首页 > 文章中心 > 人工智能辅助医疗决策

人工智能辅助医疗决策

开篇:润墨网以专业的文秘视角,为您筛选了八篇人工智能辅助医疗决策范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

人工智能辅助医疗决策范文第1篇

关键词:决策支持系统 人工智能 专家系统

一、智能决策技术概述

1.决策支持系统的形成

随着计算机技术和应用的发展,如科学计算、数据处理、管理信息系统的发展以及运筹学和管理科学的应用,为决策支持系统的形成打下了基础。决策支持系统(Decision Support System—DDS)是80年代迅速发展起的新型计算机学科。70年代初由美国M.S.Scott Morton在《管理决策系统》一文中首先提出决策支持系统的概念。

DSS实质上是在管理信息系统和运筹学的基础上发展起来的。管理信息系统重点在对大量数据的处理。运筹学在运用模型辅助决策体现在单模型辅助决策上。随着新技术的发展,所需要不得不解决的问题会愈来愈复杂,所涉及的模型会愈来愈多,模型类型也由数学模型扩充数据处理模型。模型数量也愈来愈多。这样,对多模型辅助决策问题,在决策支持系统出现之前是靠人来实现模型间的联合和协调。决策支持系统的出现就是要解决由计算机自动组织和协调多模型运行,对大量数据库中数据的存取和处理,达到更高层次的辅助决策能力。决策支持系统的新特点就是增加了模型库和模型库管理系统,它把众多的模型(数学模型和数据处理模型以及更广泛的模型)有效地组织和存储起来,并且建立了模型库和数据库的有机结合。这种有机结合适应人机交互功能,自然促使新型系统的出现,即DDS的出现。它不同于MIS数据处理,也不同于模型的数值计算,而是它们的有机集成。它既有数据处理功能又具有数值计算功能。

决策支持系统概念及结构。决策支持系统是综合利用大量数据,有机组合众多模型(数学模型与数据处理模型等),通过人机交互,辅助各级决策者实现科学决策的系统。

DSS使人机交互系统、模型库系统、数据库系统三者有机结合起来。它大大扩充了数据库功能和模型库功能,即DSS的发展使管理信息系统上升到决策支持系统的新台阶上。DSS使那些原来不能用计算机解决的问题逐步变成能用计算机解决。

2.人工智能概念和研究范围

(1)人工智能定义。由计算机来表示和执行人类的智能活动(如判断、识别、理解、学习、规划和问题求解等)就是人工智能。人工智能的研究在逐步扩大机器智能,使计算机逐步向人的智能靠近。

(2)人工智能的研究范围。人工智能研究的基本范围有:问题求解、逻辑推理和定理证明、自然语言处理、自动程序设计、学习、专家系统、机器人学、机器视觉、智能检索系统、组合高度问题、系统与表达语言等;其主要研究领域有:自然语言处理、机器人学、知识工程。

自然语言处理:语音的识别与合成,自然语言的理解和生成,机器翻译等。

机器人学:从操纵型、自动型转向智能型。在重、难、险、害等工作领域中推广使用机器人。

知识工程:研究和开发专家系统。目前人工智能的研究中,最接近实用的成果是专家系统。专家系统在符号推理、医疗诊断、矿床勘探、化学分析、工程设计、军事决策、案情分析等方面都取得明显的效果。

3.决策支持新技术

(1)数据仓库的兴起和概念。数据仓库(Data Warehouse—DW)的概念是Prism Solutions公司副总裁W.H.Inmon在1992年出版的书《建立数据仓库》(Building the Data Warehouse)中提出的。数据仓库的提出是以关系数据库,并行处理和分布式技术的飞速发展为基础,它是解决信息技术在发展中一方面拥有大量数据,另一方面有用信息却很贫乏(Data rich—Information poor)这种不正常现象的综合解决方案。

W.H.Inmon在《建立数据仓库》一书中,对数据仓库定义为:数据仓库是面向主题的、集成的、稳定的、不同时间的数据集合,用于支持经营管理中决策制定过程。

传统数据库用于事务处理,也叫操作型处理,是指对数据库联机进行日常操作,即对一或一组记录的查询和修改,主要为企业特定的应用服务的。用户关心的是响应时间,数据的安全性和完整性。数据仓库用于决策支持,也称分析型处理,用于决策分析,它是建成立决策支持系统的基础。

(2)数据仓库的特点。数据仓库是面向主题的:主题是数据归类的标准,每一个主题基本对应一个宏观的分析领域。

数据仓库是集成的:数据进入数据仓库之前,必须经过加工与集成。对不同的数据来源进行统一数据结构和编码。统一原始数据中的所有矛盾之处,如字段的同名异义,异名同义,单位不统一,字长不一致等。总之将原始数据结构作一个从面向应用到面向主题的大转变。

数据仓库是稳定的:数据仓库中包括了大量的历史数据。数据经集成进入数据仓库后是极少或根本不更新的。

数据仓库是随时间变化的:数据仓库内的数据时限在5-10年,故数据的键码包含时间项,标明数据的历史时期,这适合DSS进行时间趋势分析。

数据仓库中数据很大:通常的数据仓库的数据量为10GB级,大型的是一个TB级数据量。数据中索引和综合数据占2/3,原始数据占1/3。

数据仓库软、硬件要求:需要一个巨大的硬件平台和一个并行的数据库系统。

(3)数据开采的概念及方法。1995年在加拿大召开了第一届知识发现(Knowledge Discovery in Database—KDD)和数据开采(Data Mining—DM)国际学术会议以后,“数据开采”开始流行,它是“知识发现”概念的深化,知识发现与数据开采是人工智能、机器学习与数据库技术相结合的产物。KDD一词是在1989年8月于美国底特律市召开的第一届KDD国际学术会议上正式形成的。

知识发现被认为是从数据中发现有用知识的整个过程。数据开采被认为是KDD过程中的一个特定步骤,它用专门算法从数据中抽取模式。

数据开采的主要方法和技术有:信息论方法、集合论方法、仿生物技术、公式发现、统计分析方法及其它方法。

二、智能决策技术原理

人工智能辅助医疗决策范文第2篇

【关键词】计算机;人工智能技术;应用

1引言

人工智能技术已经成为目前最受社会关注的新兴科技之一,随着该技术在各行业和领域中的应用不断深入,人们的工作和生活方式不断向智能化方向发展,工作和学习效率都得到了质的飞跃,未来,人工智能技术也必然会获得更加广阔的发展前景。

2人工智能技术概述

人工智能是计算机科学的一个分支,这门学科的主要目标是了解人类智能的本质,并通过将人类智能转移到智能机器中,使智能机器能在不同应用场景下做出类人思维的反应。人工智能是一项综合了多项高新科技的综合性学科,包含5项核心技术,分别是计算机视觉、机器学习、自然语言处理、机器人技术和生物识别技术。其中,机器学习是实现计算机人工智能技术的核心技术,该技术使智能机器在算法复杂度理论、凸分析、统计学等学科的支持下,能自主模拟人类行为。目前已经发表的机器学习策略主要包括模拟人脑的机器学习和采用数学学习方法2种策略。其中模拟人脑的机器学习策略又可细分为符号学习和神经网络学习,符号学习是以认知心理原理为基础,在机器中输入符号数据,用推理过程在图或状态空间中搜索并进行符号的运算,对概念性和规则性知识的学习能力较为突出,如示例学习、记忆学习、演绎学习等;神经网络学习是从微观生理角度对人脑活动进行模拟,利用函数结构模型代替人脑神经网络,以函数结构进行数据运算,并在数据迭代过程中在系数向量空间中搜索,对函数型问题具有较好的学习能力,如拓扑结构学习、修正学习等。采用数学方法的机器学习主要是利用统计机器,建立相应的数学模型,拟定超参数,输入样本数据后根据不同的运算策略对模型进行训练,最后根据训练结果进行结果预测。

3人工智能技术的发展历程

3.1人工智能技术的兴起

虽然新兴技术的兴起获得了广泛的关注,但由于人工智能技术涵盖的学科和技术范围过大,兴起阶段的该技术的理论知识、产品应用、发展应用等均存在明显缺陷。除此之外,计算机技术在当时也并不成熟,当时的计算机编程和计算水平较为落后,很多超前的想法以当时的技术水平来说实现较为困难。在多种因素的影响下,人工智能技术在兴起阶段并未得到快速发展。

3.2人工智能技术的高速发展

人工智能技术这一概念在提出后近20年的时期中其发展始终处于停滞状态,直至20世纪70年代,该领域的专家研发出全新的人工智能专家系统DENDRAL,该系统的诞生带动人工智能技术迈向新的发展阶段,并且在这之后进入高速发展时期。日本始终重视本国科学技术的发展,并且在20世纪80年代提出“科技立国”的政策,此后很长一段时间,日本依托此国策使经济得到迅速恢复和发展。在1982年,日本国内对第五代计算机的研究以失败告终,但此次研究中提出了新的计算机算法和逻辑程序语言Prolog,Prolog在处理自然语言过程中具有比LISP语言更好的应用效果,这一创新进一步促进了人工智能技术的发展。人工智能技术的发展建立在多项先进学科共同发展的基础上,与其他技术相比,人工智能技术在处理数据、整合资源方面具有更大优势。

3.3人工智能技术的发展现状

3.3.1专家系统

专家系统指的是一种智能计算机程序系统,是人工智能技术应用最为广泛也最为重要的领域之一,系统中涵盖大量某领域专家水平的知识与经验,通过应用人类在该领域中的专家级别知识来为用户解决在该领域中遇到的问题。专家系统有效地将人类智能延伸到专业领域中,实现了理论研究向实际应用方向过渡的目标,大幅提高了人类对专业问题的处理效率,并且专家系统依托复杂的算法能对专业问题未来发展的可能性进行更全面的计算,工作效率甚至会比人类专家更高效、更准确。随着对专家系统研究的不断深入,目前很多专家系统都能依据对人类行为的模拟在不同的应用场景中作出智能化的反应和判断,并且能够利用知识库,深入挖掘复杂问题的内在联系。专家系统已经在多个领域中都得到了广泛的应用,帮助企业更客观地摸索市场规律,从而作出正确的生产决策、调度规划、资源配置计划等,大幅提高了企业经营的科学性,使企业能在节省生产成本的同时,获得更好的经济效益。

3.3.2模式识别

模式识别是利用计算机技术将识别对象按一定特征归类为不同类别,目前人工智能技术在模式识别中的主要研究方向包括语音语言信息处理、计算机视觉、脑网络组等,希望通过人工智能技术实现对复杂信息的识别和处理,这一应用能促进多个行业向智能化方向发展,如军事领域、医疗领域等。

3.3.3机器人学

机器人学的主要研究方向是机器人的设计、制造和应用,随着人工智能技术的成熟与应用,机器人的智能水平不断提高,并且在不同行业中的应用已经较为普遍,日常生活中常见的机器人包括扫地机器人、迎宾机器人、快递机器人、早教机器人、无人机等,人们可以利用可移动设备对其进行操作,极大程度地提高了人们生活的智能性和便捷性。

3.3.4机器学习

机器设备并不具备自主思考能力,在不同应用场景下的反应主要是依托计算网络技术和算法对人类思维模式进行模拟,并将人类行为进行充分消化以使自身性能得到优化,能对不同问题进行处理。机器学习是一项涵盖多个学科且复杂程度很高的科学,包含统计学、概率学、算法复杂度理论等,是人工智能的核心技术,也是推动计算机向智能化方向发展的关键技术。

3.3.5人工神经网络

人工神经网络是人工智能技术自进入高速发展时期后广泛研究的重点内容。利用计算机算法将人脑神经元进行简单化、抽象化、模式化,并构建成与人脑神经元网络相似的网络结构。人工神经网络技术的成熟与发展为专家系统、模式识别、机器人学、生物、经济等多个学科的发展提供了技术支持,解决了很多人工智能技术发展中的实际难题。

4人工智能技术的应用

4.1人工智能技术在计算机网络技术中的应用

4.1.1计算机网络安全管理

人工智能技术与计算机网络技术互相依存、互相促进、共同发展,在计算机网络技术的多个方面都有深入的应用。其中,在网络安全管理方面主要有如下应用:①智能防火墙技术。防火墙技术随着计算机的普迅速发展,应用人工智能技术的防火墙技术比传统防火墙技术的性能更加优异。智能防火墙技术具有智能记忆功能,能自动记录并储存历史处理病毒的记录,在后续应用过程中依据记录直接优化计算机匹配环节,减少计算机数据量,提高防火墙的隔离病毒能力。另外,智能防火墙还能结合用户的需求,对用户不需要的弹窗功能、访问权限、有害信息等进行智能化拦截。②计算机入侵检测。防火墙的主要功能就是为计算机设备创造安全的运行环境,保证系统和内部数据不被侵害。计算机入侵检测功能是保障防火墙正常工作的基础功能模块,对提高计算机数据的安全性和可靠性具有直接的影响。应用人工智能技术的入侵检测功能,能对计算机系统进行智能化分析和处理,根据预定算法将处理数据整理成为入侵检测报告,让用户能全面地掌握计算机设备的安全状态。③垃圾邮件智能化处理。该技术依托人工智能技术中的模式识别功能,对接收邮件进行扫描和归类,发现垃圾邮件后直接将其标注为垃圾邮件,为用户发出风险警告,避免用户因误操对计算机系统造成损害。

4.1.2计算机网络管理

人工智能技术的发展和应用促进计算机网络技术向智能化方向发展。在实际应用中,除计算机网络安全管理模块外,还能解决多种网络管理问题。随着计算机技术的普及,网络数据呈爆炸式增长,网络管理工作量和工作难度都达到了空前高度,通过应用人工智能技术,能大幅提高计算机网络管理效率,优化网络管理效能。

4.2人工智能技术在企业管理中的应用

企业是市场经济活动的主要参与主体,是维持市场经济稳定运行和发展的关键要素,在企业生产活动中科学地应用人工智能技术,能有效提高企业的生产能力,促进企业获得更高的经济效益和社会效益。具体应用渠道如机械自动化、智能监控、推荐系统、用户购物行为分析、零售分析、数据提取、文本归类、文章摘要等,从员工工作的细微之处实现工作效率上的提升,进而提升企业整体的运行效率。对工业行业来说,应用机械自动化技术还能有效降低传统工业生产中对人工的依赖性,大幅提高工业企业的生产能力,在行业发展的过程中起到了非常积极的促进作用。

4.3人工智能技术在航空航天技术中的应用

航空航天技术是目前人类最高科技的集合体,涵盖众多学科,如信息技术、卫星技术、生物技术、天文学、生命科学等,对提高国家的国防力量、提高国家的国际地位、促进国家经济增长都具有非常重要的意义。航天器设计是航空航天领域中的关键工作之一,而远程控制又是航空航天技术长久发展以来研究的重点,因我国对该技术的研发起步较晚,我国对航空航天技术的研发存在重重困难,但经过国家和科技工作者的不懈努力,目前我国航空航天技术已处于世界先进水平。将人工智能技术应用于航天远程控制中,利用智能系统对数据进行自动采集、处理和储存,如通过采集航天器的轨道信息,并以此分析航天器的运行状态,根据分析结果制定运行决策,对提高航天器的运行安全性和运行质量都是非常重要的举措,推动国家航空航天事业获得进一步发展。

4.4人工智能技术在医疗领域中的应用

目前,人工智能技术在医疗领域中的应用已经非常广泛,使医护人员的工作内容不断得到优化,提高工作效率,还有效提高了国家医疗水平。具体应用包括以下几项内容:①在电子病历中的应用。传统就医诊断环节,医生都需要以手写方式记录病患病例,并根据病例详细列出治疗方案,工作量大,且效率较低,病例保存便捷性较差。通过应用电子病例,不仅能大幅减少病例记录的工作量,还能在医疗系统中直接勾选治疗所需药品,完成病例及用药的勾选后打印即可,既能大幅提高工作效率,还能将病例在计算机中进行储存,且现阶段病例文件的储存格式不再局限于文字,语音和图像也可被添加到病例中,提高医疗诊断的准确性。②在健康管理中的应用。在现代医疗中应用人工智能技术,对病患的病情进行智能化分析,能使医生对疑难病症的分析更加全面准确,制定针对性更强的医疗方案,提高医疗水平,为改善患者的健康状况提供辅助。

5结语

综上所述,计算机人工智能技术的应用,对社会各行业都产生了不同程度的影响,人们的工作和生活方式得到优化和改变,国家科技水平也不断提升。加强对计算机人工智能技术的研究,推动人工智能技术在各个行业中的应用,让人们能切身感受到科技为生活带来的改变,对促进人类社会的发展具有非常重要的意义。

【参考文献】

【1】辛颖楚.计算机人工智能技术研究进展和应用分析[J].信息与电脑(理论版),2019(9):121-122+125.

【2】陈长印.计算机人工智能技术研究进展和应用分析[J].计算机产品与流通,2019(12):5.

【3】杨坤,顾兢兢.计算机人工智能技术研究进展和应用分析[J].电脑知识与技术,2019,15(33):197-198.

【4】郑骜.浅谈计算机人工智能技术研究进展和应用[J].科学与财富,2019(19):276.

【5】赵智慧.计算机人工智能技术研究的进展及应用[J].信息与电脑(理论版),2019,31(24):94-96.

【6】李子青.计算机人工智能技术的应用与未来发展分析[J].科技经济市场,2019(10):9-11.

【7】罗柱林,韩文超,吕文杰,等.计算机人工智能技术的应用及未来发展探究[J].中国航班,2019(16):90.

【8】李乔凤.计算机人工智能技术的应用与未来发展分析[J].数字技术与应用,2020,38(3):91+93.

【9】肖梅.计算机人工智能技术的应用及未来发展初探[J].缔客世界,2019(1):39.

人工智能辅助医疗决策范文第3篇

由于人体与疾病的复杂性,不可预测性,非常适合人工神经网络的应用。目前的研究几乎涉及从基础医学到临床医学的所有方面,主要应用于生物信号的检测与自动分析,医学专家系统等。

在麻醉与危重医学相关领域的研究涉及到多生理变量的分析与预测,从临床数据中发现一些尚未发现或尚无确切证据的关系与现象,信号处理,干扰信号的自动区分检测,各种临床状况的预测,单独或结合其他人工智能技术进行麻醉闭环控制等。

在围术期和重症监护与治疗阶段,需要获取大量的信息,将可能在信号处理、基于动态数据驱动的辅助决策专家系统、数据挖掘、各种临床状况的预测、智能化床旁监护、远程医疗与教学、医疗机器人等各方面广泛运用到人工神经网络技术和其他人工智能技术。

一、概述

人工神经网络(artificial neural network, ann)是人工智能(artificial intelligence, ai)学科的重要分支。经过50多年的发展,已成为一门应用广泛,涉及神经生理学、认识科学、数理科学、心理学、信息科学、计算机科学、微电子学等多学科交叉、综合的前沿学科。WWw.133229.CoM

现代计算机的计算构成单元的速度为纳秒级,人脑中单个神经细胞的反应时间为毫秒级,计算机的运算能力为人脑的几百万倍。可是,迄今为止,计算机在解决一些人可以轻而易举完成的简单任务时,例如视觉、听觉、嗅觉,或如人脸识别、骑自行车、打球等涉及联想或经验的问题时却十分迟钝。也不具备人脑的记忆与联想能力,学习与认知能力,信息的逻辑和非逻辑加工能力,信息综合判断能力,快速的高度复杂信息处理速度等。

造成这种问题的根本原因在于,计算机与人脑采取的信息处理机制完全不同。迄今为止的各代计算机都是基于冯*纽曼工作原理:其信息存储与处理是分开的;处理的信息必须是形式化信息,即用二进制编码定义;而信息处理的方式必须是串行的。这就决定了它只擅长于数值和逻辑运算。而构成脑组织的基本单元是神经元,每个神经元有数以千计的通道同其他神经元广泛相互连接,形成复杂的生物神经网络。生物神经网络以神经元为基本信息处理单元, 对信息进行分布式存储与加工, 这种信息加工与存储相结合的群体协同工作方式使得人脑呈现出目前计算机无法模拟的神奇智能。

人工神经网络就是在对人脑神经网络的基本研究的基础上,采用数理方法和信息处理的角度对人脑神经网络进行抽象,并建立的某种简化模型。一个人工神经网络是由大量神经元节点互连而成的复杂网络,用以模拟人类进行知识的表示与存储以及利用知识进行推理的行为。一个基于人工神经网络的智能系统是通过学习获取知识后建立的,它通过对大量实例的反复学习,由内部自适应机制使神经网络的互连结构及各连接权值稳定分布,这就表示了经过学习获得的知识。

人工神经网络是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超过某一门限值后才输出一个信号。因此神经网络是一种具有高度非线性的超大规模连续时间动力学系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力和模拟人脑智能行为能力的一大飞跃。

近20年来,神经网络的软件模拟得到了广泛研究和应用,发展速度惊人。1987年在圣地亚哥召开了首届国际神经网络大会,国际神经网络联合会(inns)宣告成立。这标志着世界范围内掀起神经网络开发研究热潮的开始。

二、医学领域应用现状与前景

由于人体与疾病的复杂性,不可预测性,在生物信号与信息的表现形式、变化规律(自身变化与医学干预后变化),对其检测与信号表达,获取的数据及信息的分析、决策等诸多方面均存在大量复杂的非线性关系,非常适合人工神经网络的应用。目前的研究几乎涉及从基础医学到临床医学的所有方面,主要应用于生物信号的检测与自动分析,医学专家系统等。

1、信号处理:

在生物医学信号的检测和分析处理中主要集中对心电、脑电、肌电、胃肠电等信号的识别,脑电信号的分析,听觉诱发电位信号的提取,医学图像的识别和数据压缩处理等。

2、医学专家系统

医学专家系统就是运用专家系统的设计原理与方法, 模拟医学专家诊断、治疗疾病的思维过程编制的计算机程序, 它可以帮助医生解决复杂的医学问题, 作为医生诊断、治疗的辅助工具。 “传统”的专家系统,通过把专家的经验和知识以规则的形式存入计算机中,建立知识库,用逻辑推理的方式进行医疗诊断。但一些疑难病症的复杂形式使其很难用一些规则来描述,甚至难以用简单的语言来表达;专家们常常难以精确分析自己的智能诊断过程。另一方面,基于规则的专家系统,随着数据库规模的增大,可能导致组合爆炸,推理效率很低。由于人工神经网络能够解决知识获取途径中出现的“瓶颈”现象、知识“组合爆炸”问题以及提高知识的推理能力和自组织、自学习能力等等, 从而加速了神经网络在医学专家系统中的应用和发展。

sordo比较了采用不同网络结构和学习算法的神经网络在诊断胎儿唐氏综合征(down’s syndrome) 上的成绩。正确分类率为84 %, 超过了现今所用的统计方法的60 %~70 % 的分类率。

台湾deu科技(德亚科技)开发的计算机辅助检测系统rapid screentm rs-2000为全世界最先通过美国fda认证的早期肺癌辅助诊测系统。该产品采用人工智能神经网络ann,自动标识数字胸片中可疑结节区。经台湾和美国的临床实验,可使放射专家检测t1期肺癌的能力明显提高(潜在提升约15 %以上)。

degroff等使用电子听诊器和人工神经网络制造了一种仪器,它可正确地区分儿童生理性和病理性杂音。用电子听诊器记录的儿童心音,输入能识别复杂参数的ann,分析的敏感性和特异性均达100%。

3、其他:

生物信息学中的研究中可应用于基因组序列分析、蛋白质的结构预测和分类、网络智能查询等方面。

药学领域广泛应用于定量药物设计、药物分析、药动/药效学等方面。例如:用于预测药物效应。veng-pederson用神经网络预测阿芬太尼对兔心率的影响,对用药后180-300分钟的药物效应取得了较好的预测结果(平均相对预测准确度达78%)。分析群体药动学数据,以获知群体药动学特征和不同人口统计因子对药物行为的影响,对临床用药具有指导意义。

4、麻醉与危重医学相关领域的研究

手术室和icu内是病人信息富集的地方,而且大量的信息处在动态变化中,随着医学技术的飞速进步,所能获取的信息越来越多,医护人员面临着“信息轰炸”。神经网络技术可以很好地帮助我们应对这些问题。例如:

1)可以用于分析多个生理变量之间的关系,帮助研究其内在的关系,或预测一些变量之间的关系:perchiazzi在肺损伤和正常的猪容量控制机械通气中,用ann估计肺顺应性的变化,不需要中断呼吸,与标准方法相比误差很小。

2)结合数据挖掘技术,可能从海量数据库例如电子病历系统中,发现一些尚未发现或尚无确切证据的关系与现象:buchman 研究了神经网络和多元线形回归两种方法,用病人的基本资料、药物治疗差异和生理指标的变化预测在icu延迟(>7天)。

3)信号处理:ortolani等利用eeg的13个参数输入ann,自行设计的麻醉深度指数ned0-100作为输出,比较ned与bis之间有很好的相关性;

4)干扰信号的自动区分检测:jeleazcov c等利用bp神经网络区分麻醉中和后检测到的eeg信号中的假信号,是传统eeg噪音检测方法的1.39-1.89倍。

5)各种临床状况的预测:laffey用ann预测肌肉松弛药的残留,发现明显优于医生的评估,还有用于预测propfol剂量个体差异的,预测术后恶心、呕吐,预测全麻后pacu停留时间,预测icu死亡率等较多的研究。

人工智能辅助医疗决策范文第4篇

关键词:人工智能;科技情报;自动感知

中图分类号:TP18文献标志码:A文章编号:2095-2945(2020)32-0057-02

Abstract:Fromtheperspectiveofartificialintelligence,peoplerequireasignificantimprovementintheaccuracyofscientificandtechnologicalinformationservices,sothatitsvaluecontinuestorise,bringingchallengesandopportunitiesforintelligencework.Bysummarizingthecontentsofartificialintelligenceandscientificandtechnologicalinformation,combinedwithartificialintelligencetechnology,thispaperstudiestheautomaticperceptionofscientificandtechnologicalinformationneedsconcerningthekeypoints,contentperceptionandotheraspects,highlightingthewisdom,intelligenceandefficiencyofscientificandtechnologicalinformationwork,andoptimizingtheautomaticperceptionscheme.

Keywords:artificialintelligence;scientificandtechnologicalinformation;automaticperception

前言

当前科技情报服务对象不仅局限于特定的行业和领域,已经逐渐渗透至某一技术和个人,情报机构只有提升情报分析和反应能力才可以满足新需求。因此,机构有必要加强对用户需求的感知度,依托人工智能技术构建科技情报的感知框架,提升感知工作的合理性和高效性,进而挖掘科技情报感知领域的价值。

1人工智能及科技情报感知概述

1.1人工智能分析

人工智能又称AI,伴随着计算速度、核心算法的优化,该技术已经在神经网络、自然语言、机器学习等方面趋于成熟。当前人工智能技术可以定制个性化任务,结合不同的环境响应个体需求,制定解决方案[1]。因此,人工智能技术能够快速处理海量数据,若人类智力水平已无法满足严苛工作要求,可以借助人工智能技术处理复杂工作。同时,科技情报感知模块属于综合预测过程,因此有必要结合人工智能技术制定科技情报感知方案,实现情报工作向智慧化、个性化、精准化方向发展。

1.2情报感知分析

科技情报感知主要是工作人员针对采集到的数据完成处理、分析,进而满足受众对于情报的需求,并对今后其发展过程进行预测。学者刘记曾指出,依托科技情报感知工作可以为实现国家治理体系和治理能力现代化提供支持,加快情报刻画、情报感知以及情报响应能力的建设进程。其中,情境感知的研究具有一定复杂度,G.Chen通过调查情境信息、情境类型、情境传播等模型和系统,分析情境感知的应用程序,得出情境感知是领域普适学习的关键。例如,借助情境感知可以为用户提供体温、运动路径、温度等方面的服务。

因此,科技情报感知工作对于我国情报治理、预先感知等方面影响较大,结合人工智能技术创新科技情报感知模块已是大势所趋。当前大数据时代科技情报已经不仅停留于文献领域,正逐渐向多种数据源模式发展,要求科技情报软硬件不断升级优化,数据存储和处理水平逐渐升级,进而满足社会对情报数据的需求。

2人工智能视域下科技情报需求自动感知研究

2.1融合关键点

(1)创新驱动。当前科技情报需求逐渐向科技创新领域发展,依托我国创新驱动的发展战略,基于科学技术完成升级和发展。将科学技术和科技情报相结合后,情报工作的创新性较强,具有数字化和智慧化优势,并突出情报工作的个性化和精准性。因此,依托人工智能技术完成科技情报的自动感知十分关键,是当前科技发展的必经之路。

(2)前瞻性定位。新时期资源的网络化和数字化发展为科技情报研究工作提供大数据支持,可以在海量数据的收集、分析、处理方面发挥优势。传统的数据研究方式很难在大量数据的基础上提升情报研究质量,同时会增加研究人员的任务量。且每位工作人员自身的专业知识、情报敏感度、知识状态存在差异性,导致最终得出的情报结果不同甚至差异化较大。应用人工智能技术完成科技情报的自动感知十分重要,可以突出工作的准确性、高效性和稳定性。因此,将新兴人工智能技术和传统情报服务工作相融合是现代情报领域的关键,如自动获取和加工情报、高速处理文本信息、人工智能决策平台、依托語义内容的科研成果评价等[2]。

2.2内容感知

(1)感知系统分析。大数据背景下,科技情报预测和传播功能受到重视和应用,属于科技领域的研究热点,可以对竞争、合作、研究方面进行正确的价值判断。科技情报感知主要依托可靠、丰富的数据,借助“互联网+大数据”模式获取信息,在多种资料中得到关键的信息和数据,进而完成科技情报的感知工作。同时,数据源具有冗余度高、形式多样、存储量大的优势,因此能够落实科技情报感知工作,筛选数据源、除去冗余数据、分析剩余有效信息。借助数据集模式与知识储备库、感知数据库一同为感知过程提供信息支持。内容感知系统内的数据源并非固定不变,且信息的更新速度较快、技术淘汰时间较短,因此内容感知是实时更新、持续变化的数据系统。基于相关辅助项目,帮助用户了解工作内容。例如,借助“科技情报产品报告”为感知系统研究和应用提供支持,该报告可以帮助用户了解系统,提前评估系统实际能力,便于用户针对性提出情报需求。

(2)系统实现模式。a.数据源存储。若想发挥科技情报的自动感知作用,系统内需要具备大容量数据集合,进而为感知产品提供分析支持。同时,数据处理过程中对于信息查询、存储挑战较大。因此,本课题结合Neo4j数据库、互联网技术提升数据处理和存储效率,提高系统适应水平,保证其良好的查询效率。Neo4j数据库主要划分为两类应用模式:服务器模式、内嵌模式。本课题利用内嵌模式,借助Java-API,将Neo4j数据库和图模型相互整合。由于API的特点是数据结构灵活,因此可以通过直接编码的模式和图数据库完成交互操作。b.数据源分类。若想对数据源完成自动分类,建议识别数据源的结构功能。例如,利用机器学习、词汇特征等方式划分数据源的功能及结构。依托数据源要素、类型词汇特点、词汇分布特征等方面,依托神经网络内分类器训练模式,围绕领域技术、专题、情报报告、组织数据库等方面对数据源进行分类[3]。c.构建任务抽取模型。结合用户需求抽取目标任务可以充分发挥科技情报的自动感知优势,优化RNN模块。在研究阶段利用Bi-LSTM-CRF、卷积网络模型抽取数据源,并借助长短时双向记忆模型化解RNN梯度爆炸、消失情况。抽取模型内的输入数据是卷积,包含知识元素、句子、词等特征向量,而输出数据则依托(Conditionalrandomfield)条件随机得到结果完成预测。此模型借助多元组的方式展示数据源抽取结果,围绕数据源性质、事项、主体、依据、对象等要素进行连接。

2.3情境感知

(1)情境感知系统。情境感知系统内部因素种类较多,且科技情报感知阶段需要依据情境完成,并对感知结果造成影响。因此,在开展科技情报感知工作时,建议对特定用户完成重新评估。同时,情境感知在情报感知工作中十分关键,若忽视结果会对外部情境产生较大影响,使预测工作丧失精准度。因此,应基于外部情境条件定位事物发展方向,得到精准感知结果,发挥情报前瞻性优势。其中在获取情境数据时应关注“小数据”,即初始结构化数据,此类资源虽数量较小,但是内部包含价值信息,可以获取历史情境信息。此外,问题情境应围绕横向和纵向两个层面分析,横向维度是梳理本层实际情况,针对性选择研究方法和处理方式;纵向维度则依托时间节点理清情境信息。

(2)系统执行方案。情境感知系统建设主要内容是借助科技手段获取某一情境内的数据并完成融合。因此,情境感知技术实际上是借助人工智能中传感器等技术,依托计算机感知当前情境,完成感知应用、智能识别、决策支持,具有无干扰的优势。情境感知包含情境获取、处理、应用三个阶段。其中,情境获取主要依靠传感器终端获取设备关联、用户关联、资源关联、环境关联情境,并将上述情境信息转变为数字信号,利用嵌入系统完成判断和处理;情境处理过程则借助建模的方式控制情境信息,构建信息数据库。整合情境感知信息并协调对应的组合,控制资源分布并将其嵌入至感知数据库内;服务应用阶段相当于人工智能处理模块,可以结合用户需求提供合理服务。

2.4需求-反馈机制

(1)工作过程。需求-反馈机制实际上可以体现用户和人工智能间的关联性,属于科技情报感知的关键环节,包含自动感知信息、数据、产品模块。依托人工智能技术,通过AI方式减轻工作人员任务量。其中,AI能够智能化处理多领域工作,如医疗、教育、驾驶、金融、安防等。在科技情报感知领域引入人工智能技术可以准确、高效、及时地开展情报工作,提升工作效率、减少决策偶然性、加快数据分析处理速度。同时,科技情报感知工作的主体是用户,首先需要将其对产品的需求发送至AI处,其次借助人工智能模块分析、整合内外感知数据库信息,最后向用户反馈情报产品和相关结果。

(2)情报感知产品。情报感知产品主要结合用户产品需求,依据感知数据库内的条件因素预测今后用户对于情报产品的需求,进而在后续工作中有针对性地向用户推送产品信息,为科技情报工作的可持续发展提供支持。因此,人工智能和科技情报感知工作相结合可以充分发挥自动感知优势,降低对工作人员决策的依赖性。专业人员依据多种数据源进行分析与评估,最终得出精准的感知结果。同时,人工智能技术的应用可以自动形成情报感知产品,并向用户推送反馈数据,由主动感知向自动感知发展,契合新时期情报3.0的发展趋势,加快国家科技决策和科技创新发展进程。

人工智能辅助医疗决策范文第5篇

首先,互联网是高度创新的生产力,其生命在于创新,只有互联网本身具有巨大的创造力和生命力,才能促进其他产业的发展。因此,“互联网”创业创新是“互联网”行动的源头。

其次,正如《意见》所指出的,“互联网”是把互联网的创新成果与经济社会各领域的深度融合。因此,“互联网”制造等产业是行动的主体。尤为值得重视的是,互联网与经济社会各领域的“”不应当、也不可能是简单地将原有产业的工具换成“互联网”,而应该是二者的深度融合,只有这样才有可能实现《意见》提出的融合发展,形成基于互联网的新业态。

而要实现这种深度融合,智能化是必由之路,“互联网”人工智能提供了支撑这种深度融合的核心技术路线,“互联网”各产业的深度融合都需要“互联网”人工智能的支撑。

那么,“互联网”人工智能如何为“互联网”各产业的深度融合提供支撑呢?以下,本文仅以《意见》在“互联网”人工智能中提出的自然语言理解这一人工智能领域的重要技术为例,首先阐述该技术如何进行“互联网”,之后阐述其如何为互联网与产业进行深度融合提供核心技术支持。

简单地说,自然语言理解(或者更一般地称为自然语言处理)是研究使机器能理解人类语言(像中文、英文等人类语言称为自然语言)的技术。这种技术有非常广泛的应用。例如,如果有一台机器既能理解中文又能理解英文,那么,这台机器就可以为人类充当翻译;如果电视能理解中文,那么,用户就可以不用按钮,而是通过说话来遥控电视。

自从上世纪40年代计算机发明以来,人们就开始了对自然语言理解技术的探索,取得了一系列的进展。尤其是近20年来,随着互联网的发展引发了对这一技术的强劲需求,这一技术在得到长足发展的同时,也在有力地促进互联网核心能力的增强。比如,目前互联网提供的一个基础性能力是信息检索。

人们在搜索引擎中输入关键词,就可以获得相关信息。在20年前,互联网刚开始发展的初期,给搜索引擎输入“和服”,返回的结果中很可能包含不少生产、销售“鞋子和服装”的公司的信息。现在这种错误已经比较少了,而促进其质量不断提升的一个核心就是采用了不断改进的自然语言理解技术。“互联网”自然语言理解已经成为互联网发展的一个共识,并在不断深化。

笔者认为,“互联网”自然语言理解有两个互相补充的发展方向,一是发展大规模语言数据的分析处理能力,二是发展自然的人-机器交互方式。

基于“互联网”自然语言理解发展大规模语言数据的分析处理能力,是指基于自然语言理解技术对广泛存在的语言信息进行获取、分析、推理和整合,并提供决策辅助。其需求存在于“互联网”制造、农业、能源、金融、服务、物流、电子商务、交通、生态等各个行业中。

例如,在智能制造中,《意见》中着重提到了制造业服务化转型:鼓励制造企业利用物联网、云计算、大数据等技术,整合产品全生命周期数据,形成面向生产组织全过程的决策服务信息,为产品优化升级提供数据支撑。实际上,在产品全生命周期里确实存在大量的数据,其中关于产品的需求、设计、工艺、加工和销售各环节的数据(来自企业内部、企业外部以及互联网上)很大一部分是以自然语言方式存在的,要基于这些语言数据形成全过程的决策服务,很关键的一点就是要自动分析和理解这些语言数据。

利用机器自动进行这些信息的分析,与人工分析相比,具有信息全面、快速响应的特点,可以作为人工决策的有力支撑。这方面的研究目前被称为企业竞争力情报,已经得到各类企业的重视。不单对于制造业,农业、能源、金融、医疗等行业也有着类似的需求。因此,基于“互联网”自然语言理解发展大规模语言数据的分析处理能力是“互联网”行动的一个重要技术支撑。

基于“互联网”自然语言理解发展自然的人-机器交互方式是指基于自然语言理解技术重塑人与机器之间的交互方式,使自然语言成为人-机器之间进行交互的自然接口。目前,技术人员在赋予产品某项功能时,需要采用专门为机器设计的语言编写程序来“告知”机器,普通大众在使用产品某项功能时,需要按要求进行按键选择,“告知”机器执行某个指令。

不论是开发还是使用机器,人们在和机器交流时都要使用另外一套专门的交流语言或方式,不同的机器可能要使用不同的语言或方式,为了开发或使用这些机器,人们需要去学习这些不同的语言,这对于人来说,是一个极大的负担,尤其是随着机器日益走进社会生产和生活的各个方面。

如果每个机器都有一套不同的交互语言,那将严重影响人们对机器的开发和使用,因此,最好是使用一种统一的交互方式。统一所有交互语言的一个很自然的方式是使用人类的自然语言。

由于自然语言是人类天生就能逐步习得的语言,因此,对于人类而言,这是一种最自然、最方便的交流方式,对于人类而言更不容易出错,更能体现每个人的个性。而要达成此目标,就需要采用自然语言理解技术,使机器具有理解人类自然语言的能力,实现基于自然语言的人机交互。

人工智能辅助医疗决策范文第6篇

[摘 要] 最近几年,智能信息处理技术改变了我们的生活,特别是智能手机和无线移动互联网的快速发展。在医疗管理领域出现了大量的智能处理技术和设备,如智能决策支持技术、可穿戴医疗设备(智能手环等)等,为医院的信息化管理带来新的生机与活力。研究重点关注医院管理信息系统与智能信息处理技术的结合,目的在于使医院管理信息系统在管理效率、服务质量、患者体验等方面进一步提升。研究基于医院智能信息技术应用现状,从医院信息系统组成的五个方面进行了应用方向和形式分析,符合医院信息化管理的方向,对未来的进一步研究具有较强的指导和借鉴作用。

[关键词] 医院信息系统;人工智能;管理信息系统

doi : 10 . 3969 / j . issn . 1673 - 0194 . 2017. 05. 084

[中图分类号] R197.324 [文献标识码] A [文章编号] 1673 - 0194(2017)05- 0157- 02

1 前 言

随着计算机技术、自动化技术以及信息加工处理技术的不断发展,智能管理决策支持系统(Intelligent Decision Support Systems,IDSS)在管理信息系统中的地位和作用不断提升。其实质是管理信息系统中决策支持系统(Decision Support System,DSS)与人工智能(Artificial Intelligence,AI)技术的共同体。其目的在于信息化管理的过程中通过智能信息技术的应用,使智能化的决策服务于整个管理流程,完善相应组织的服务,提升处理流程的效率,提高管理信息及业务的正确性。其主要表现形式是先进的、全新的智能信息处理技术的应用,包括智能硬件和软件。

医院信息化管理是医院管理发展的必然和趋势,医院每天都面临病人、医生、诊疗业务、财政业务等大量的业务和信息,医疗相关信息已经步入了全新的大数据时代,致使医院的管理信息化需求不断膨胀,但存的人工处理难以适应其管理的需求和发展。同时,技术的进步致使各式各样的智能信息处理技术不断涌现,其应用在多方面为改善医疗服务、提升医疗效率等带来契机。医院管理信息系统的智能化升级是在原有医院信息系统的基础上,通过应用各种智能化的软硬件设备,构建智能化的医院信息化管理。

探究医院信息化管理中智能信息处理技术的作用,构建智能化医院管理信息系统的其意义主要在于:①提高医院的运营效率。智能化是业务和数据处理的自动化实现形式,可以整合和优化工作的流程,降低人工管理中的错误,这些无疑都是管理效率提升的表现。②更好地成本控制。智能化信息管理能够更加准确的生成医院业务数据的报告,降低重复,减少人力资源需求,伴随效率提升医疗运营成本得到控制。③降低人为因素影响,科学合理决策。④提高护理质量,提升患者体验。

2 现 状

从医院管理的角度,医院管理信息系统的作用已经被医院管理和业务任务认可,其应用范围不断扩大,研究者对辽西地区(包括三甲医院和社区卫生机构及县乡级医院)的医院信息系统应用情况进行了调查,其信息化管理系统的应用覆盖率超过78%。不同等级的医院配备了不同规模的信息管理系统,其中信息化管理的构建和管理质量较高的还是在综合实力较强的三甲医院。

从智能信息处理技术产品的角度,目前,围绕医疗的智能化应用形式和产品有:智能诊疗决策服务系统应用、智能远程医疗应用、依托云技术的医疗大数据智能处理应用、依托可穿戴智能设备的t疗检测设备(如苹果公司的智能手环)、依托于无线传感器网络的智能医疗监控系统、依托于智能处理终端的智能业务处理等。这些相关的智能信息处理技术或者以软件,或者以硬件的形式出现,其应用和实践效果备受关注。

从医院信息系统智能化应用的角度,很多技术已经进入到医院信息系统中,但受应用成本和效益回报的影响,目前,智能化的应用往往集中在大型综合医院。如辽宁省某大学附属医院医院就推出了基于4G智能手机平台的诊疗预约服务。张亚等就设计了采用智能终端体征检测设备的智能健康监护系统。智能信息处理技术在医院管理信息系统中的应用初露端倪,但其无论在应用的广度和深度方面还处于起步阶段。

从患者的角度,研究者通过问卷调查显示:90%以上的患者希望能在其医疗管理信息系统中应用智能化技术,以提高诊疗质量、方便诊疗流程等。

3 基于医院信息系统总体结构的智能信息处理技术应用

目前,医院管理信息系统基础架构发展相对较为成熟,覆盖了医院所有业务和业务处理全程,从系统总体结构的角度,其组成主要包括五个部分:临床诊疗部分、药品管理部分、经济管理部分、综合管理和统计分析部分和外部接口部分。研究者基于五部分分析了智能处理技术应用的方向和应用形式等。

临床诊疗部分:临床诊疗部分是智能信息处理技术在医院信息系统中应用的主要部分。如针对病人的诊疗环节(如登记、预约、挂号、入院等)引入方便、灵活的机制,并通过建立相应业务的智能协同系统,实现基于智能终端(智能手机/平板电脑等)的、调度自动化的应用程序。通过与医院信息系统对接方便病人的诊疗; 在护士工作站,护理人员的主要服务是分配和管理病人,记录患者的监测信息,实现与患者及医生的沟通。其智能化应用主要体现在:患者信息智能化的检测与监控。通过在病房布置智能传感器检测设备实现数据采集与报警的智能化。新的数字救生设备如心电图、呼吸机系统、无线温度计数器数字传感器等可以连接到智能控制中心,相应的智能应用程序安装在智能终端,可与护理人员的智能手机连接;在医生工作模块,医生是检查、诊断和给予患者治疗的专业人员。智能信息处理技术的应用可以在一定程度上对医生工作进行辅助可拓展。如构架与护士智能终端对接的移动终端,及时获取患者境况信息及时诊疗。智能远程医疗技术也使医生的业务范围在空间得以扩展,远程医疗使医生和病人在不同的地点建立交流。采用智能传感器技术,远程医疗可以帮助医院监视患者出院后健康状况,确保他们按照指示,避免再次入院;在临床检验部分。智能信息处理技术的应用可以体现在检测过程的自动化。可以将原有的人工操作与计量转变成智能化自动处理,其在各种生化检测中意义重大,往往以智能检测算法的形式引入到各种检测设备;在血液管理的部分,其智能化应用主要是血液库存的智能预警,以及依赖于智能GPS设备的自动跟踪信息应用的血液调度全程监控系统。

药品管理部分: 药品管理是依赖于数据库的数据管理信息系统,其智能化信息管理的应用主要体现在数据库的智能技术,如药品库存的智能预警,药品的智能推荐,药品的智能调价等。

经济管理部分:经济管理部分主要包括挂号、划价收费系统、住院费用管理系统,物资管理系统,设备管理子系统和财会及核算管理系统等部分。其智能化应用的主要方向是基于移动智能平台的支付和财务转账应用。如目前已经出现的门诊支付宝支付系统和微信支付系统等,其目的在于丰富支付形式,方便患者的就诊,提高诊疗效率。

综合管理和数据分析汇总部分:综合管理和数分析汇总部分包括病案管理系统、医疗统计系统、查询与分析系统等,其核心是医疗管理经营的综合行决策,其目标是为中高层管理者提供报告信息和决策支持。智能化信息管理应用体现在管理与统计的医院管理智能决策支持系统的建设和应用,属于定制性的应用开发,其设计包括基础数据库的建设、医疗管理方法库的建设、医疗管理与决策模型库的建设和医疗管理知识库的建设几个重要方面。

外部接口部分:外部接口侧重于与医院以外的信息系统的通信与对接,如与医疗保险系统对接、其同质或异质医院的信息系统对接和网络化医疗与咨询系统对接,其智能化应用体现在接口的智能化自动适应和外部用户的智能化权限管理和智能跟踪管理等。应用的形式往往以智能程序算法的形式引入医院信息系统的管理控制中心网关模块中。

4 结 语

随着管理步入信息化管理时代,医院管理信息系统在各级医院普遍实施,智能化的信息管理技术的涌现和应用也为医院信息系统带来进一步发展机遇,业已成为未来医院信息化管理的主要方向。研究重点关注于智能信息处理技术的软硬件发展现状,分析当前医院管理信息化中智能信息技术的应用现状。基于医院信息系统的总体结构,从五个方面对智能信息处理技术的应用方向和形式进行了深入的探讨和分析,研究目标明确,符合医院信息化管理的方向,对未来的进一步研究具有较强的指导和借鉴作用。

主要参考文献

[1]彭小燕,叶政德,王正军. 应用医院信息系统和Excel智能实现效期药品规范化管理 [J]. 中国药业, 2013(20):85-86.

人工智能辅助医疗决策范文第7篇

人工智能的起源和发展

顾名思义,人工智能就是人造的智能,它是一门通过计算过程力图理解和模仿智能行为的学科。其基本目标就是使机器表现出类似人类的判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动,使机器具有类似人类的智能行为,使机器思维能拥有人类的思考方式。

人工智能的思想最早可以追溯到法国哲学家笛卡尔的“有灵魂的机器”。到了20世纪30年代,英国数学家图灵提出了“自动化理论”,把研究会思维的机器和开发计算机的工作大大向前推进了一步,他也因此被称为“人工智能之父”。但是,“人工智能”这个概念真正诞生的标志是1956年夏季在美国达特玛斯大学召开的以“人工智能”为名的学术讨论会。随后的几十年中,人们从问题求解、逻辑推理、定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,并建立了一些具有不同程度人工智能的计算机系统。当然,人工智能的发展也不是一帆风顺的,曾一度因为计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过大而走入低谷。但是随着计算机硬件和软件的发展,计算机的运算能力以指数级增长,加之网络技术的蓬勃兴起使得目前的计算机已经具备了足够的条件来运行一些要求较高的人工智能软件。当然,人工智能的快速发展并不意味着它已经能达到人脑的水平,但人工智能的发展潜力还是巨大的。根据人工智能研究的主要目标,以下4个方面引领了人工智能的发展方向:第一,与生物技术、电子技术结合,研究生物电子体;第二,与脑科学、信息处理技术结合,研究人工大脑;第三,与网络技术、软件技术结合,研究智能软件;第四,与通讯技术、控制技术结合,研究家庭机器人。

有血有肉的生物电子体

在我们的印象中,人工智能通常是一个计算机软件,其实它也可能拥有一副有血有肉的身躯在现世界行走、奔跑甚至飞翔。生物电子体技术就是让人工智能拥有活动能力的一种全新技术。

生物电子体是生物细胞与电脑微芯片有效协作的共存体,可以实现部分或全部生物的智能。研制电子生物体主要有“植入法”和“提取法”两种方式:“植入法”就是把模拟生物体的电脑微芯片植入生物体,并与生物体形成协作共存体;“提取法”就是从生物体中提取出细胞组织与模拟生物体的微芯片结合为协作共存体。

研究生物电子体的目的,就是希望制备出一种协作共存体,从而对生物体进行有效控制,使其为人类服务。譬如当年美国“9・11”恐怖袭击后,美国政府紧急安排了10种机器人进行城市搜索和救援工作,但其中有6种机器人由于体积太大而不能运送到现场开展工作。试想一下,我们如果利用生物电子体有效控制爬行动物的行为,使其为人类服务,这可能比研究救援机器人花费的时间和资源更少一些。

在生物电子体领域,各国已相继开展了诸多研究。利用相对简单的“植入法”,日本东京大学率先研究了一种蟑螂控制技术,他们把蟑螂头上的触须和翅膀切除,插入电极、微处理器和红外传感器,通过遥控信号产生电刺激,使蟑螂能够沿着特定方向行进。美国纽约州立大学通过向老鼠体内植入微控制器,也成功实现了对老鼠的转弯、前进、爬树和跳跃等动作的人工制导。我国在电子生物体的研究上也有突破性进展,南京航空航天大学就研究了一种壁虎的人工控制技术,即把微电极植入壁虎体内,通过电刺激模拟神经控制其运动。而通过“提取法”制得的生物电子体就更复杂些,比较有代表性的是英国科学家推出的一个由老鼠的脑组织控制的机器人,名为“戈登”。在该项研究中,科研人员先从老鼠身上分离出神经细胞,放置在酶溶液中,让这些神经细胞彼此分离,然后再将这些神经细胞置于营养丰富的培养基中。该培养基与一个拥有60个电极的电子矩阵相连接,这个电子矩阵就是活体脑组织和机器部件的接合面。通过电子矩阵,“戈登”大脑发出电子脉冲,驱动机器人轮子,同时也能接受传感器基于外部环境刺激发出的脉冲。由于“戈登”的大脑是活的组织,因此必须装在温度特定的器具中。除了自身大脑外,“戈登”不受任何人为和电脑的控制。“戈登”具有一定的学习能力,比如撞到墙时,它就会从传感器得到电子刺激,再次遇到类似情况时,它就会记住。但是,如果没有外界刺激,“戈登”便会在数月内因大脑萎缩而死亡。尽管如此,“戈登”仍是实现提取活体脑组织和电子部件结合的研究新突破,也是电子生物体的重大突破。

擅长自学的人工大脑

开发人工大脑就是从信息处理切入,结合脑科学研究大脑对信息流的获取、存储、联想(提取)、回忆(反馈)等处理逻辑,以及脑神经细胞的工作原理来为大脑建模的过程。我们都知道,大脑不是计算机,不会亦步亦趋、按部就班地根据输入产生输出,大脑是个极其庞大的记忆系统,真正了解人类大脑,构建出大脑的记忆-预测系统模型才能制造真正的智能。人工大脑其实早在20世纪末就出现了,日本京都先进电讯研究所率先研制了一只机器猫,该机器猫的脑部主要采用了人工神经网络技术,包含约3770万个人造神经细胞,尽管数量与人脑的1000亿个脑细胞相比差之甚远,但其智能超过了昆虫,实现了人工大脑开发的第一步。紧接着,比利时便研制出了能让机器人拥有数百个行为能力的人工大脑。然而,这些人工大脑都是基于传统的计算机设计和制造思路开发的,与人脑的工作模式有着本质的区别,因此,改变传统的设计思路,是未来研究人工大脑的必经之路。

目前,走在研究人工大脑技术前沿的是几大信息技术巨头,其中IBM和谷歌的研究成果尤为突出。IBM的研究人员研制出了第一代神经突触计算机芯片,这种芯片可以模拟大脑的认知活动,完全不同于计算机设计与制造的传统理念。研究人员通过先进算法和硅电路,再现了发生于大脑中神经细胞和突触之间的现象。未来,IBM将进一步开发认知运算芯片,并将以混合信号、类比数位以及异步、平行、分布式、可重组的特制容错算法,来复制大脑的运算单元、神经元与突触之间的活动。

近年来,谷歌将大量资金、人力投入人工大脑研究中,并成功开发出了模拟人脑并具备自我学习功能的“谷歌虚拟大脑”。“谷歌虚拟大脑”是模拟人脑细胞之间的相互交流、影响而设计的,通过模拟人脑中相互连接、相互沟通、相互影响的“神经元”,由1000台计算机、16000个处理器、10亿个内部节点相连接,形成一个“神经网络”。当有数据被送达这个神经网络的时候,不同神经元之间的关系就会发生改变,这种关系的变化使得该系统对某些特定数据形成反应机制,从而让系统具备学习能力,并且能够在新输入的数据中找出与学到的概念相对应的部分,以达到识别的效果。这个有着自学功能的虚拟大脑系统在人工智能领域有着划时代意义,研究人员无需预先输入某一概念,它就可以自己决定关注数据的哪部分特征,注意哪些模式,从而自动从输入的大量数据中“领悟”这一概念,这与人脑的学习过程十分相似。

智能软件不止于围棋

所谓智能软件,是指能够产生人类智能行为的计算机软件。智能软件与传统软件最重要的区别就是:智能软件具有现场感应和环境适应的能力,还有表示、获取、存取和处理知识的能力,同时还能够采用人工智能的问题求解模式来获得结果。自从计算机诞生后,软件的设计开发便一直落后于硬件生产水平的发展,智能软件更是无从谈起。直到20世纪末,作为现实世界高水平的抽象――Agent软件系统的诞生,才大大加快了智能软件的开发。很快,基于Agent的实时道路交通导航系统模型、面向Agent的巡航导弹武器控制系统和多Agent敏捷调度系统相继被开发出来。目前,基于Agent的软件设计与开发已经成为人工智能学科的重要内容之一,而如何在软件设计与开发中更好地体现Agent的自治性、交互性、协作性以及可通信性等,又使智能软件的设计与开发成为了人工智能学科的新挑战。

如今,对于智能软件的开发正处于如火如荼的阶段。比如,击败李世石的“阿尔法围棋”便是一款智能软件,这款智能软件最重要的特征就是“深度学习”。深度学习的主要原理就是用一层神经网络把大量矩阵数字作为输入,通过非线性激活方法取权重,再产生另一个数据集合作为输出。这就意味着“阿尔法围棋”会在与围棋高手的较量中不断提高自己的棋力。“阿尔法围棋”的另一个重要特征就是它具有两个不同的神经网络大脑:一个是“监督学习的策略网络”,负责观察棋盘布局试图找到最佳的下一步,相当于“落子选择器”;另一个是“价值网络”,负责评估棋局的整体局面并预测双方胜负,从而辅助落子选择器,这个叫“棋局评估器”。在“两个大脑”的配合下,“阿尔法围棋”击败了围棋界顶级高手,这绝对是人工智能的大突破。此外,智能软件还在环保、商务和医疗等领域崭露头角。我们知道,现在空气污染备受关注,西门子中央研究院便开发了基于神经网络的空气污染预测软件。该软件利用了伦敦市遍布中心城区的约150 座监测站收集的包括湿度、太阳辐射、云层覆盖和温度等天气数据和一氧化碳、二氧化碳和氮氧化物等气体的排放测量数据,并将这些数据相关联。同时还将诸如工作日、周末、假期、展会和体育赛事等影响交通和污染物排放的活动编程到预测模型中,最终这款智能软件能够每小时预报伦敦市内150 个地点未来 3 天的空气污染程度,误差率不超过 10%,并且还可以推断出导致所预测空气污染的主要原因。另外,现在还出现了许多商务智能软件,主要就是通过分析销售额、客流量、库存、人员配置等所有和企业运营相关的数据来显示和预测市场波动、经济趋势等,并为决策者提供未来的规划和方案。例如,美国的某公司开发了一款餐厅绩效管理智能软件,这款软件可以计算出每个轮班期间的最佳人员编制。总之,智能软件的开发已经并将继续影响整个社会的方方面面。

家庭机器人走入百姓家

人工智能的最后一个研究方向就是研发家庭机器人。所谓机器人,就是指装有传感器和微处理器,并且拥有潜在的人工智能,能够在无人操作的情况下完成一些重复动作的设备。在过去的几十年中,机器人已经被广泛应用在工业生产和危险环境中,如今,机器人市场已经开始转向家庭。那种可以和人成为朋友,陪人聊天,也可以帮助人们看家、清洁地板、照顾孩子等做一系列家务活儿的家庭机器人引领了新的时尚。

人工智能辅助医疗决策范文第8篇

关键词:智能;决策系统;教学方法

随着信息技术的应用和普及,“智能化”成为信息化后续发展的重要内容之一。在决策领域,20世纪80年代,一种以计算机为工具、应用决策科学及有关学科的理论与方法、以人机交互方式辅助决策者决策的决策支持系统(DSS)应运而生。但是,DSS只能辅助和支持决策者决策,其贡献局限于对可选方案的评价,只能对有量化特性的问题使用数据模型和数值计算方法来辅助决策,不具有表示复杂决策过程的能力,因此,促使人们提出将DSS与专家系统(ES)相结合,以分别发挥DSS的数值分析和ES的符号处理优势,从而将定性分析和定量分析有机结合起来,以既能进行知识处理,又能有效地解决半结构化和非结构化问题,这就是智能决策支持系统(IDSS)的产生背景。

随着人工智能和智能技术的发展,IDSS在广泛的工程技术、经济、管理、医疗和农业科学等诸多领域,得到广泛应用。了解、掌握智能决策的基本知识和技术是计算机科学、智能科学类专业大学生的基本要求,因此,智能决策类课程应运而生,并逐渐发展成为计算机、自动化、管理科学与工程和智能科学技术等专业的专业课之一[1-4]。

在我校,智能决策系统课程作为计算机科学与技术、软件工程、网络工程和其他电子信息类专业的专业限选或选修课程。目前,该课程的教学内容存在如下问题:一是教学内容繁,二是技术更新快,三是涉及的专业知识深,对学生的理论基础知识(特别是数学知识、计算机技术)要求极高,教学难度大。因此,学生在学习过程中不得要领,抓不住课程的核心,只见树木、不见森林,从而影响学生们的学习效果。本文就是在这样背景下,提出并开展教学研究的。

1教学内容改革

智能决策系统是一门计算机科学、管理科学、人工智能和应用数学交叉的新兴专业课程,其学分通常为2~2.5学分,即32~40学时,其中包括0.5学分的实验课程(8学时)。因此,如何在有限学时中容纳下本课程教学内容,完成本课程的教学目标,就成为首要问题。

通过实践和教学改革,我校本课程的理论教学内容主要包括下列6个知识单元。

1) 决策理论概述。主要内容有决策的概念、类型、基础、流程和目标。理论课时数4学时。

2) 决策系统。主要内容有决策支持系统的概念、结构、功能、主要部件与设计要点。理论课时数控制在6学时。

3) 决策模型。主要内容有数据仓库、知识管理、数据挖掘、智能算法和数据处理。理论课时数控制在6学时。

4) 智能决策系统。主要内容有计算智能基础、专家系统的概念和结构、智能决策系统的概念和结构、智能决策系统的设计要点。理论课时数控制在8学时。

5) 群体决策系统。主要内容有协同计算概述,群体决策系统的概念、结构、功能、群体决策过程与建模和实现方法。理论课时数控制在6学时。

6)智能决策系统的发展。主要包括基于网络的决策系统技术和应用,网络技术与基于Agent的决策系统,智慧地球与智能化企业。理论课时数控制在2学时。

实践教学内容包括4个实验,学时总数为8学时,其教学内容设置见本文§3。

2教学方法改革

教学方法是为完成一定的教学目的、教学任务所采取的教学途径或教学程序,是以解决教学任务为目的、师生共同进行认识和实践的方法体系。其方法体系主要包含多个基本要素,比如教、学、信息传输载体(包含文字、图形、图像、肢体语言、表情、感知等)和教学辅助设备等。教学过程就是要充分利用具有信息优势、知识优势的教师,将信息、知识、技能、技巧,系统集成地传输给暂时处于低信息状态的学生。决定这个传输过程顺利进行的至关重要因素有:教师的积极性与责任心和学生的求知欲与基础知识及其结构。从教育学和心理学角度看,课程教学方法改革就是围绕这两个因素展开[5],限于篇幅,本文的讨论仅从如何调动学生的求知欲着手。

2.1探索式教学方法

经过多年教学实践,本文实践了“探索式教学法”,此法强调因材施教,在教学全过程创设教学环境、培养学生创新精神。所谓探索式教学方法是指在教学过程中,在教师的启发、诱导下,学生自主学习和合作讨论,以学习课程知识和科学问题为探索目标,以学生熟悉和能接触到生活原型为研究对象,为学生提供自由表达、质疑、探索、讨论问题的环境,学生通过个体、小组、团队等多种形式完成解难、释疑、尝试学习活动,将学生自己所学知识应用于解决实际问题的一种教学程序。探索式教学方法重视发展学生的创造性思维,培养自学能力,力图通过自我探索引导学生学会学习和初步掌握科学研究方法[6],培养学生的文献获取与加工能力、信息分析与加工利用能力、团队协作与沟通能力、语言表达与写作能力,和创新精神。为其终身学习和工作奠定良好基础。

尽管探索式教学法能够给教师的教学提供思想、理念指导,但是,针对不同教学对象和不同课程内容,其实际应用方法也会存在差异,这就是所谓的教无定法之说。本文以智能决策系统课程第1知识单元课外作业为例,尝试说明该法的具体应用方法,为保证该方法的实施效果,本文拟定了如下的教师操作流程:

1) 制定论文目标:培养学生综合利用参考文献和学会表达的能力。首先,要求学生学会获取、理解、过滤和分析信息;其次,要求学生掌握撰写科技论文的基本技巧;最后,要求学生在观众面前表达自己观点,学习说服听众、推销自己观点的技巧。

2) 论文基本要求:①围绕“关于信息技术对决策影响”的主题,学生自拟题目;②2周时间内,学生完成1 000字左右(2页A4幅面)的论文,其中内容需要包括摘要,关键词,问题或观点概述,目前发展状况,结论或结语;③制作演示幻灯片。

3) 提供信息查阅途径:通过网络教师自己已经掌握的文献资源和网络地址资源,指出查询方法和基本技巧。

4) 抽查式演讲:①使用幻灯片;②介绍主要内容;③结论;④点评、提问与回答。

5) 评价标准:①文档编制能力;②问题发现与分析能力;③表达与陈述能力。

在实施中,要防止出现如下情况:①题目太难或太容易,以免挫伤学生积极性;②提前告示和监督,防止学生偷懒或拷贝;③灵活掌握考评手段,鼓励创新,保护学生学习积极性。

2.2案例教学方法

案例教学法是在教师指导下,根据教学目标的要求,创设学生身临案例场境的教学氛围,使用案例来组织学生的学习、研究、实践等活动的教学方法。本课程利用该方法,加强了理论与实际的结合,为学生学习提供模仿案例,提高了学生对理论知识的理解和实践能力,培养学生综合运用所学知识解决实际问题的能力。案例教学法需要掌握好2个重要环节:

1) 案例选编。必须选择学生容易理解、常见的例子,案例选编必须围绕课程某个具体的教学目标,要适当加工,剔除与课程内容关联性小的内容和技术,降低难度,方便学生理解。同时,案例必须来自于实际,并且问题明确。

2) 案例讲解与分析。案例本身只是对实例的某些情况描述,表面上平铺直叙,但是,其中必须隐藏着多个问题,要引导学生积极思考、深入分析,以发现其中隐藏的问题,并找出问题产生的原因,提出解决方案。在思考和分析过程中,既要培养和开发学生智力,又要培养学生综合运用所学理论知识的能力。案例分析不能苛求解决问题的结果如何,而应该重点强调分析过程是否正确、方法是否恰当,案例讲解和分析的主要任务是培养学生发现问题、分析问题和逻辑思维等能力,通常解决问题的能力正是课程后续需要实施的教学目标。

本文在第4知识单元中,以6子棋计算机博弈系统为例,通过对6子棋计算机博弈平台的仿真实验,选择不同的博弈策略,比如不同的估值函数、不同的搜索策略等,获得不同的实验结果,实现人-机对战、机-机对战,让学生切实体会到机器智能的魔力及其智能系统的构造方法,有力地促进了学生对理论知识的理解,并激发了学生的学习兴趣。

3实验教学内容

3.1实验教学内容的设置

实验课是智能决策系统课程的重要环节,由于总课时有限,实验课时也就不多。但是,本校在专业课程中,仍然坚持设置了0.5学分的实验,以使学生能将理论知识与实践联系起来,使抽象的理论不再是深奥,提高学生灵活运用知识的能力。本课程实验学时为8学时,主要设置了表1中的3个实验。

3.2实验课的操作

为提高学生对课程理论知识的理解和应用设计能力,针对课程实验教学课时少和实验复杂特点,需要注意以下几点。

1) 简化平台、降低实验难度。实验教学过程重在是一个训练学生动手、动眼和动脑的过程,旨在培养学生好奇心和操作技能,以及观察问题、分析问题和解决问题能力。因此,在实验中,要尽量将实验平台简化,以将学生注意力集中于实验内容,保证实验效果。比如实验2,提供给学生智能交通灯控仿真平台,它实际上是一个软件模拟平台,能实现固定交管模式的全部功能,学生能通过标准接口建立自己设计的智能交通管理模式;又如实验3,以FIRA机器人足球5vs5比赛项目的仿真平台为实验平台,利用平台已设置的运球、传球、前进、后退、转动等命令,学生能通过这些命令建立足球机器人的路径规划和避障策略。

2) 科学分组、培养协作能力。由于实验3工作量比较大,需要多人协作完成,发挥集体智慧作用,因此,在实验3中,按照3~5人/组,实行组长负责制。组长监督、管理、协调本组实验过程,每个组员都有明确的任务,并对组长负责,组长对教师负责。实验3的课内实验设置4学时/2次,学时主要在课外完成实验3,历时1个月。

3) 设计算法、培养智能意识。引导学生,模仿人类智能,设计智能算法,实现简单的智能决策。由于课时有限,必须注意控制算法的简洁、实效,以使学生能在短时间内模拟实现简单的智能行为,着重引导学生分析业务行为,发现系统流程,构造智能算法,以此培养学生开发信息系统的智能意识。

4结语

智能决策系统是人工智能、计算机科学、自动控制科学交叉结合的一门新兴专业课程,对推动信息化向智能化方向发展具有重要意义。该课程作为在校主要面对电子信息、计算机专业学生,通过该课程学习,学生反映加深了对智能的理解,提高了对计算机技术应用的认识深度,培养了学生的智能化设计意识,激发了学生的求知欲望。本文的研究成果是源于智能决策系统课程,但是,对其他信息技术课程,也具有积极的借鉴意义。

参考文献:

[1] 钟义信. 智能科学技术导论[M]. 北京:北京邮电大学出版社,2006:1-38.

[2] 张彦铎,王海晖,刘昌辉. 地方工科院校智能科学建设的若干思考[J]. 计算机教育,2009(11):39-42.

[3] 韩力群. 智能科学与技术专业培养规范[R]. 北京:第二届全国智能科学与技术教育学术研讨会.2004.

[4] 王万森,钟义信,韩力群,等. 我国智能科学技术教育的现状与思考[J]. 计算机教育,2009(11):10-14.

[5] 杨德广,谢安邦. 高等教育学[M]. 北京:高等教育出版社,2009.6:1-50.

[6] 张伟峰. 本科高年级人工智能教学的几点思考[J]. 计算机教育,2009(11):139-141.

Research on Teaching Reform of Intelligent Decision System Courses

ZHANG Xiao-chuan, CHEN Feng

(School of Computer Science, Chongqing University of Technology, Chongqing 400054, China)