首页 > 文章中心 > 冶金工程概论

冶金工程概论

开篇:润墨网以专业的文秘视角,为您筛选了八篇冶金工程概论范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

冶金工程概论范文第1篇

【关键词】钛冶金;教学改革;钛铁矿;冶金工程

我国拥有世界闻名的超大型钒钛磁铁矿及多种金属共生矿床,其钒钛资源在国内外占有重要地位,现已探明的钒钛磁铁矿远景储量超过100亿吨,保有储量为67.3亿吨(工业储量25.8亿吨),其中含钛(TiO2)5.93亿吨,占全国钛储量的90.5%,列第一位[1]。我国航空、航天、航海、军事等重大工程都需要大量的优质钛基合金材料。此外,人们在医疗、体育、服装等方面对含钛材料的需要也日渐增大。因此,大力发展钛冶金是促进我国整体钛工业发展的必要前提,也是实现未来十三五相关规划目标的重要保证,开展“钛冶金”课程教学改革,对提高专业型人才培养质量有着重要的意义。

一、上好概论课,激发学生兴趣

概论是钛冶金的第一堂课,俗话说:“良好的开端是成功的一半”。上好绪论课在培养学生兴趣、引导学生学习等方面具有不可低估的作用。在概论课上,教师应多列举钛在日常生活中的应用,以及钛工业生产中遇到的科学问题,并运用钛冶金知识来解释。比如,给学生讲一些钛冶金在海绵钛生产中的应用,可以让学生对课程有个大致的了解。另外,概论课应重点介绍钛冶金的发展史,及其钛的工业化生产。由于这是学生第一次接触钛冶金的基本概念,所以给学生讲授基本概念时要注意教学技巧,尽量将问题简单化,重点讲授钛资源的种类、分布及物理化学性质。同时通过强调本课程在专业知识架构体系中的地位和作用,使学生产生强烈的求知欲望和浓厚的学习兴趣。

二、合理设置情景问题,引导学生自主思考

教师在课堂讲授时,并不是把教学内容一一向学生传授,而是将所要讲授的内容作为一些问题向学生提出,在课堂上采用一问一答的方式。这样不仅可以引起学生的注意,使学生集中精力听课,而且还能激发学生积极思维,引导学生积极主动地学习。教师在讲授教学内容之前,首先从应用实例中提出问题。例如,日常生活中那些东西跟钛有关,利用了其什么性质;我国钛资源的特点及分布情况;什么是钛铁矿的选择性还原等。引起学生注意,然后再切入主题,用所要讲授的理论对问题进行分析,分析其热力学与动力学过程。在分析问题的过程中可以采用启发的方法,逐步引导学生的思维。最后是解决问题,把工程上常用的解决这类问题的定量计算方法介绍给学生。在整个的教学过程中,师生间形成了互动,学生成为课堂教学的参与者,响应老师提出的问题,甚至对教学内容提出质疑,培养了学生探索创新的精神。并且,在课后还应预留思考题,辅助学生进一步加深对所学知识的理解。

三、教学内容与工程实际相结合,培养学生解决工程问题能力

教学必须服务于工程实际,因此教学培养应立足于工程、面向生产第一线的科技人才,这已成为教学改革的基本指导思想。对工科专业的学生来讲,在教学中培养学生的工程观点显得十分必要。对于大多数从事钛工业生产方向的学生来说,毕业后将到钛厂的氯化车间、电解车间、蒸馏车间、技术中心等部门从事技术产品的研制与开发工作。因此,在学习过程中,学生所碰到的实际工程问题是不同的。在钛冶金的教学过程中,有必要将教学内容与不同专业方向的工程实际相结合,以培养学生的工程观点。如:各章节知识引入其工程背景及工程应用,引导学生从实际问题出发,学习理解钛冶金的基本概念、基本理论和基本计算方法;为使学生更好地理解和掌握每章节的例题与实际工程相联系,并举行必要的讨论,以增强学生的工程意识,从钛冶金的角度去发现、分析和解决实际工程问题;同时注重所选教材中计算线图、参数取值表以及附录的应用。这样的教学内容既可以让学生对这两种方法的认识更深入,又可以使学生对其工程实用性有感性的认识,对培养学生的工程观点起了很好的促进作用。

四、教学手段的创新应用,使教学效果事半功倍

“钛冶金”课程是培养冶金工程专业学生工程素质和素养的重要组成部分,且该课程涉及到较多的物理化学知识和工程实例,授课教师很难用语言以及板书来描述清楚,不利于学生的理解。因此,如果能够将计算机多面体及软件与“钛冶金”教学手段有机结合,将会大大改善传统教学手段讲授“钛冶金”课程的弊端,笔者做了如下探索。

1.采用多媒体教学手段与实例教学相结合

多媒体[2]教学采用的课件是教师在上课前将需要让学生掌握的内容,利用多媒体软件制成图文并茂、声像皆俱,且包含动画、视频等多种形式的课件。教材上的知识经过这样处理后,传统呆板的文字由静变为动静结合。这样在授课过程中就能把沉闷、压抑的课堂气氛转变为活跃、充满生气的课堂气氛,学生也会自觉参与到课堂教学活动中,积极回答或提出问题,大大提高了课堂教学效果。多媒体教学可有效突破“钛冶金”教学难点,特别是对于一些复杂的工业生产设备,可以通过多媒体动画来直观的展现其生产工艺流程,其形象、生动而又清晰地讲授上述课程内容,使学生便于接受,易于理解。尽管多媒体教学手段有如上优势,但是制作再好的多媒体课件毕竟也是虚拟的,如果将多媒体教学和实例教学有机结合,优势将更为明显。比如:笔者在讲授钛铁矿的物理化学性质时,可以将原矿及科研实验过程中的一些实际样品展示给同学们,同时借助多媒体课件展示其还原过程形貌物相的变化过程,加深同学们对其物理化学性质的理解,能取得较好的效果。

2.计算热力学软件(FactSage)与课堂教学有机结合

FactSage[3]是化学热力学领域中世界上完全集成数据库最大的计算系统之一,具有下列显著优点:FactSage的热力学数据包括数千种纯物质数据库,数百种金属溶液、氧化物液相与固相溶液、锍、熔盐、水溶液等溶液数据库,并可以自动使用这些数据;计算功能强大,除多元多相平衡计算外,还可进行相图、优势区图、电位-pH图的计算与绘制,热力学优化、作图处理等。笔者在讲授相关章节的物理化学问题时,可借助FactSage软件来分析和讲解其还原过程。比如:在讲授钛铁矿的选择性还原时,通过FactSage软件的热力学计算,直观地向同学们展示配碳量、温度及添加剂等对其还原的影响;对于钛铁矿及高钛渣的物理性质、海绵钛的生产以及氯化法生产钛白过程中的化学反应,同样可以借助FactSage软件形象而直观地展示给同学们,加深了同学们对钛冶金过程的物理化学理解,激发了学生对“钛冶金”的认识及兴趣。

五、结束语

课堂教学仍然是本科教育培养学生的主要途径,其教学质量的好坏直接影响着培养学生的质量。作为“钛冶金”课程授课教师应努力以知识、能力和素质等方面为切入点,积极转变教学思想,探索有效的教学方式和方法,充分发挥学生的积极性与主动性,提高教学质量和效率。同时培养学生的创新能力和解决实际工程问题的能力,为培养高素质的社会主义事业建设人才不断努力。

参考文献:

[1]莫畏,邓国珠,罗方.铁冶金[M].北京:冶金工业出版社,1998.

[2]宋桌斐,李运刚,李俊国.多媒体教学在钢铁冶金教学中的应用.教育教学论坛,2014,13(3):255 256.

冶金工程概论范文第2篇

关键词: 应用型本科 专业基础课 教学改革

21世纪的高等教育面临前所未有的发展机遇,人才的培养模式发生深刻变化,更加注意素质教育,特别是学生的自主学习能力和创新能力的培养,但“万丈高楼平地起”,要培养学生的综合素质,离不开专业基础课的牢固掌握和熟练应用。大学工科课程设置大体上可分为基础课、专业基础课与专业课三类。专业基础课是在学生掌握一定文化知识的基础上,根据专业需要,把有关知识向深度拓展,从而为学习专业课和从事专业工作提供理论和技术准备。从专业基础课的性质看,专业基础课大多理论性强、概念多、分析层次多。通过对企业对人才需求的调查表明:专业基础扎实、实践能力强、有创新思维的专业人才是企业渴求的。而具有扎实的专业基础是实践能力和创新能力的前提。

一、专业基础课教学现状

为加强学生专业基础,国内部分院校根据本科专业基础课“四多一广三性强”[1]的特点,提出“分层教学模式”。为加强学生的专业基础,麻省理工提出“本科生科研计划”,加强学生创新能力,并加强学生的实践环节。国内高校,如东北大学、重庆科技学院等,亦在专业基础课程教学中,紧密结合实践教学,特别对专业基础课实验教学,提出“三四模式”,为加强学生的专业基础,有些高校提出“大类化专业”概念,教学内容模块化。

二、应用型本科人才培养目标的定位

应用本科具有鲜明的技术应用性特征。主要培养培养适应生产一线需要的工程技术管理者和组织者。培养适应专业行业技术和生产发展需要,从事专业生产技术管理、科学研究、技术开发、工艺及设备设计等工作的高级应用型专门人才。根据上述人才培养目标,制订相应的培养计划,要求学生能够深入学习专业的基础理论与技术及有关设备的设计方法,实验研究、环境保护及资源综合利用的基本理论和基本知识,受到现代工程师的基本训练(其中包括工艺制定、工程设计、测试技能和科学研究的基本训练),具有从事相关工艺及设备设计、生产组织管理的潜能及相关专业开拓能力。

三、应用型本科专业基础课教学存在的主要问题

依照1998年第一次全国普通高校提出教学改革的基本思路,各高校的部分专业基础课和专业课的课时均有不同幅度的减少。依据人才学观点,人的知识结构是否合理,在应用知识领域是否获得成果,主要看他是否具有丰富的理论。目前,应用型本科专业基础课教学主要存在以下问题。

1.专业基础课和专业课之间学科知识渗透和迁移不够。比如:冶金工程的主要专业基础课程(包括物理化学、冶金原理、冶金传输原理、金属学与热处理)教学内容大多照搬一般本科模式,教材选用研究型大学的,不能适应现代冶金生产及应用型本科人才培养的要求。

2.现在的应用型教学,大多数学生在生产操作中,基本都知道该怎么操作,而不知道为什么这样操作,给企业产品创新和工艺成本优化带来不便。

3.忽略了当代学生的一些心理特点。因此,对应用型专业,要想在国内有一定竞争力,对专业基础课的教学目前仍是亟待关注的问题。

四、加强专业基础课教学理念的探讨

本文针对当前基础课程教育存在的问题,为企业培养合格人才,使企业在产品成本和创新之争立于不败之地,从以下几个方面探讨。

1.明确专业基础课的地位。

专业基础课是后续专业课学习的基础,是培养学生可持续发展能力的重要途径。专业基础课教学不同于专业课教学,也有别于公共基础课教学,它有很强的专业性和实践性,在公共基础课和专业课之间起到了桥梁和纽带作用。专业基础课应当完成公共基础课应尽而未尽的职责;使学生具有适时“转岗”能力是专业基础课应当发挥的新作用。

2.优化和更新应用型专业基础课的教学内容。

根据不同学科和专业要求,在教学中进行有思考的组合,随时把最新的相关内容补充到教学中;同时,淘汰一些陈旧和重复的内容;不定时修改教学内容。

从学科的发展讲,专业基础知识与专业知识之间,始终存在一个专业知识不断基础化的过程。当专业知识成熟、普及之后,就有基础化的可能,因此,对于基础知识而言,无论是概论性的,还是史论性的,对于日益庞大的知识体系,必须进行条理化,要接受那些普及化的专业知识,将其容纳入基础知识之中,否则,难免会造成专业知识与基础知识之间的脱节。

3.强调专业基础课之间的相互渗透,明确其与先行和后继课程的关系。

加强专业基础课实用教学法的研究有利于学科间知识的相互渗透与融合;有利于提高专业基础课和专业课教学的实效性和实用性;有利于缩短培养学生的时间和空间;有利于培养高技能适用性人才。

4.加强专业基础理论和实践的紧密结合。

工程实践与实验教学始终是培养应用型人才的一个重要环节。对实践教学体系可采取“点、线、面、体”多层次训练方案,形成由单一到综合、相对独立到科学融合的实践教学体系,培养学生的实践能力和创新精神。既可加深学生对理论知识的掌握,又可以加强学生分析问题、解决问题等综合能力的培养。

5.从专业课的角度上专业基础课。

专业基础课教学历来是本科教学的难点,其知识结构层次强,难于理解,内容又枯燥乏味,缺乏趣味性,但又是学生必须掌握的专业基础知识。其教学最令教师头疼,老师往往讲得口干舌燥,学生却听得懵懵懂懂,收不到理想的教学效果。如果站在专业课的角度学习专业基础课,则更有利激发学生兴趣和对专业基础课的掌握。

6.提高教师素质,强化教师自,加强“双师型”教师队伍的建设。

许多教育专家认为学术水平高不一定教学水平高,但真正在教学上优秀的教师一定是在学科领域有造诣的、有学术见解的教师,正所谓站得高,看得远。所以我们必须不断提高自身素质,扩大知识面,才能不断提高教学水平。提高教师的自,更有利发掘教师的潜能。加强“双师型”教师队伍建设则利于应用型本科的发展。

7.重塑学生吃苦耐劳,加强心理素质培养,确定健康向上的理念。

独立能力差,依赖性强,缺乏吃苦耐劳的精神,缺少接受生活的挑战和考验,这对当今大学生心理、思想的成熟非常不利。而专业基础课是在公共基础课之后,难度可想而知,由此激发学生吃苦耐劳,确定健康向上的理念则是必要的。

五、加强专业基础课程教学实施方案

1.充分发挥新时代学生的特性,激发学生对专业基础课程的学习兴趣。

(1)针对当代学生的弱点,加强人生观、价值观教育,加强艰苦奋斗教育,充分发挥学生的主动性和创造性,敢于迎接任何挑战和选择生活道路,正视学习中的种种困难,确立健康向上的生活理念,克服自卑、依赖心理。

(2)面对毕业生就业难的问题,希望在大学几年里能够充实自己的实力,提高自身综合素质,从而参与社会竞争。

(3)学习环境对学生的健康成长非常重要,应从实际出发,为学生创造一个良好的学习环境,真正做到“教书育人,环境育人”。

2.优化和更新专业基础课内容,加强专业基础课老师不定期讨论、交流,实现各专业基础课程的相互渗透。

(1)优化教学内容,以达到减时增效。比如冶金专业物理化学中的热力学,动力学,在冶金原理中就要精简;冶金原理中的相图,和金属学中的相图进行优化。

(2)调整一些选修课进入专业基础课之列,比如热工仪表和自动检测技术。

(3)专业基础课老师不定期讨论、交流,实现各专业基础课相互渗透。比如铁水预脱硫,用何种脱硫剂是冶金原理研究的内容,但如何把脱硫剂加入铁液中,则属于传输原理要研究的范畴。

3.加强专业基础课中的实践教学,引导学生用所学专业知识解决现场生产问题[2]。

(1)开展教学参观活动的尝试。由于课程性质的不同及学生缺乏专业生产的知识和经验,课程抽象。通过教学参观,利于学生对所学专业的熟悉;更能体会到工作的艰辛,认识到知识的重要性和科学技术的价值。

(2)融合专业基础课实验,结合所学专业基础知识和现有设备,最后增加一项有学生自主设计实验,评分可采取弹性标准,培养创新能力,激发学生潜能。

(3)加强生产实践环节,增设学生自主提问题一项,然后尝试用所学专业知识解决,以提高学生用专业知识思考和解决现场问题的应变能力。

4.加强教师自身素质,提高教师自,实施启发性和创新性教学。

(1)加强教师自身素质,教学中,要了解先行课程的基本内容,避免重复和衔接不上,明确与后继课程的关系,突出课程自身要求。教学过程中提高语言魅力;采用嵌入式双语教学。要培养学生从复杂现象中找到规律,培养学生洞察力。专业基础课教师大多是青年教师,其言行举止对学生有很大影响。

(2)提高教师自,实施启发性和创新性教学,根据课程需要,安排和营造启发性教学,结合学生讨论,助讲,答辩及学生反串教师的角色,采用多元考试模式,加深学生对专业基础课程的理解,亦可激发学生的其他潜能。

5.利用网络平台,提高学生自主学习能力。

伴随网络平台的蓬勃发展,利用网络平台对专业基础知识的了解和更新,则更为重要,除了传统的手工检索和计算机检索外,学生还要加强对专业网络论坛、群体及贴吧、问问等网络空间的应用,提高文献检索和信息搜集的速度和效率,强化自主学习能力。

六、结语

专业基础课是应用型本科课程体系的重要组成部分。起到承上启下的作用,加强专业基础课教学,明确其地位,能更有利于整体专业教育,能更加系统地学习专业知识,有利于加强应用能力培养,保证大学与工厂实现人才输出“无缝对接”。

参考文献:

[1]张文慧,龚毅.加强专业基础课教学改革,培养学生实践创新能力[J].郑州轻工业学院机电工程学院,2010(5).

冶金工程概论范文第3篇

关键词:科学分类 历史沿革 分类标准

Abstract:The implications, meanings and history of the classification of the Sciences minutely are discussed. Representative examples of the classification of the Sciences at ancient and modern and in Chinese and foreign are enumerated. On the basis of synthesizing advantages of various classifications, the new views to the classification of the sciences are brought up.

Key Word:the classification of the sciences, history of the classification of the Sciences, Standards of the classification of the Sciences

科学分类就是依据某些带有客观性的根据和主观性的原则,划分科学的各个分支学科,确定这些学科的研究对象、内容和辖域,明确它们在科学中的位置和地位,揭示它们之间错综复杂的联系,从而达到宏观把握科学的总体结构、微观领悟学科的前后关联之目的。科学分类作为科学王国的地图,无论在理论上还是在实践上,都具有不容忽视和不可小视的意义。在理论上,它对于认识科学的总体画面、洞悉科学的构成框架、明晰科学内在关联、把握科学的研究范围、预测科学发展的趋势,估价技术的原创基点,是绝对不可或缺的。在实践上,它对于科学部门的设立、科学规划的编制、科学政策的制订、科学资源的配置、科学研究的管理、科学信息的收集、科学教育的实施、科学传播的开展,均具有举足轻重的作用。科学分类无论对于从事科学研究的科学家,还是对于想要学习和熟悉科学的非科学家,都是大有裨益的。任鸿隽在谈到科学分类时说:科学知识的进化,是把知识来做纵的解剖;科学知识的分类,是把知识来做横的解剖。科学分类“不但使科学的地位愈加明了,并且科学的范围,也可以大概呈露了。”

要恰当地进行科学分类,并不是唾手可得的事情。皮尔逊揭示出一个原因是,任何个别科学家都不可能真正地衡量每一个孤立的科学分支的重要性,也无法洞察它与整个人类知识的关系。可是,只有对彼此的领域具有鉴赏力、对他自己的学问分支具有透彻知识的科学家群体,才能达到恰当的分类。 在现时代,这种知识日益分化和个体科学家无力把握整个科学概貌的状况,变得更加严峻了。薛定谔对此洞若观火:

一百多年来,知识的各种分支在广度和深度上的扩展使我们陷入了一种奇异的两难境地。我们清楚地感到,一方面我们现在还只是刚刚开始在获得某些可靠的资料,试图把所有已知的知识综合成为一个统一的整体;可是,另一方面,一个人想要驾御一个狭小的专门领域再多一点的知识,也已经是几乎不可能的了。

另一个原因是,科学分类必须在科学发展得比较发达之时才能方便地进行,这时各个知识领域已经相对成熟,各个知识部门已经开始自然分化,并形成群科林立的态势,于是观察和分析它们之间的区别与联系,就显得比较容易一些。在此之前,在科学的孕育时期和童年时期,知识的数量和类别严重匮乏,要进行恰当的科学分类,的确是一件相当困难的事情。

尽管如此,人类的智力好奇心和实际的需要,还是诱使或催促人们对科学分类乐此不疲,从古代一直延续到今天。在叙述科学分类的历史沿革时,人们大都按照历史纪年的大框架古代、中世纪、近代、现代来划分;也有按分类特征来划分历史阶段的:第一阶段是圆心式的神学之知识分类(亚里士多德、圣维克托隐修院的于格),第二阶段是树枝式的哲学之知识分类(培根、笛卡儿、沃尔夫),第三阶段是阶梯式的科学之知识分类(柯尔律治、边沁、惠威尔、孔德、斯宾塞、皮尔逊、汤姆森、克罗伯),第四阶段是文化学之知识分类(冯特、文德尔班、李凯尔特、克罗齐)。 当然,也有以有代表性人物的科学分类思想和图式来铺陈的。在我们下面的铺叙中,各种因素可能兼而有之。

早在古希腊时代,柏拉图的认识论就表明有三种知识,即感官知觉、意见和真正的知识或广义的科学。感官知觉不能揭示事物的真像,只能显露现象。意见有真伪,仅仅是意见,毫无价值。它不是知识,而是建立在信念和感情之上的。它不知道自己是真是假,找不出为自己辩解的理由。真正的知识以理性为基础,这种知识知道自己是知识,即能确证自己为真的知识。我们必须从感官知觉和意见前进,达到真正的知识。柏拉图创造了一个包罗万象的哲学体系。虽然他没有明显地把哲学分成逻辑学、形而上学(物理学)和伦理学(实用哲学,包括政治学),但是在著作中运用了这种划分法。亚里士多德认为,真正的知识不在于仅仅熟悉事实,而且在于认识它们的理由、原因或根据,认识它们必然如此的情况。哲学或广义的科学,包括一切经过理性思考的知识,其中有数学和各专门科学。研究事物根本的或初始的原因的科学或哲学,他称之为第一哲学,我们叫形而上学。形而上学研究本然的存在,各种科学研究存在的某些部分或方面。例如物理学研究存在中的物质和运动。其他部分的科学和哲学取名为第二哲学。他还进而区分理论科学(数学、物理学和形而上学)、应用科学(伦理学和政治学)以及创制的科学或技艺(有关机械生产和艺术创作的知识)。他又把这些科学分成物理学(物理学、天文学和生物学等)、形而上学和应用哲学,如果加上逻辑学,那就是柏拉图的一般分类:逻辑学、形而上学和伦理学。

自亚里士多德之后,特别是在中世纪的千余年间,宗教一统天下,其间科学分类标准基本上没有什么变化。中世纪的经院哲学家把知识分为自然知识和启示知识两种,哲学属于自然知识,神学属于启示知识,与亚里士多德没有什么两样。在1141年,法国圣维克托隐修院的于格(Hugo of St. Victor)的分类才在原有的基础上有诸多细节的增加。例如在应用的一项之下列举了工艺和逻辑:工艺包括纺织、缝纫、建造、航运、农业、渔猎、医药、游艺等,逻辑包括演说、文法、方言、修辞。不过,于格仍然摆脱不了亚里士多德的主张,依旧以神学为归宿。 罗吉尔培根虽然没有系统地发表过科学分类的见解,但是他在《大著作》中列举了五种重要的学问:语言学、数学、透视学或光学、实验科学、道德哲学。这位身处中世纪后期的思想先行者所列举的学问,已经超出当时的学术范围了。

弗兰西斯培根是名副其实的近代科学思想的先驱,他在《论学术的尊严和进展》、《智力球描述》中,对科学进行了分类。按照培根的观点,人的学术起源于理解力的三种官能——记忆、想像和理性。他以此为基础开始了他对知识的分析和分类。记忆对应历史,而历史包括公民史和自然史,二者之下进而各有细分。想像对应诗,诗分为叙事的或史诗的、戏剧的、比喻的。理性对应哲学或科学,其下一分为二:自然哲学和神性(启示)。在自然哲学名目之下有人、自然和上帝三项。第一项人之下又细分为公民哲学(权利的标准)、人性哲学(人类学)。第二项自然之下又细分为思辨的自然和操作的自然,前者包括物理学(质料和第二因)和形而上学(形式和第一因),后者包括力学和纯化的魔法。第三项上帝包括自然神学、天使和精灵的本性。培根的分类没有在知识的素材和知识本身之间、实在的东西和观念的东西之间、或在现象的世界和非实在的形而上学思维的产物之间划出明确的区分,而且学科用语中有中世纪神学的残迹和经院哲学的弊病,因而从近代科学的立场来看是有缺陷的。但是,培根指出:“知识的划分不像以一个角度相交的几条线,而更像在一个树干上交叉的树枝。”这个观念对培根和斯宾塞来说是共同的,即科学源于一个根,它与孔德的观点针锋相对,孔德是按系列或阶梯排列科学的。

在17世纪的近代科学革命以及18世纪的法国启蒙运动时期,牛顿力学已经牢固确立,并衍生出刚体力学、流体力学、解析力学、天体力学等力学分支,热、电、磁、光等现象的研究也初露端倪,动物学、植物学、生理学的发展方兴未艾。在这种情势下,

一些科学分类的方案陆续出台:神学君临一切学科的格局已被打破,神学色彩逐渐淡出人们的视野;哲学包容全部学科的传统观念也日渐式微乃至悄悄退隐;经验性的和应用性的学科纷纷出现在科学分类表中。

例如,笛卡儿把一切精密的知识都包括在他的哲学体系之中。在他看来,哲学有三大部门:一是无形世界的形而上学,二是有形世界的物理学,三是知识应用的应用学。伽桑狄把科学分为逻辑学、物理学和伦理学。霍布斯试图把主观原理和客观原理结合起来进行分类。他认为数学方法是普遍应用的方法,把几何学摆在演绎科学的首位,把物理学摆在归纳科学的首位。他拟订了科学的配置原理:从抽象到具体,从事物的量的确定性到它的质的确定性,又引向量的确定性。洛克把科学分为物理学、实践和逻辑学。拉美特利做了形而上学的划分,他把自然界分为三界(矿物界、植物界、动物界),并有与之对应的科学。 法国百科全书派(狄德罗、达朗伯)接受了弗兰西斯培根的记忆、想像和理性三分原则,但是在细节上有所丰富。比如,理性部分冠以哲学,哲学之下分为一般形而上学(本体论)、神的知识、人的知识、自然的知识四个门类。其中,自然的知识下辖物体的形而上学、数学和物理学(自然哲学)。数学下辖纯粹数学、应用数学和物理数学:纯粹数学下辖算术学、几何学;应用数学下辖力学、几何天文学;物理数学下辖光学、声学、气体力学。物理学下辖广义物理学和狭义物理学,其下又各有所辖。 沃尔夫(C. Wolff)将知识分为历史的(经验科学)、哲学的(理性科学)和数学的(形式的)三种:历史叙述正确的事实,哲学研究事物的原因,数学规定事物的数量关系。其中,哲学又细分为狭义哲学(自然神学、心理学、物理学),规范科学(伦理学、心理应用哲学、物理应用哲学)、本体论(决定各物共同性质的科学)。

在19世纪这个科学世纪,超越经典力学的热学、电磁学、光学等经典物理学分支已经成熟,并且出现了数学化和形式化的热力学、统计物理学和电动力学,化学、生物学、地质学、心理学等学科也取得了长足的发展,弗兰西斯培根等人的分类越来越不适应科学的现状,于是新的真正的科学分类纷纷登台亮相。英国诗人和思想家柯尔律治(S. T. Coleridge)把科学分为纯粹科学、混合科学、应用科学、复杂科学四大部门:纯粹科学属于形式的有文法学、逻辑学、修辞学、数学,属于实在的有形而上学、伦理学、神学;混合科学包括机械学、水力学、气压学、天文学;应用科学包括实验哲学、热学、电磁学、光学、化学、音乐学、气象学、测量学、美术学;复杂科学包括历史、地理、辞典学等。这个分类虽然忽视了科学的客观标准,显得有些杂乱无章,但是它却给后来的分类开辟了一条门径。 英国哲学家边沁和法国科学家安培把科学分为物质科学和精神科学两大类。在他们的物质科学里,列入了天文学、地质学、物理学、化学、生物学等;在精神科学里,列入了历史学、语言学、法律学、经济学等。这种分类法,有两个值得注意之点:一是把科学研究的对象作为分类的标准,二是把科学的范围推广到历史、语言等学问上去了。 惠威尔汲取了培根的心理官能标准和笛卡儿的数学乃科学之基础的思想营养,将科学分为七种,从前一种进至后一种,必须在前者再加上物质的或心理的能力,才能成为新的科学。例如,数学是研究时间和空间数量的,数学加上势力、运动则有机械学,机械学加上化合力则有化学,化学加上生命则有生物学,生物学加上感情、意志则有心理学,心理学加上历史的原因则有历史学,历史学加上时间、空间则有神学。这种分类的特点是,注意到各学科之间的相互关系,富有独创性,尽管条理还不甚明晰。

也许从孔德开始,科学分类已经开始具有某种现代气息。孔德认为,一切科学的基础是经验,所有的神学和形而上学假设对科学毫无贡献,必须予以抛弃,而通向真理的惟一道路是科学。在他看来,有六种基础科学,即数学、天文学、物理学、化学、生物学、社会学,在第七种或最后的道德科学中达到顶点。在这个科学“等级制度”或阶梯中,后一门科学依次从属于前一门。这些科学实际存在相互依赖性,以致要清楚地理解一门科学,就必然需要先前的其他几门科学的研究。孔德的等级制度分类明显地和他的实证主义的政治体系相符,仅有纯粹空洞的图式。

斯宾塞拒绝实证论的等级制度的阶梯排列,而重返培根从共同的根展开的树枝状的科学概念。他把知识分为两个主枝:处理现象在其下为我们所知的形式的科学和处理现象的题材的科学,即抽象科学和具体科学。抽象科学囊括逻辑和数学,或处理我们知觉事物的模式的科学。具体科学处理我们在这些模式下知觉的感觉印象群和存储的感官印记。他进而把处理现象本身的具体科学又细分为抽象具体科学和具体科学:前者“在其要素上”处理现象,后者 “在其全体上”处理现象。这导致他把天文学与生物学和社会学结合起来,而不是与它的亲族力学和物理学相关联。这样的分类可能适合形式逻辑的词语区分,但是并不适合于指导读者阅读或使专家受到启发。他的第三群具体科学再次按照所谓的“力的重新分配”原理加以细分。可是,这个原理在物理学中没有真实的基础,因此不能形成分类具体科学的起点。对于斯宾塞的分类,皮尔逊的总评价是:

该结果充其量将是有启发性的,但是作为一个完备的和一致的体系,它必定或多或少是一个失败。但是,从斯宾塞的分类中可以学到许多东西,因为他把培根的“树”系统与孔德从知识领域排除神学和形而上学的做法结合起来。尤其是在抽象科学和具体科学的原始划分中,它给我们提供了出色的起点。

德国生理学家和心理学家冯特把科学分为形式科学和实在科学,数学属于前者,其他科学属于后者。根据研究对象的不同,实在科学又被分为自然科学和精神科学。自然科学是把经验现象的内容从认识主体中分离出来,作为间接性现象来研究的科学;精神科学则把认识主体的经验作为直接的研究对象。这两大类科学又根据各自学问的性质分为现象性、发生性、系统性:所谓现象性是研究并说明自然以及精神现象的作用,所谓系统性是将全部显现的自然现象和人为诸现象加以系统性记载整理,所谓发生性介于现象和系统之间,是研究自然以及精神性成果的发展。自然科学的现象性中包括物理学、化学、生物学,发生性中包括地质学、生物发生学,系统性中包括记录天文学、地理学、矿物学、系统动物学。精神科学的现象性中包括心理学、社会学,发生性中包括历史学,系统性中包括法律学、经济学。 李凯尔特不同意精神科学的提法,而用文化科学取而代之:“根据文化对象的特殊意义把科学划分为自然科学和文化科学,这可以使专门研究者由此分为两个集团的那种兴趣的对立得以最明显地标示出来。因此,在我看来,自然科学和文化科学的区分适合于代替通常的自然科学和精神科学的划分。”

皮尔逊对科学分类素有思考和研究,并在其经典科学哲学名著《科学的规范》最后一章“科学的分类”中专门做了论述。他考察了历史上三位著名哲学家弗兰西斯培根、孔德和斯宾塞的分类并附带加以评论,同时阐述了自己的分类图式。皮尔逊汲取了培根的树枝状图式、孔德的科学相互依存的长处,采纳了斯宾塞的抽象科学和具体科学的区分,在前人的基础上提出了自己的科学分类体系。在皮尔逊看来,科学不仅仅是事实的范畴,而且是用来简洁概述我们对于那些事实的经验的概念模式。因此,要求进入实际分类的科学分支,实际上仅仅是处于形成中的科学,他们与其说符合完备的概念模型,还不如说符合分类范畴。于是,它们的终极范畴不能是绝对固定的。在或多或少还原为完备的概念模型的那些物理科学和依然处在分类范畴状态的那些物理科学之间的区分,可用所谓的精密科学(前者)和描述科学(后者)来表达。由此可见,无论何时我们开始细分科学的主要分支,边界仅仅是实际的而非逻辑的。在细分中被分类的细目与这些边界交叉和再交叉;虽然在下面的分类中大多数科学仅进入一个位置,但是它们往往同时属于两个或更多的部门。所有分类图式都具有经验的和尝试的特征,因为科学是连续成长的。

皮尔逊这位以感觉印象为基石的感觉论者,按照知觉(感觉印象)在科学中区分了两个群。前一个群处理知觉官能在其下辨别客体的模式的概念等价物,这是抽象科学。后一个群处理我们用来描述知觉内容的概念,这是具体科学。具体科学依据处理无机现象还是有机现象,又分为物理科学和生物科学。于是,他把整个科学划分为三大块:研究知觉模式的抽象科学,研究无机现象的知觉内容的物理科学,研究有机现象的知觉内容的生物科学。

在抽象科学中,皮尔逊又按照分辨的一般关系与空间和时间独有的关系一分为二。分辨的一般关系有定性的和定量的关系之分:定性的关系包括逻辑学、拼字学(orthology即发明术语),定量的关系包括分立的量即算术、代数、测量、误差、概率、统计理论等和量的变化即函数理论、微分学、积分学等。空间和时间独有的关系又分为空间用定域分辨和时间用序列分辨:前者又包括定性的(位置)即描述几何学,定量的(大小)即度量几何学、三角学、测量法等;后者亦包括定性的即观察和描述理论(与逻辑无关),定量的即胁变理论(大小和形状的变化)和运动学(位置的变化)。不难看出,

抽象科学囊括了通常归类为逻辑和纯粹数学的一切。在这些分支中,我们处理分辨的概念模式;由于所形成的概念一般而言是严格定义的,并且摆脱了知觉内容的无限复杂性,因此我们能够以极大的精确性推理,以致这些科学的结果对于所有落在它们的定义和公理之下的东西都是绝对有效的。为此缘故,抽象科学的分支往往被说成是精密科学。

物理科学二分为已还原为理想运动的精密的物理科学和还未还原为理想运动的概要的物理科学。精密的物理科学下列四大部门:团块物理学包括力学、行星理论、月球理论等;分子物理学包括弹性、塑性、内聚性、声音、晶体学、地球外形、流体力学、空气动力学、潮汐理论、气体运动论等;原子物理学包括理论化学、光谱分析、太阳物理学和恒星物理学等;以太物理学包括与分子无关的辐射理论(光、热、电磁波)和与分子有关的光、热、电磁(与分子结构有关)——例如弥散、吸收、传输、传导等。概要的物理科学有星云理论、行星体系演化、地球的无机演化、地质学、地理学(有时称物理地理学)、气象学、矿物学、化学等。

生物科学是概要的而非精密的,它按照空间(定域)和时间(成长或变化)一分为二。在空间方面,有生命形式的地理分布(生物分布学)、习性与地点和气候的关系(生态学)、自然史(在古老的意义上)。在时间方面,亦一分为二:非再发生状态的历史学、发生状态的生物学有植物的生物学即植物学和动物的生物学即动物学。在历史学中,再分为一般的物种进化和特殊的物种进化;前者包括生命起源(种系发生、古生物学等),物种起源,自然选择和性选择理论等;后者包括体格(头盖学、人类学等),心理官能(语言史、语言学、哲学史、科学史、文学史、艺术史等),社会建制(考古学、民俗学、习惯史、婚姻史、所有权史、宗教史、国家史、法律史等)。在生物学中,一有描述各类生命的形式和结构的形态学、组织构造学、解剖学等;二有专门处理成长和繁殖的胚胎学、性理论、遗传理论等;三有涉及生命的功能和行为的学科:从物理学的角度处理功能和行为的生理学,从心理的角度处理功能和行为的心理学。在心理学中,广义心理学包括本能理论、意识的起源等,狭义的人的心理学包括属于个体的心灵研究、思维心理学等,属于群体的社会学即道德、政治、政治经济学、法理学等。

颇有新意的是,皮尔逊还指出,他的科学三大块分类并非彼此互不沟通。正如应用数学把抽象科学与具体科学联系起来一样,生物物理学——处理无机现象的定律或物理学对于有机形式发展的应用——也把物理科学和生物科学联系起来。谈到自己的分类图式,皮尔逊“自称没有逻辑的精密性,而仅仅是尝试表明各种科学分支如何与基本的科学概念关联起来的粗略轮廓”,并表明他“在培根、孔德和斯宾塞失败的地方必然不可能成功”。然而,由于皮尔逊是位学识渊博的百科全书式的的哲人科学家 ,最有能力从事科学分类工作,因此他的工作在当时科学发展的状况下还是有现实意义的,至今仍有恒久的学术价值和一定的启发意义。

皮尔逊的科学分类是于1891年在伦敦格雷欣学院所做的讲演中和盘托出的,次年在《科学的规范》一书中发表。这是19世纪末的事。进入20世纪不久,汤姆森(J. A. Thomson)和奥斯特瓦尔德也就科学分类提出了自己的方案。汤姆森的科学分类大体沿用了皮尔逊的分类思想,但是却凸显了各学科的地位和关系。他的抽象科学包括形而上学、逻辑学、统计学、数学。他的具体科学则包括普通科学、特殊科学、联合科学和应用科学。在普通科学中,又细分为社会学、心理学、生物学、物理学和化学。在特殊科学中,对应于社会学的有人类学、各种社会组织之研究等;对应于心理学的有美学、语言学、心理-物理学等;对应于生物学的有动物学、植物学、原生学等;对应于物理学的有天文学、测地学、气象学等;对应于化学的有光谱学、立体化学、矿物学等。在联合科学中,有人类的历史、人种学、生物通史、地球通史、地质学、地理学、海洋学、太阳系通史等。在应用科学中,对应于社会学的有政治学、公民学、经济学等;对应于心理学的有逻辑学、教育学等;对应于生物学的有优生学、医学、林学等;对应于物理学的有航海学、工程学、建筑学等;对应于化学的有农学、冶金学、采矿学等。 奥斯特瓦尔德汲取了孔德的等级制度的分类思想,以最普遍的概念创建科学的分类体系——形式科学、物理科学、生物科学。形式科学论及属于所有经验的特征,它的主要概念是序,它包括逻辑或流形的科学、数学或量的科学、几何学或空间的科学、运动学或运动的科学。物理科学的主要概念是能(energy),它包括力学、物理学、化学。生物科学的主要概念是生命,它包括生理学、心理学、社会学。这里的生理学应该理解为处理非心理现象的整个科学,涵盖植物学、动物学以及植物、动物和人的生理学;心理学是心理现象的科学,它不限于人,尽管有许多理由要求它的占优势的部分针对人。奥斯特瓦尔德表明,在他的分类中是就纯粹科学而言的,没有把应用科学计算在内。

稍后的逻辑经验论在关注科学统一的同时,也涉及到科学分类问题。该学派的代表人物之一的卡尔纳普在最广泛的意义上使用“科学”一词,包括所有的理论知识,不管它在自然科学领域,还是在社会科学或所谓的人文学科领域,不管它是借助特殊的科学程序发现的知识,还是基于日常生活中的常识的知识。我们首先必须在形式科学和经验科学之间做出区分。

形式科学由逻辑和数学确立的分析陈述构成,经验科学是由在事实知识的不同领域确立的综合陈述构成。

这种分类的特色在于,首次明确地从科学语言和语言哲学的角度出发区分科学。

在其后的整个20世纪,科学分类一直受到各国学者的关注和研究。苏联的凯德洛夫等人依据自然界的客体层次无机界-有机界-人,认为其对应的科学学科是物理学、化学及其他,生物学,心理学;人的社会和思维对应的是社会科学和哲学科学。数学是单列的。数学和自然科学的各个学科都各有自己对应的技术应用科学或技术科学。 中国的于光远把现代科学分为两大类,即分别研究自然界和社会的运动规律的自然科学和社会科学,二者之间还有边缘学科领域。数学是研究整个世界的量的关系的科学,哲学则是自然科学和社会科学的概括和总结。钱学森认为,客观世界除了自然、社会之外,还有第三个领域即思维领域,因此他把现代科学分为自然科学、社会科学和思维科学。同时,从这三个领域向上,通过自然辩证法、历史唯物论和辩证认识论的桥梁,和哲学相联系;向下则与技术科学、工程科学相联系;数学则贯穿各个学科部门。 日本的纲岛定治提出,自然科学可以按照研究对象分为物质科学、生物科学、心理科学。这三者又可以细分为三个范畴:个性记述为主的阶段、一般性的升级阶段、适用第二阶段的发生理论;比如,实验物理学(力学、声学、热力学、光学、电磁学),理论物理学,分子、原子、电子理论这三者分别与之对应;其他学科也是如此划分的。 美国的科恩按照一般约定,指出自然科学包括物理科学和生物科学、化学、地球科学、气象学,有时还有数学。社会科学一般地被理解为包括人类学、考古学、经济学、历史、政治科学、心理学和社会学。传统上存在第三群人文学科,它包括像哲学、文学研究、语言研究,有时还有历史这样的学科。科学或自然科学的范畴常常被推广到包括一些常规认为是社会科学或人文学科一部分的某些学科,除(体质)人类学和(实验)心理学以外,还可以包括像语言学、考古学和经济学这样可以变化的领域。有时,地理学被认为是社会科学,有时被认为是自然科学。最近,一些(并非一切)传统的社会科学被放在“行为”科学的大伞之下。

在现时代,科学的指数式发展引起知识的极度膨胀,造成学科的极度分化,同时也催生了一大批交叉学科或边缘学科的诞生。据说,在德国大学的科研目录中列有四千多个研究领域。中国教育部学科分类(国标-92)也列举了文、理、工、农、医、军事六大部类的57个一级学科 和三千多个专业的分类目录。1989年出版的一本《英汉学科词典》 ,收集的社会科学、自然科学和技术科学的学科名称更多达三万有余。学科的这种通过分化和交叉而增生的趋势方兴未艾。在这种情势下,学者竞相推出自己的分类方案,从二元分类到五元分类一应俱全——当然也有超过五元的。

邦格持二元分类的观点。他说,在各种科学之间,第一个最显著的差异是形式科学和事实科学之间的差异,即处理观念的科学和事实的科学。逻辑和数学是形式科学:它们不涉及实在的事物,因此不能用来使我们处理实在(即经验),为的是使我们的公式确凿有效。物理学和心理学处于事实科学之中:它们涉及设想在世界中发生的事实,因此必须诉诸经验,以便检验它们的公式。自然科学包括物理学、化学、生物学、个人心理学等。此外,还有文化科学,其中有社会心理学、社会学、经济学、政治科学、物质史、思想史等。

三元分类也许是比较多的一种分类法。例如凯伯格坚持,从学术上可以区分出形式学科、经验学科和诠释学科。数学是形式学科,生物学和心理学是经验学科,文学是诠释学科。显而易见,每一个实际的学科都体现出所有三个类型的方面:数学中的许多东西最终与关于世界的事实有联系;生物学偶尔涉及形式结构,心理学包含诠释;文学批评处理诗的形式结构和有关产生它的社会事实。在这个框架中,哲学本质上是像数学一样的形式学科,诠释的进路更多地属于历史。我们原来涉及的科学像生物学和物理学一样,主要是经验学科。我们的形式关注与科学知识和科学理论的结构有关。我们也能够注意到科学和哲学的诠释方面,科学理论是在某些环境中并针对某种哲学思想背景出现的。理解科学史中的一个惟一事件,与分析在新近出现的理论和被说成用以支持它的实验资料之间得到的形式关系,是截然不同的事情。

四元分类除了前面介绍过的柯尔律治等人的区分以外,也有把科学分为形式的-运算的科学、自然科学、人类科学-文化科学。

N.麦克斯韦的五元分类(或六元分类)是这样的:数学、统计学和逻辑关注改善形式的、先验的或分析的知识。物理科学关注关于物理宇宙各个方面的知识。生物科学关注改善关于生命的知识。社会科学和人文学科关注改善关于人的生活的各种社会方面和文化方面的的知识。技术科学关注改善关于为实现各种有价值的、实际的社会目标所需要的知识。按照知识哲学的普遍一致的意见,经验科学能够被安排为粗糙的等级制类型。在底部,在一切的最基本的层次上,我们有理论物理学,与之密切相关的是宇宙学。向上,我们有理论上不很基本的物理学部分,例如固体物理学和物理化学;再高一点,我们有无机化学的整体,并排化学天文学、天体物理学和地球科学(物理学和化学的特殊化的应用)。再向上,我们有生物科学以及有机化学、分子生物学、生物物理学和生物化学做基底,中途有诸如动物学、植物学、解剖学、神经病学、遗传学这样的科学,顶端是生态学和动物行为研究。更高一些,我们有社会科学、人类学、社会学、心理学、语言学、经济学、政治科学和历史学。按照一种观点即还原论,我们应该把所有这些科学还原——至少在原则上——为理论物理学。按照竞争的观点即反还原论,这或者是不可能实现的目标,或者是不需要的目标。但是,二者都同意,经验科学能够依照等级制组织。更一般地,某种类似的等级制能够在逻辑和数学的学科中察觉到。在基础是逻辑,稍向上有集合论。其余的几乎整个数学分支都能够被诠释为或多或少特殊的集合论的应用。

在这里,有必要专门介绍一下技术科学。这不仅由于我们先前很少涉及,更因为技术科学在当今社会所起的作用实在太大了——它可以迅速地变成生产力,在改造世界中发挥着举足轻重的作用。伊利英和卡林金指明,技术科学是改变实在取向的研究和活动,任务之间的差别产生不同的技术和技术知识。前科学时代的技术知识是实践活动的经验知识,技术知识的科学形式的进化与向机器生产的转化有关。物质生产和技能的发展要求生产任务基于科学的工程来解决,要求技术设备的数学计算,技术不再能够仅仅在常识、才智敏锐、经验的基础上发展了。这就是为什么技术科学的诞生和形成是由两个相反指向的过程决定的:一方面使用自然科学的定律、理论和发生在它们之中的技术对象和过程的研究的独立资料决定,也由科学认知方法的积极应用决定;另一方面由独立的观察和技术与生产的事实的概括决定。自然科学应用于生产的技术问题,产生了不能还原为基础理论知识和技术常识的知识。军事科学的开端近似地落入15世纪中期和1870年代之间的时期,这个时期的特点是用科学知识解决工业生产任务,而不是一般的实际问题。在这个时期的第一阶段(15世纪后半叶到18世纪初期),技术知识还没有获得理论水平,因为在自然科学中充分形成的理论还不存在。这个阶段以在实验方法的基础上应用科学的形成为标志。在18世纪初和19世纪末的时期,对于与物理学、化学和力学相关的技术科学的形成来说,是决定性的时期。基本的自然科学理论的出现和充分发展的技术实践,为把技术知识提高到理论水平创造了必要的条件。但是,新技术科学的进化的机制和形式在技术知识发展的“经典”时期(19世纪末至20世纪中期)已经开始有意义的变化。在这个阶段,技术科学还是通过从基础自然科学导出而出现的模式继续存在。导出是工程技术实践和自然科学理论的综合,电气工程和无线电工程就是从电动力学导出的。在这个时期,技术科学的开端的新形式已经出现——通过从已经现存的作为基本科学起作用的技术科学导出,比如无线电定位就是从无线电工程导出的。应该注意,此时的技术科学已经在它自己的题材、理论原理和特殊的理想对象方面是科学知识的充分形成的领域。在1920年代至1940年代,技术知识的数学化稳定地得以发展。在1960年代,技术知识变成认识论认真分析的对象。因此,20世纪中期能够被视为技术科学发展的非经典阶段的开端。经典的技术知识与非经典的技术知识之间的差异除了理论的结构、出现和形成的机制不同外,还在于后者是交叉学科的。技术科学的理论具有建设性的功能,却不包含新的逻辑关联,这样的理论不说明和预言,只是产生工程对象。

从以上的形形的科学分类不难看出,学者进行分类的依据或基准各有千秋。有人认为,科学分类所依据的原则有客观原则(物质运动形式的客观区别)、发展原则(物质运动形式从简单到复杂、从低级到高级的发展序列)、层次原则(从一般到特殊的科学知识层次结构序列)、实践原则(新方法和新工具的出现会造成新学科的诞生)。有人指出,科学分类研究进入到结构分析和动态分析的阶段。学者设计了各种模式模拟科学体系的结构,如塔模式、树模式、网模式等。同时,科学分类的动力学研究也方兴未艾,学者用液体沉淀模型、气体流动模型、球体膨胀模型来模拟科学体系的运动和变化。 其实,马赫早就强调,在科学研究中,不同的透视都是可能的。从这些不同的观点得到的结果能够产生不同的学科,它们具有相对的自主性。 不过,一般而言,科学分类的基准不外乎三种:客观的基准、主观的基准、综合的基准。客观的基准包括研究的对象、种类和范围,事物的本质,物质的层次,自然的秩序,探索的方法等;主观的基准包括心智官能、精神能力、哲学理念、描述语言、抽象的形式等;综合的基准在奥斯特瓦尔德的以序、能、生命的概念作为分类的依据中最具有代表性。

不用说,这三种基准的划分是仅就主要倾向而言的,只具有相对的意义。诚如奥斯特瓦尔德所言:这些分类不是依照所谓的事物的“本质”,而仅仅从属于为了比较容易和比较成功地把握科学问题而做出的纯粹实际的安排。这是因为,“缺乏完备的和精确的边界是所有自然事物的普遍特征,而科学是自然事物。例如,如果我们力图在物理学和化学之间进行鲜明的区分,那么我们便会遇到相同的困难。在生物学中情况也是这样,倘若我们超出怀疑的阴影力图在动物王国和植物王国之间建立分界线的话。” 在本文结束时,我们不怕贻笑大方,愿意综合各家之长,主要依据科学研究的对象和方法,托出自己的简略的分类方案:

广义的科学可以分为形式科学、自然科学、技术科学、社会科学、人文学科。形式科学以符号概念为主要研究对象,多用分析、推理、论证的方法,其目的在于构造形式的、先验的思想体系或理论结构。自然科学以自然界为主要研究对象,多用实证、理性、臻美的方法,其目的在于揭示自然的奥秘,获取自然的真知。技术科学以人工实在为主要研究对象,多用设计、试错等方法,其目的在于创制出新的流程、工艺或制品,它在很大程度上是自然科学在技术上的实际应用或应用科学的技术化而形成的系统的知识。社会科学以社会领域为主要研究对象,多用调查、统计、归纳等方法,其目的在于把握社会规律,解决社会问题,促进社会进步。人文学科以人作为研究对象,多用实地考察、诠释、内省、移情、启示等方法,其目的在于认识人、人的本性和人生的意义,提升人的精神素质和思想境界。

参考文献

©李醒民(1945~ ),男,陕西西安人。现任中国科学院研究生院教授,中国科学院研究生院《自然辩证法通讯》杂志社主编,博士生导师。研究方向为科学哲学、科学思想史、科学文化。

任鸿隽:《科学救国之梦——任鸿隽文存》,樊洪业、张久村编,上海科技教育出版社,上海科学技术出版社,2002年第1版,第340页。

皮尔逊:《科学的规范》,李醒民译,北京:华夏出版社,1999年1月第1版,第353页。

薛定谔:《生命是什么》,罗来鸥等译,长沙:湖南科学技术出版社,2003年第1版,序言。

朱谦之:《文化哲学》,北京:商务印书馆,1990年第1版,第92页。

梯利:《西方哲学史》,葛力译,北京:商务印书馆,1995年第1版,第70、63、82~83页。

朱谦之:《文化哲学》,北京:商务印书馆,1990年第1版,第93页。

任鸿隽:《科学救国之梦——任鸿隽文存》,樊洪业、张久村编,上海科技教育出版社,上海科学技术出版社,2002年第1版,第340~341页。

皮尔逊:《科学的规范》,李醒民译,北京:华夏出版社,1999年1月第1版,第354~356页。

凯德洛夫、斯皮尔金:科学,丁由译;金吾伦选编:《自然观与科学观》,北京:知识出版社,1985年第1版,第284~374页。

卡里尔等:科学的统一,鲁旭东等译,北京:《哲学译丛》,1993年第4期,第60~67页。

朱谦之:《文化哲学》,北京:商务印书馆,1990年第1版,第95页。

朱谦之:《文化哲学》,北京:商务印书馆,1990年第1版,第96页。

任鸿隽:《科学救国之梦——任鸿隽文存》,樊洪业、张久村编,上海科技教育出版社,上海科学技术出版社,2002年第1版,第342页。

朱谦之:《文化哲学》,北京:商务印书馆,1990年第1版,第97页。

皮尔逊:《科学的规范》,李醒民译,北京:华夏出版社,1999年1月第1版,第356~358、358~361页。

纲岛定治:科学分类的体系,北京:《自然科学哲学问题丛刊》,1984年第4期,第92~96页。

李凯尔特:《文化科学和自然科学》,涂纪亮译,北京:商务印书馆,1986年第1版,第17页。

李醒民:卡尔.皮尔逊:著名科学家和自由思想家,北京:《自然辩证法通讯》,第12卷(1990),第2期,第65~78页。李醒民:皮尔逊——百科全书式的哲人科学家和自由思想家,《科学巨星》丛书9,西安:陕西人民教育出版社,1998年9月第1版,第170~260页。

皮尔逊:《科学的规范》,李醒民译,北京:华夏出版社,1999年1月第1版,第361~379页。

J. A. Thomson:科学之分类,唐钺译,中国科学社编:《科学通论》,中国科学社出版,1934年第2版,第135页。

奥斯特瓦尔德:《自然哲学概论》,李醒民译,北京:华夏出版社,2000年第1版,第37~39页。

R. Carnap, Logical Foundations of the Unity of Science. R. Boyd et. ed., The Philosophy of Science, A Bradford Book, The MIT Press,1991, pp. 393~404.

凯德洛夫、斯皮尔金:科学,丁由译;金吾伦选编:《自然观与科学观》,北京:知识出版社,1985年第1版,第284~374页。

孙慕天:科学分类;于光远等主编:《自然辩证法百科全书》,北京:中国大百科全书出版社,1995年第1版,第272~276页。钱的分类思想似乎有点经院哲学的味道。

纲岛定治:科学分类的体系,北京:《自然科学哲学问题丛刊》,1984年第4期,第92~96页。

I. B. Cohen, An Analysis of Interactions between the Natural Science and the Social Science. I. B. Cohen ed., The Natural Science and the Social Science, Some Critical and Historical Perspectives, Dordrecht/ Boston/ London, Kluwer Academic Publishers, 1994, pp. 1~99.

这57个一级学科的名称是数学,信息科学与系统科学,力学,物理学,化学,天文学,地球科学,生物学,农学, 林学,畜牧、兽医科学,水产学,基础医学,临床医学,预防医学与卫生学,军事医学与特种医学,药学,中医学与中药学,工程与技术科学基础学科,测绘科学技术,材料科学,矿山工程技术,冶金工程技术,机械工程,动力与电气工程,能源科学技术,核科学技术,电子,通信与自动控制技术,计算机科学技术,化学工程,纺织科学技术,食品科学技术,土木建筑工程,水利工程,交通运输工程,航空、航天科学技术,环境科学技术,安全科学技术,管理学,,哲学,宗教学,语言学,文学,艺术学,历史学,考古学,经济学,政治学,法学,军事学,社会学,民族学,新闻学与传播学,图书馆、情报与文献学,教育学,统计学。

李诗英主编:《英汉学科词典》,北京:中国科学技术出版社,1989年第1版。

M. Bunge, Philosophy of Science, From Problem to Theory, Revised Edition, Vol. I, New Brunswick and London: Transation Publishers, 1998, pp. 24, 27.

H. E. Kyburg, Jr., Science and Reason, Oxford University Press, 1990, p. 16.

卡里尔等:科学的统一,鲁旭东等译,北京:《哲学译丛》,1993年第4期,第60~67页。

N. Maxwell, From Knowledge to Wisdom, A Revolution in the Aims and Methods of Science, England, New York: Basil Blackwell, 1984, pp. 15, 23~24.

V. Ilyin and A. Kalinkin, The Nature of Science, An Epistemological Analysis, Moscow: Progress Publishers, 1988, pp. 166~184.

孙慕天:科学分类;于光远等主编:《自然辩证法百科全书》,北京:中国大百科全书出版社,1995年第1版,第272~276页。