到了充分理由。学生的两极分化现象更加明显,虽然良好率提高了,但课程总淘汰率有小幅提高。

总体而言,该课程的教学方法改革是有意义且有成效的,但其中遇到的某些问题还需进一步深化研究。

参考文献:

[1]李国正.培养自学能力引导学生成长――浅谈自学方法在学习过程中的渗透[J].新课程・上旬,2011,09:144-145.

[2]邓克.机械类专业工程流体力学课程教学方法探讨[J].安徽工业大学学报,2009,06(26):146-147.

[3]毕金杰.试论学习过程中心理障碍产生的原因与对策[J].教学与管理,2012,10:19-20.