首页 > 文章中心 > 微纳米制造技术及应用

微纳米制造技术及应用

开篇:润墨网以专业的文秘视角,为您筛选了八篇微纳米制造技术及应用范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

微纳米制造技术及应用范文第1篇

【关键词】纳米;科技发展;纳米科技

1.何谓纳米科技

所谓纳米尺度是指十亿分的一米,约为人类头发直径的八万分的一,相当于十个氢原子的直径长。纳米科技涵盖材料、微电子、计算机工程、化工、化学、物理、医学、航天、环境、能源以及生物等各领域。而纳米科技一般系指利用数个纳米至数十个纳米的观察与操作技术,制作出具有该尺度的各种功能新颖的构造体,将其制作成各种不同领域与制程整合并加以利用的技术。

2.纳米材料的特性

当材料结构小到纳米尺寸时,材料中的晶粒大小介于一到十纳米范围的间。一般定义晶粒或颗粒直径小于1 0 0纳米的粒子称为纳米晶。当超威粉粒直径、薄膜厚度或孔隙直径从微米减小至纳米等级,具有与一般固体晶相或非晶质结构不同的原子结构;且有与传统晶粒或非晶质材料不同的性质,这些材料结构已小于可见光的波长,其表面原子所占全体原子的比例将快速增加,故其表面未饱和键数很多,使得纳米具有极高的表面活性,因此表面能量占全体总能量的比例也快速增加,其具有大表面积的特殊效应,又因其固体表面原子的热与化学稳定性比内部的原子要差得多,造成此表面原子有催化剂的作用。目前我们所使用的材料结构尺寸已经缩小到器件所利用的物理原理即将失效的阶段,科学家们预测这些物理原理的适用性再撑不过十年,由于纳米结构材料,仍有很多的新化学性质及物理性质,例如材料强度、模数、延性、磨耗性质、磁特性、表面催化性以及腐蚀行为等,会随着粒径大小不同而发生变化,也就是说如果我们想要利用纳米材料结构,不只需要找出更好的材料、更简便和可信度高的生产方法,同时也必须了解其新物理和化学性质,想出新运用的原理,并且可以做出特定大小、形状,或有可区分出不同尺寸与形状的纳米制造技术

3.半导体纳米组件

目前电子产品组件中的晶体管和链接尺寸都已经缩小到0.13微米(百万分的一米) 以下,在计算机内两公分平方的中央数据处理器,英特尔( intel) 的最新商用微处理器pentium 4,系使用0.18微米制程,于一个微处理器内包含4700万个晶体管,若使用0.02微米制程,则每一个微处理器几乎可容纳10亿个晶体管。当我们从0.13微米发展到0.10微米将会面对棘手的技术障碍。为进一步的发展,需要材料、非光学微影制程、蚀刻、沈积和低温退火等多方面的突破。除此的外,设计、检验、测试和封装技术都需要艰难的技术革新。英特尔的创办人的一、摩尔博士于1965年曾谓微处理器的晶体管密度,每十八个月会增加一倍,此即为摩尔定律,业界要维系摩尔定律,就必须不断的提升制程技术,其中的关键技术即为微影,例如传统微影制程使用的365纳米、近紫外光,其解像度大约在0.30-0.35微米间,而目前4 ~ 5年内的主要曝光技术则是深紫外光光学微影(duv),2000年全球微影设备出货量中,d u v设备占6 2%,9 9年时为57%,在d u v曝光技术中, 193纳米氟化氩(arf) 雷射为深紫外光光学微影的主要光学光源,其解像度为0.13-0.10微米。更多的工作将会集中于如何在更少的基底损坏和更高选择率的前提下净化和蚀刻芯片。我们会努力将阻抗更低的材料、导电性更高的薄膜、新型金属或金属化合物和导电性更低的隔层材料应用到新的生产线中。除此的外,许多的专家将会投入大量时间研究原子级检验、超高速芯片级测试和高效可靠的封装。台湾有不少硅晶圆制造公司已经成功地发展出小于0.11微米的组件。

4.扫描探针微影术在纳米科技的应用

扫描探针微影术是利用扫描探针显微镜(如原子力显微镜及扫描穿遂显微镜等) 来进行纳米级微影的新技术。可用以针对材料表面特性的检测,近年来更利用微小的探针头尖端靠近材料表面以产生局部的强电场或低能电子束,用于改变表面特性的扫描探针微影术,即由相关参数的调整,而发展出多种扫描探针显微加工技术。而其运用的范围已扩及表面物理、固态物理、生物物理、生命科学、材料科学、纳米科学等学术研究,以及纳米量测、半导体检测、超精密加工、生物技术与纳米技术等工程研究与实际运用。扫描探针显微镜由于可达到原子级或纳米级的分析能力,而且进行测量

与加工所需旳能量差别不大,因此同一系统几乎可同时进行纳米量测与纳米加工,是未来纳米技术最重要的基础关键技术的一。其中,使用导电探针以产生场致阳极氧化作用的方法更被应用于制造纳米尺寸的组件,如场效晶体管、单电子晶体管、单电子内存、高密度数据储存媒介等。

5.纳米碳管的研究

纳米材料的研究为目前科学技术发展的先驱之一,其中,近年来被发现的纳米碳管更是因其优异的性质而备受瞩目,并拥有许多潜在的应用。纳米碳管有很高的化学稳定性、热传导性和机械强度,尤其是独特的电子性质,使其可应用在场发射平面显示器上,有极大的发展潜力。自1991年被s. iijima发现以来,已逐渐成为科学界的主流研究课题的一,纳米碳管主要是由一层或多层的未饱和石墨层( graphene layer) 所构成,在纳米碳管石墨层中央部分都是六圆环,而在末端或转折部份则有五圆环或七圆环,每一个碳原子皆为s p2构造,基本上纳米碳管上石墨层的构造及化学性质与碳六十相似。制备方法大致可分为三种:第一种为电浆法,由二支石墨棒在直流电场及惰性气体环境下,火花放电而生成。第二种方法为激光激发法,由聚焦的高能量激光束于120℃高温炉中挥发石墨棒而生成。第三种方法为金属催化热裂解法,在高温炉中(>700℃) 由铁、钴、镍金属颗粒热裂解乙炔或甲烷而生成。由于上述三方法对于量产纳米碳管依旧有一段距离。

6.生物科技在纳米技术的应用

纳米科技不只可以应用在电子信息工业上,在生物和医学上也一样有用。当我们有一天能区分出健康和患病者d na基因内码排列的差异性时,也许可利用纳米技术来加以修正;生物芯片因为结构微小,其侦测灵敏度特别的高,只需要极少量分子即能检验出病因,现在我们生病时所做生理检查总是避免不了验血、验尿、验一大堆东西,有些检验还得等好几天的细菌培养,生物芯片一旦发展成功,小小的一片,从分子生物学出发,一次便可做多种检验,且不到几分钟或几秒钟便能全部完成;当然制造小医疗器件,把它注入体内做长期医疗工作也是发展方向之一,器件小会减少对其他器官正常作用的干扰。另外在基础生物医学方面,生物分子如何作用也可用纳米技术做非常细微的分析,即以了解其作用机制,预料利用纳米技术,有一天科学家可以测量单一分子的光谱和键能,也可切割或连结某一特定的分子键,一个分子马达如何的旋转,还有一个蛋白分子如何的松缩等现象也都可利用原子力显微镜等显微技术直接观察研究。

微纳米制造技术及应用范文第2篇

【论文摘要】:讨论纳米科学和技术在新时期里发展所面对的困难和挑战。一系列新的方法将被讨论。我们还将讨论倘若这些困难能够被克服我们可能会有的收获。

纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。

1. 纳米结构的制备

有两种制备纳米结构的基本方法:build-up和 build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down 方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等);“Build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(MBE)、化学气相淀积(MOVCD)等来进行器件制造的传统方法。“Build-down”方法的缺点是较高的成本。

很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up” 方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。

2. 纳米结构尺寸、成份、位序以及密度的控制

为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于GaN材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。

⑴ 电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。

⑵ 聚焦离子束光刻是一种机制上类似于电子束光刻的技术。

⑶ 扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。

⑷ 多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。

⑸ 倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。

⑹ 与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。

⑺ 将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法, 比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。

3. 纳米制造所面对的困难和挑战

随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80 nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用X光和EUV 的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂樑能否使它达到可以接受的刻写速度。转贴于

对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100 nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术会成为最终的纳米刻写技术还有待于观察。

4. 展望

目前,已有不少纳米尺度图形刻制技术,它们仅有的短处要么是刻写速度慢要么是刻写复杂图形的能力有限。这些技术可以用来制造简单的纳米原型器件,这将能使我们研究这些器件的性质以及探讨优化器件结构以便进一步地改善它们的性能。必须发展新的表征技术,这不单是为了器件表征,也是为了能使我们拥有一个对器件制造过程中的必要工艺如版对准的能进行监控的手段。随着器件尺度的持续缩小,对制造技术的要求会更苛刻,理所当然地对评判方法的要求也变得更严格。随着光学有源区尺寸的缩小,崭新的光学现象很有可能被发现,这可能导致发明新的光电子器件。然而,不象电子工业发展那样需要寻找MOS晶体管的替代品,光电子工业并没有如此的立时尖锐问题需要迫切解决。纳米探测器和纳米传感器是一个全新的领域,目前还难以预测它的进一步发展趋势。然而,基于对崭新诊断技术的预期需要,我们有理由相信这将是一个快速发展的领域。总括起来,在所有三个主要领域里应用纳米结构所要求的共同点是对纳米结构的尺寸、材料纯度、位序以及成份的精确控制。一旦这个问题能够解决,就会有大量的崭新器件诞生和被研究。

参考文献

[1] 王淼, 李振华, 鲁阳, 齐仲甫, 李文铸. 纳米材料应用技术的新进展[J]. 材料科学与工程,2000.

[2] 吴晶. 电喷雾法一步制备含键合相纳米微球的研究[D]. 天津大学, 2006.

[3] 张喜梅, 陈玲, 李琳, 郭祀远. 纳米材料制备研究现状及其发展方向[J]. 现代化工,2000.

[4] 朱雪琴. 纳米技术的研究及其应用[J]. 新技术新工艺, 1996.

微纳米制造技术及应用范文第3篇

关键字:纳米技术;园艺植物;应用

纳米科技是20世纪80年展起来的交叉、前沿的新兴学科领域,将对未来的科技、经济和社会发展产生重大影响。纳米技术,是指在1~100nm尺度上,研究物质的结构和性质的多学科交叉的前沿技术,其最终目标是用分子、原子以及物质在纳米尺度上的特性,制造具有特定功能的产品,实现生产方式的革命。近年来,纳米技术正在向生物医药、信息、能源和环境、航天航空、海洋、国防等高科技领域渗透,显现了其广泛的应用性和较强的市场潜力。因此,各国政府和企业都不惜投入巨资研究并开发纳米技术,占领战略制高点,抢占世界市场[1]。

纳米微粒自身具有特殊的性质,有着广阔的应用领域,因此纳米微粒的制备引起了广大的关注。纳米技术与生物技术相结合,并应用于生物领域,便形成了一种新的多学科交叉技术,即纳米生物技术。纳米生物技术是一个正逐渐发展的新兴领域[2]。近年来,纳米技术在园艺上的应用主要是植物生长调节剂、温室大棚薄膜、温室保温毡、生物微肥、果蔬保鲜、高效杀菌剂抑菌剂。

1 纳米技术在调节植物生长方面的应用

植物生长调节剂是一类与植物激素具有相似生理和生物学效应的物质,用于调节植物生长发育的一类农药,包括人工合成的化合物和从生物中提取的天然植物激素。经过纳米生物技术处理后,植物生长调节剂颗粒粒径减小,因此可以更有效地被作物吸收,提高它的利用率。

三十烷醇(TA)纳米制剂处理后,对幼苗生长促壮效应更明显,表现在增加苗高、根长、根数以及增加叶片鲜重、提高叶绿素含量、增加酶活性。以相同浓度的TA原剂为对照,TA纳米制剂均在不同程度上比原剂的作用效果好[3]。

2 纳米技术在园艺产品保鲜方面的应用

当前,园艺产品保鲜方面存在以下问题:一是果实的代谢很旺盛,释放乙烯等气体,容易导致果实后熟加快;二是产品易于失水;三是易被微生物侵蚀引起腐烂。因此,保鲜的主要难题应是防后熟、防失水、防腐等方面。

在模拟园艺产品冷藏环境中,TiO2/ACF-Pt光催化降解乙烯。活性炭纤维(ACF)表面先溅射沉积纳米Pt,再进行TiO2附着,能提高降解乙烯的能力。活性碳纤维(ACF)独特的孔隙结构和表面特性,在较高湿度下低浓度气相物质的吸附方面具有明显的优势。纳米光催化技术在消除有机气体时具有能耗低、反应条件温和、可减少一次污染等优点。其中纳米二氧化钛(TiO2)以其活性高、价格便宜、对人体无害等特征被认为最佳的光催化剂。因此,纳米Ti02光催化降解乙烯技术具有良好的应用前景。把ACF的高吸附性与纳米TiO2良好的光催化性优势结合,以ACF为载体负载纳米Ti02(Ti02/ACF),一方面,解决纳米Ti02负载问题;另一方面,ACF的吸附能力使低浓度气相物质在纳米Ti02附近聚集,能提高光催化反应速率。对有效地清除园艺产品冷藏环境中乙烯是有利的。贵金属铂(Pt)具有较高催化活性、优异电化学性能而备受关注[4]。

甘肃省农科院农产品贮藏加工研究中心研制成功一种新型纳米硅基氧化物(纳米SiOX)保鲜果蜡,可在果蔬表面形成一种天然可食性蜡膜,能满足不同果蔬和不同涂蜡方法的需要。这种新型保鲜果蜡以天然动植物蜡为成膜剂,加入纳米硅基氧化物等天然材料,主要用于果蔬采后上光打蜡。该果蜡涂于果蔬表面后形成一层光亮、透明的可食性蜡膜,可食性涂膜的保鲜功能主要表现在:具有良好的气体选择透过性,使果蔬呼吸强度下降和乙烯释放量降低,从而推迟生理衰老,减少营养成分的损失。采收后果蔬水分损失很大,涂膜处理使果蔬表面形成一层均匀透明的薄膜,可阻止水分蒸发;封闭果蔬表面的微小损伤,同时又是杀菌剂和保鲜剂的有效体,从而减少致病菌的侵染,延长贮藏期和货架期,提高果蔬档次和市场竞争力。 经甘肃省医学科学研究院卫生安全毒理学检验,这种果蜡属无毒产品[5]。

通过用纳米分子筛保鲜膜对白菜型油菜进行气调保鲜研究,得出以下结论:用纳米分子筛保鲜膜包装后,可以有效抑制小油菜的呼吸作用,延长保鲜期。室温下保鲜期可达3 d,结合冷藏(6℃)保存时,保鲜期可达13 d以上。由于纳米分子筛具有独特的气体选择性, 因此是一种具有广阔前景的气调包装添加改性剂[6]。

3 纳米技术在防治病虫害方面的应用

园艺上,病虫害的防治日趋重要。在各种植物中,草坪植物遭受病害危害仅次于果树、蔬菜和少数经济作物。病害降低了园艺植物的实用价值和观赏价值。目前,纳米技术在灭菌抑菌方面的应用主要有:光半导体材料本身没有抗菌功能,它所具有的光催化特性赋予其抗菌性能(Matsunagaetal,1985) Ti02的光催化作用能破坏DNA双链结构;同时许多无机化合物或无机离子也能被Ti02光催化降解成毒性较小或无毒的产物。

纳米Ti02具有以下优点:[7]①对紫外光的吸收率较高,可直接利用太阳光、荧光灯中含有的紫外光,激发生成电子一空穴对;②具有良好的抗光腐蚀和化学稳定性;③具有较深的价带能级,氧化还原能力强,具有较高的光催化活性;④对很多有机污染物有较强的吸附作用;⑤具有广谱、长效的抗菌特点;⑥安全无毒。

王芳、谭洁文关于硅制剂对草坪草四种病原真菌的抑制作用研究表明,纳米硅对立枯丝核菌致病性的抑制作用较强,抑制率为6.19%。经过硅处理的叶片对禾炭疽刺盘孢菌具有较明显的抗性,其抑制率为37.02%[8]。

T.K.Barik.B.Sahu.V.Swain关于纳米硅对害虫的控制实验表明,纳米硅制剂可以有效的杀死害虫。通常,在虫体的表皮存在多种脂质作为水屏障,使害虫免遭干燥环境的影响。而纳米硅制剂能够被虫体表面的脂质吸附,使脂质丧失其作用,然后达到杀虫的目的。这种制剂涂在茎和叶的表面,不会影响植物组织的光合作用和呼吸作用,也不会影响基因的表达[9]。

70%纳米欣可湿性粉剂是一种高效、低毒、低残留、广谱、内吸性苯并咪唑类杀菌剂,具保护和治疗双重作用。其作用机理是喷施于植物表面被植物体吸收后,经一系列生化反应,被分解为甲基苯并咪唑-乙氨基甲酸酯,干扰病菌有丝分裂中纺锤体的形成,使病菌孢子萌发长出的芽管扭曲异常,芽管细胞壁扭曲,从而使病菌不能正常生长而达到杀菌效果[10]。

M.K. Sarmast等关于纳米银胶体在Araucaria excelsa R.Br组织培养中能够降低细菌感染的实验证明,将离体的植物组织或浸泡在纳米银胶体的溶液中或将适量的纳米银直接加入培养基中,均能降低植物组织培养中的细菌污染,而且对植物以后的生长没有任何副作用[11]。

4 纳米技术与纳米肥料

以“盐肥柱撑”技术为核心,重点研究现代微生物技术,结合纳米插层技术、植物种植技术和化学工程技术等多学科的技术制成纳米生物有机肥。实验表明,使用该肥料后,植株根系发达,生长速度超常,反季节能力强,作物果实饱满,品质明显提升,成熟收获期提前,与常态种植相比平均增产幅度不低于15%[12]。

此外,2007年华龙肥料技术有限公司首次将纳米碳应用到农用肥料中。研究结果表明,在肥料中添加纳米碳,可使谷类作物增产10%~20%,蔬菜作物增产20%~40%。在增产的基础上,可使小麦籽实脂肪含量增加,蛋白质含量减少。同时该技术也在花卉上进行了不同品种的试验,均得出有突破性的结论。现主要研究花卉生产中。纳米碳粉的加入,对降低肥料用量,以及提高花卉观赏特征的影响,为今后探索纳米碳在改善花卉品质方面的深入研究打下基础[13]。

5 展望

纳米微粒自身具有特殊的性质,有着广阔的应用前景,纳米微粒的制备引起了广大的关注。相信在不久的将来,纳米技术的发展将日新月异,其在生命科学领域的发展应用将非常迅速。

(收稿:2013-05-16)

参考文献

[1]徐辉碧,杨祥良等.纳米技术在中药研究的应用.中国药科大学学报[J],2001,32(3):161-1651.

[2]姜忠义,王艳强.纳米生物技术及其应用[J].现代化工.2002,22(4):10-13.

[3]姜宇. 三十烷醇(TA)纳米制剂的制备及对小麦、绿豆种苗生长的影响[D].辽宁师范大学,2009.

[4]叶盛英,艾广建.离子溅射Pt对光催化降解冷藏环境中乙烯的影响[J]农业工程学报. 2009,1:260.

[5]新华社. 甘肃省农科院研制成功新型纳米保鲜果蜡 西北园艺 2004,2:55

[6]郭玉花,黄震等.纳米气调包装新鲜小油菜保鲜研究[J].北方园艺. 2008,6:214-216.

[7]张萍. 纳米TiO2光半导体植物抗菌材料及其生物学效应研究[D]. 中国农业科学院, 2007.

[8]王芳,谭洁文. 硅制剂对草坪草四种病原真菌的抑制作用 第四届全国农药交流会论文集

[9]T.K.Barik.B.Sahu.V.Swain.Nanosilica—from medicine to pest control. Parasitol Res. 2008,103:253258.

[10]新加坡利农私人有限公司北京代表处.高效杀菌剂—纳米欣[J].西北园艺.2006,6:42.

[11] M.K. Sarmast. nano silver treatment is effective in reducing bacterial contaminations of Araucaria excelsa R.Br.var.glauca explants[J] Acta Biological Hungarica. 2011,62:477-484

[12]张建军. 正光纳米生物有机肥在现代农业中的应用与未来展望[J].四川农业科技.2011,(2):45-46

微纳米制造技术及应用范文第4篇

(徐州生物工程职业技术学院,江苏 徐州 221006)

【摘要】制造业是国民经济最重要的基础产业,而制造技术的不断创新则是工业发展的技术基础和动力。近年来,制造学研究领域取得了一系列突出进展和原创性成果,为我国工业发展和经济建设提供了大批新理论、新技术和新方法。然而,我国制造技术水平与发达国家相比还非常低。未来制造业发展趋势是全球化、信息化、绿色化、知识化和极端化。文中将对我国制造技术领域的研究现状进行总结、分析与展望。

关键词 机械制造;发展趋势;研究现状;展望

0 引言

21 世纪人类社会主要面临四大问题:气候变暖、资源枯竭、人口增加、环境恶化。随着时间的推移,这些问题将变得越来越严峻而不可逾越。人们将会发现:生态(地球的保护和人类生存环境)可能比经济更为重要[1]。

我国作为能源消耗大国,由于煤和石油的枯竭,我国未来经济的发展必将依赖于水力能、风力能、地热能、太阳能、核能。制造业作为我国经济发展的支柱产业,面对上述社会问题,必然会对我国制造业的发展造成一定的阻碍。为了保证我国制造业的健康发展,就必须对制造技术进行改良和创新[2]。

本文就我国制造技术领域发展中的新技术、新方法、新理论、新观点、重要科技、优先领域进行了概述,同时,对制造技术未来的发展进行了展望。

1 制造学科概述

1987年美国制造工程师学会对制造工程的定义是:制造工程是工程专业的一个分支。它要求具体了解、应用和控制制造过程中各个工程程序和工业产品的生产方法所必需的教育和经验;还要求具有设计制造流程的能力,研究和开发新的工具,机器和设备的能力,研究和开发新的工艺过程的能力,并且将它们综合成为一个系统,以达到用最少的费用生产出高质量的产品。现代制造工程是一个系统工程。它是一个以制造科学为基础的、由制造模式和制造技术构成的、对制造资源和制造信息进行加工处理的有机整体。制造学科主要是对接的制造过程以及机械系统进行研究的学科。制造学科主要包含了产品设计、加工制造(生物制造、仿生制造、微纳制造、结构制造、装备制造、复杂曲面加工、非传统加工、高效加工、超精密加工)、成形制造(表面工程、模具制造、连接、塑造、铸造成形)以及系统运作等科学。

2 我国制造技术领域的研究及发展现状

2.1 仿生机械和生物制造

吉林大学在仿生柔性动态减阻、仿生电渗脱附理论研究中取得了重要进展,创建和发展了机械仿生学科、发明了一系列地面机械脱附减阻仿生技术,并成功地应用于农业机械和国防工程。西安交通大学在人工骨仿生制造研究中建立了骨组织的模型,提出了骨缺损的复合结构修复方法,采用快速成型法制造了人工骨的结构框架,并在动物骨缺损修补中获得成功。

2.2 先进电子制造

中南大学提出了“极端制造”的理念。上海交通大学、清华大学等围绕硬盘驱动器和芯片制造中的关键科学问题开展了系统研究,提出了纳米量级划痕深度和长度可控的单颗磨粒磨削方法,建立了硅片自旋转磨削的砂轮临界切深模型;揭示了高加速度运动系统的宽频多模态复合运动特征,提出了高加速度、高精度、高可靠性精密驱动平台的设计理论与控制方法;阐明了超声键合界面原子快速扩散机理,发现了键合界面的“粘滑”运动特性,提出了变参数加载工艺。

2.3 数字制造

华中科技大学提出了基于可视锥的几何推理新方法、复杂曲面轮廓误差的统一判别等理论,开发出复杂产品数字建模和可制造性分析软件系统,建立了集成快速测量、数字建模及面向制造设计于一体的系统平台,应用于缸盖类叶片类等复杂曲面零件快速产品开发。武汉理工大学提出了数字制造建模理论、基于制造网格的数字制造资源共享、数字制造环境下敏捷供应链理论模型、数字制造车间智能调度的理论和算法;建立了数字制造环境下虚拟数控加工系统设备远程操作、监控与诊断平台。上海交通大学将距离函数和伪距离函数理论应用于力旋量和运动旋量空间的定性与定量几何推理,建立了夹具和夹持机构的封闭性、稳定性的定性与定量分析和评价指标体系。

2.4 加工制造

大连理工大学提出了硬脆材料复杂曲面天线罩精密制造技术与装备。针对天线罩电性能的特殊要求,提出了面向天线罩电性能补偿的精密修磨理论,建立了天线罩综合电性能误差与几何参数补偿量关系的理论模型,发明了数字化修磨装备,解决了国防工程中的一项重大科技难题。湖南大学在高速精密磨削加工研究领域,提出“四点恒线速法”,使非圆轮廓表面磨削力相差十几倍造成的磨削缺陷得以改善,表面质量明显提高。华中科技大学提出了磨削表面烧伤的形成机理、理论模型、参数优化及控制策略,解决了磨削烧伤的难题。

2.5 微纳制造

西北工业大学提出了支持任意流程的MEMS集成设计工具。北京大学开发出三套标准工艺流程,建立了高水平的硅基MEMS加工平台。中国科学院上海微系统所等发明了多层硅微机械结构一次成型技术、玻璃上硅基光波导制造技术和圆片级封装新方法,形成了基于单硅片结构的双面体微机械压阻传感器制造工艺。大连理工大学研制塑料微流控芯片自动化制造装备,掌握了微结构热压成形金属模具、微流控芯片批量制作的关键技术。西安交通大学提出了常温软压印下“保压-释放-固化”的纳米压印工艺,发现了阻蚀胶与模具液-固界面、固-固界面特性对模腔填充质量及其脱模效果的影响规律,实现了50nm线宽的纳米压印,具有良好的复型保真度。中国科学院物理研究所成功研制出具有对称式机械结构的双探针扫描隧道显微镜(STM)探头。中北大学研制了基于拉曼光谱的圆片级微结构应力测试平台,完成了静态应力和动态应力的测试。

3 制造技术发展展望

航天及深海装备制造科技。未来飞机将进一步向大型、快速、轻型、舒适性、安全性方向发展;用于国防的各种飞行器,将向超快、精确、轻微及智能监控方向发展。高速、精确、智能化微型飞行器技术;微小制导技术;超低温、超真空、无重力极端条件下的装备设计与制造科学技术、智能作业机器人、超大型射电望远镜、适于高压腐蚀环境作业的深海装备的设计与制造技术等将得到大的发展。

新能源装备制造技术。由于一次能源将逐步枯竭,核能、深海能源、再生能源及清洁能源的研发和使用将大大促进该领域制造技术的发展。核能工艺及装备、深海能源探测及采掘工艺及装备、新能源和再生能源的装备制造、基于新能源的经济型汽车发动机及车辆设计与制造技术研究将得到更大重视和关注。

绿色制造科技。即基于资源节约和环境友好的绿色可持续性制造,是一项战略性制造理念、制造模式和制造技术。绿色可持续性制造包含无污染无废弃物制造、绿色产品的设计与制造、废旧机电产品的再制造、节能节材制造以及新能源装备制造五个方面。耗能耗材多、污染环境的机电产品和生产过程将会受到市场和法规的制约而逐渐减少或消亡,相反,新能源、节能节材和无污染机电产品及其生产过程将得到更大发展。电动汽车和燃料电池汽车如果能突破电池材料和低成本制造两大瓶颈,将会实现车辆业改朝换代的大革(下转第292页)(上接第216页)命。由于废弃产品的海增,再制造业将得到迅速发展。

除此之外,制造科学在数字装备制造、光子制造、仿生制造和电子通讯制造以及微纳米制造等方面都将取得良好的发展,促进我国机械工程领域的不断进步和发展。

4 结束语

目前,我国制造技术研究领域已经取得了长足的进展和进步,但仍与国际先进水平存在差距。对先进制造技术的研究与发展,必须制定长远的发展计划,运用科学、合理的发展策略,才能尽快缩小同发达国家的差距,才能在激烈的市场竞争中立于不败之地。

参考文献

[1]雷源忠.我国机械工程研究进展与展望[J].机械工程学报,,2009,45(5).

[2]谭杰.我国机械工程研究进展与展望[J].建材与装饰,2013(14).

[3]路甫祥.坚持科学发展,推进制造业的历史性跨越[J].机械工程学报,2007,43(11).

微纳米制造技术及应用范文第5篇

关键词:纳米科学纳米技术纳米管纳米线纳米团簇半导体

NanoscienceandNanotechnology–theSecondRevolution

Abstract:Thefirstrevolutionofnanosciencetookplaceinthepast10years.Inthisperiod,researchersinChina,HongKongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.Theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.Structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.Theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.Thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.Inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.Therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.Weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.Anumberofalternativeapproacheswillbediscussed.Weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.

Keywords:Nanoscience,Nanotechnology,Nanotubes,Nanowires,Nanoclusters,“build-up”,“build-down”,Semiconductor

I.引言

纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。例如,美国政府2001财政年度在纳米尺度科学上的投入要比2000财政年增长83%,达到5亿美金。有两个主要的理由导致人们对纳米尺度结构和器件的兴趣的增加。第一个理由是,纳米结构(尺度小于20纳米)足够小以至于量子力学效应占主导地位,这导致非经典的行为,譬如,量子限制效应和分立化的能态、库仑阻塞以及单电子邃穿等。这些现象除引起人们对基础物理的兴趣外,亦给我们带来全新的器件制备和功能实现的想法和观念,例如,单电子输运器件和量子点激光器等。第二个理由是,在半导体工业有器件持续微型化的趋势。根据“国际半导体技术路向(2001)“杂志,2005年前动态随机存取存储器(DRAM)和微处理器(MPU)的特征尺寸预期降到80纳米,而MPU中器件的栅长更是预期降到45纳米。然而,到2003年在MPU制造中一些不知其解的问题预期就会出现。到2005年类似的问题将预期出现在DRAM的制造过程中。半导体器件特征尺寸的深度缩小不仅要求新型光刻技术保证能使尺度刻的更小,而且要求全新的器件设计和制造方案,因为当MOS器件的尺寸缩小到一定程度时基础物理极限就会达到。随着传统器件尺寸的进一步缩小,量子效应比如载流子邃穿会造成器件漏电流的增加,这是我们不想要的但却是不可避免的。因此,解决方案将会是制造基于量子效应操作机制的新型器件,以便小物理尺寸对器件功能是有益且必要的而不是有害的。如果我们能够制造纳米尺度的器件,我们肯定会获益良多。譬如,在电子学上,单电子输运器件如单电子晶体管、旋转栅门管以及电子泵给我们带来诸多的微尺度好处,他们仅仅通过数个而非以往的成千上万的电子来运作,这导致超低的能量消耗,在功率耗散上也显著减弱,以及带来快得多的开关速度。在光电子学上,量子点激光器展现出低阈值电流密度、弱阈值电流温度依赖以及大的微分增益等优点,其中大微分增益可以产生大的调制带宽。在传感器件应用上,纳米传感器和纳米探测器能够测量极其微量的化学和生物分子,而且开启了细胞内探测的可能性,这将导致生物医学上迷你型的侵入诊断技术出现。纳米尺度量子点的其他器件应用,比如,铁磁量子点磁记忆器件、量子点自旋过滤器及自旋记忆器等,也已经被提出,可以肯定这些应用会给我们带来许多潜在的好处。总而言之,无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。

II.纳米结构的制备———首次浪潮

有两种制备纳米结构的基本方法:build-up和build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等)。“build-up“的优点是个体纳米部件的制备成本低以及工艺简单快捷。有多种方法如气相合成以及胶体化学合成可以用来制备纳米元件。目前,在国内、在香港以及在世界上许多的实验室里这些方法正在被用来合成不同材料的纳米线、纳米管以及纳米团簇。这些努力已经证明了这些方法的有效性。这些合成方法的主要缺点是材料纯洁度较差、材料成份难以控制以及相当大的尺寸和形状的分布。此外,这些纳米结构的合成后工艺再加工相当困难。特别是,如何整理和筛选有着窄尺寸分布的纳米元件是一个至关重要的问题,这一问题迄今仍未有解决。尽管存在如上的困难和问题,“build-up“依然是一种能合成大量纳米团簇以及纳米线、纳米管的有效且简单的方法。可是这些合成的纳米结构直到目前为止仍然难以有什么实际应用,这是因为它们缺乏实用所苛求的尺寸、组份以及材料纯度方面的要求。而且,因为同样的原因用这种方法合成的纳米结构的功能性质相当差。不过上述方法似乎适宜用来制造传感器件以及生物和化学探测器,原因是垂直于衬底生长的纳米结构适合此类的应用要求。

“Build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(MBE)、化学气相淀积(MOVCD)等来进行器件制造的传统方法。“Build-down”方法的缺点是较高的成本。在“build-down”方法中有几条不同的技术路径来制造纳米结构。最简单的一种,也是最早使用的一种是直接在衬底上刻蚀结构来得到量子点或者量子线。另外一种是包括用离子注入来形成纳米结构。这两种技术都要求使用开有小尺寸窗口的光刻版。第三种技术是通过自组装机制来制造量子点结构。自组装方法是在晶格失配的材料中自然生长纳米尺度的岛。在Stranski-Krastanov生长模式中,当材料生长到一定厚度后,二维的逐层生长将转换成三维的岛状生长,这时量子点就会生成。业已证明基于自组装量子点的激光器件具有比量子阱激光器更好的性能。量子点器件的饱和材料增益要比相应的量子阱器件大50倍,微分增益也要高3个量级。阈值电流密度低于100A/cm2、室温输出功率在瓦特量级(典型的量子阱基激光器的输出功率是5-50mW)的连续波量子点激光器也已经报道。无论是何种材料系统,量子点激光器件都预期具有低阈值电流密度,这预示目前还要求在大阈值电流条件下才能激射的宽带系材料如III组氮化物基激光器还有很大的显著改善其性能的空间。目前这类器件的性能已经接近或达到商业化器件所要求的指标,预期量子点基的此类材料激光器将很快在市场上出现。量子点基光电子器件的进一步改善主要取决于量子点几何结构的优化。虽然在生长条件上如衬底温度、生长元素的分气压等的变化能够在一定程度上控制点的尺寸和密度,自组装量子点还是典型底表现出在大小、密度及位置上的随机变化,其中仅仅是密度可以粗糙地控制。自组装量子点在尺寸上的涨落导致它们的光发射的非均匀展宽,因此减弱了使用零维体系制作器件所期望的优点。由于量子点尺寸的统计涨落和位置的随机变化,一层含有自组装量子点材料的光致发光谱典型地很宽。在竖直叠立的多层量子点结构中这种谱展宽效应可以被减弱。如果隔离层足够薄,竖直叠立的多层量子点可典型地展现出竖直对准排列,这可以有效地改善量子点的均匀性。然而,当隔离层薄的时候,在一列量子点中存在载流子的耦合,这将失去因使用零维系统而带来的优点。怎样优化量子点的尺寸和隔离层的厚度以便既能获得好均匀性的量子点又同时保持载流子能够限制在量子点的个体中对于获得器件的良好性能是至关重要的。

很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up”方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。

在未来的十年中,纳米科学和技术的第二次浪潮很可能发生。在这个新的时期,科学家和工程师需要征明纳米结构的潜能以及期望功能能够得到兑现。只有获得在尺寸、成份、位序以及材料纯度上良好可控能力并成功地制造出实用器件才能实现人们对纳米器件所期望的功能。因此,纳米科学的下次浪潮的关键点是纳米结构的人为可控性。

III.纳米结构尺寸、成份、位序以及密度的控制——第二次浪潮

为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于GaN材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。

—电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。在电子束光刻中的电子散射因为所谓近邻干扰效应(proximityeffect)而严重影响了光刻的极限精度,这个效应造成制备空间上紧邻的纳米结构的困难。这项技术的主要缺点是相当费时。例如,刻写一张4英寸的硅片需要时间1小时,这不适宜于大规模工业生产。电子束投影系统如SCALPEL(scatteringwithangularlimitationprojectionelectronlithography)正在发展之中以便使这项技术较适于用于规模生产。目前,耗时和近邻干扰效应这两个问题还没有得到解决。

—聚焦离子束光刻是一种机制上类似于电子束光刻的技术。但不同于电子束光刻的是这种技术并不受在光刻胶中的离子散射以及从衬底来的离子背散射影响。它能刻出特征尺寸细到6纳米的图形,但它也是一种耗时的技术,而且高能离子束可能造成衬底损伤。

—扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。此项技术已经用来刻划金属(Ti和Cr)、半导体(Si和GaAs)以及绝缘材料(Si3N4和silohexanes),还用在LB膜和自聚集分子单膜上。此种方法具有可逆和简单易行等优点。引入的氧化图形依赖于实验条件如扫描速度、样片偏压以及环境湿度等。空间分辨率受限于针尖尺寸和形状(虽然氧化区域典型地小于针尖尺寸)。这项技术已用于制造有序的量子点阵列和单电子晶体管。这项技术的主要缺点是处理速度慢(典型的刻写速度为1mm/s量级)。然而,最近在原子力显微术上的技术进展—使用悬臂樑阵列已将扫描速度提高到4mm/s。此项技术的显著优点是它的杰出的分辨率和能产生任意几何形状的图形能力。但是,是否在刻写速度上的改善能使它适用于除制造光刻版和原型器件之外的其他目的还有待于观察。直到目前为止,它是一项能操控单个原子和分子的唯一技术。

—多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。铝膜在酸性腐蚀液中阳极氧化就可以在铝膜上产生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范围。制备多孔膜的其他方法是从纳米沟道玻璃膜复制。用这项技术已制造出含有细至40nm的空洞的钨、钼、铂以及金膜。

—倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。目前,经过反应离子刻蚀后,在旋转涂敷的倍塞共聚物层中产生的图形已被成功地转移到Si3N4膜上,图形中空洞直径20nm,空洞之间间距40nm。在聚苯乙烯基体中的自组织形成的聚异戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱体)可以被臭氧去掉或者通过锇染色而保留下来。在第一种情况,空洞能够在氮化硅上产生;在第二种情况,岛状结构能够产生。目前利用倍塞共聚物光刻技术已制造出GaAs纳米结构,结构的侧向特征尺寸约为23nm,密度高达1011/cm2。

—与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。各种尺寸的聚合物球珠是商业化的产品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比较困难的。用球珠单层膜已能制备出特征尺寸约为球珠直径1/5的三角形图形。双层膜纳米球珠掩膜版也已被制作出。能够在金属、半导体以及绝缘体衬底上使用纳米球珠光刻术的能力已得到确认。纳米球珠光刻术(纳米球珠膜的旋转涂敷结合反应离子刻蚀)已被用来在一些半导体表面上制造空洞和柱状体纳米结构。

—将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法,比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。其中微接触印刷法已被证明只能用来刻制特征尺寸大于100nm的图形。复制铸模法的可能优点是ellastometric聚合物可被用来制作成一个戳子,以便可用同一个戳子通过对戳子的机械加压能够制作不同侧向尺寸的图形。在溶剂辅助铸模法和用硬模版浮雕法(或通常称之为纳米压印术)之间的主要差异是,前者中溶剂被用于软化聚合物,而后者中软化聚合物依靠的是温度变化。溶剂辅助铸模法的可能优点是不需要加热。纳米压印术已被证明可用来制作具有容量达400Gb/in2的纳米激光光盘,在6英寸硅片上刻制亚100nm分辨的图形,刻制10nmX40nm面积的长方形,以及在4英寸硅片上进行图形刻制。除传统的平面纳米压印光刻法之外,滚轴型纳米压印光刻法也已被提出。在此类技术中温度被发现是一个关键因素。此外,应该选用具有较低的玻璃化转变温度的聚合物。为了取得高产,下列因素要解决:

1)大的戳子尺寸

2)高图形密度戳子

3)低穿刺(lowsticking)

4)压印温度和压力的优化

5)长戳子寿命。

具有低穿刺率的大尺寸戳子已经被制作出来。已有少量研究工作在试图优化压印温度和压力,但显然需要进行更多的研究工作才能得到温度和压力的优化参数。高图形密度戳子的制作依然在发展之中。还没有足够量的工作来研究戳子的寿命问题。曾有研究报告报道,覆盖有超薄的特氟隆类薄膜的模板可以用来进行50次的浮刻而不需要中间清洗。报告指出最大的性能退化来自于嵌在戳子和聚合物之间的灰尘颗粒。如果戳子是从ellastometric母版制作出来的,抗穿刺层可能需要使用,而且进行大约5次压印后需要更换。值得关心的其他可能问题包括镶嵌的灰尘颗引起的戳子损伤或聚合物中图形损伤,以及连续压印之间戳子的清洗需要等。尽管进一步的优化和改良是必需的,但此项技术似乎有希望获得高生产率。压印过程包括对准、加热及冷却循环等,整个过程所需时间大约20分钟。使用具有较低玻璃化转换温度的聚合物可以缩短加热和冷却循环所需时间,因此可以缩短整个压印过程时间。

IV.纳米制造所面对的困难和挑战

上述每一种用于在衬底上图形刻制的技术都有其优点和缺点。目前,似乎没有哪个单一种技术可以用来高产量地刻制纳米尺度且任意形状的图形。我们可以将图形刻制的全过程分成下列步骤:

1.在一块模版上刻写图形

2.在过渡性或者功能性材料上复制模版上的图形

3.转移在过渡性或者功能性材料上复制的图形。

很显然第二步是最具挑战性的一步。先前描述的各项技术,例如电子束光刻或者扫描微探针光刻技术,已经能够刻写非常细小的图形。然而,这些技术都因相当费时而不适于规模生产。纳米压印术则因可作多片并行处理而可能解决规模生产问题。此项技术似乎很有希望,但是在它能被广泛应用之前现存的严重的材料问题必须加以解决。纳米球珠和倍塞共聚物光刻术则提供了将第一步和第二步整合的解决方案。在这些技术中,图形由球珠的尺寸或者倍塞共聚物的成分来确定。然而,用这两种光刻术刻写的纳米结构的形状非常有限。当这些技术被人们看好有很大的希望用来刻写图形以便生长出有序的纳米量子点阵列时,它们却完全不适于用来刻制任意形状和复杂结构的图形。为了能够制造出高质量的纳米器件,不但必须能够可靠地将图形转移到功能材料上,还必须保证在刻蚀过程中引入最小的损伤。湿法腐蚀技术典型地不产生或者产生最小的损伤,可是湿法腐蚀并不十分适于制备需要陡峭侧墙的结构,这是因为在掩模版下一定程度的钻蚀是不可避免的,而这个钻蚀决定性地影响微小结构的刻制。另一方面,用干法刻蚀技术,譬如,反应离子刻蚀(RIE)或者电子回旋共振(ECR)刻蚀,在优化条件下可以获得陡峭的侧墙。直到今天大多数刻蚀研究都集中于刻蚀速度以及刻蚀出垂直墙的能力,而关于刻蚀引入损伤的研究严重不足。已有研究表明,能在表面下100nm深处探测到刻蚀引入的损伤。当器件中的个别有源区尺寸小于100nm时,如此大的损伤是不能接受的。还有就是因为所有的纳米结构都有大的表面-体积比,必须尽可能地减少在纳米结构表面或者靠近的任何缺陷。

随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用X光和EUV的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂樑能否使它达到可以接受的刻写速度。利用转移在自组装薄膜中形成的图形的技术,例如倍塞共聚物以及纳米球珠刻写技术则提供了实现成本不是那么昂贵的大面积图形刻写的一种可能途径。然而,在这种方式下形成的图形仅局限于点状或者柱状图形。对于制造相对简单的器件而言,此类技术是足够用的,但并不能解决微电子工业所面对的问题。需要将图形从一张模版复制到聚合物膜上的各种所谓“软光刻“方法提供了一种并行刻写的技术途径。模版可以用其他慢写技术来刻制,然后在模版上的图形可以通过要么热辅助要么溶液辅助的压印法来复制。同一块模版可以用来刻写多块衬底,而且不像那些依赖化学自组装图形形成机制的方法,它可以用来刻制任意形状的图形。然而,要想获得高生产率,某些技术问题如穿刺及因灰尘导致的损伤等问题需要加以解决。对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术会成为最终的纳米刻写技术还有待于观察。

另一项挑战是,为了更新我们关于纳米结构的认识和知识,有必要改善现有的表征技术或者发展一种新技术能够用来表征单个纳米尺度物体。由于自组装量子点在尺寸上的自然涨落,可信地表征单个纳米结构的能力对于研究这些结构的物理性质是绝对至关重要的。目前表征单个纳米结构的能力非常有限。譬如,没有一种结构表征工具能够用来确定一个纳米结构的表面结构到0.1À的精度或者更佳。透射电子显微术(TEM)能够用来研究一个晶体结构的内部情况,但是它不能提供有关表面以及靠近表面的原子排列情况的信息。扫描隧道显微术(STM)和原子力显微术(AFM)能够给出表面某区域的形貌,但它们并不能提供定量结构信息好到能仔细理解表面性质所要求的精度。当近场光学方法能够给出局部区域光谱信息时,它们能给出的关于局部杂质浓度的信息则很有限。除非目前用来表征表面和体材料的技术能够扩展到能够用来研究单个纳米体的表面和内部情况,否则能够得到的有关纳米结构的所有重要结构和组份的定量信息非常有限。

微纳米制造技术及应用范文第6篇

美国加州大学伯克利分校研究的这种新型电子皮肤,由电子工程与计算机科学教授阿里·贾韦带领的研究小组发明。它由合成橡胶和塑料制成,厚度还不及一张普通的纸。

这块电子皮肤样品上纵横各有16个可发光块。随着按压或弯曲力度的变化,发光块可以发出蓝、绿、红或黄色的光。据研究人员介绍,每个发光块上都装有半导体纳米碳管、有机发光二极管和压力感应装置。

这个压力感应装置基于贾韦团队三年前的发明。那时,贾韦把微型金属线安装在一张塑料片上,若有外力按压金属线,力量大小的数据就会显示在与塑料片相连的电脑上。

贾韦说,“我们不仅是在制造装置,也是在创造系统。我们已经证明,交互式电子皮肤可以包裹在不同的物体表面,这就产生了多种新型的人机交互模式,是一个了不起的系统。”

皮肤输入式技术的原理是,利用影像感应器,将皮肤视为轻触式屏幕,通过敲打与触摸来传输指令,实现控制家用电器、打电话、操作简单游戏等功能。目前,这项技术的操作准确率已超过80%。

事实上,在电子皮肤中植入感应器已不是什么新鲜事,让它具备分辨压力的能力才是突破,而如今,贾韦团队正在致力于让电子皮肤具备感应温度的能力。

越来越像人类皮肤

其实,电子皮肤的概念早已出现,而各国科研团队首先要攻克的难题,就是要使其具有灵敏的“感觉”,因为只有这样,电子皮肤才可能模拟或取代机体皮肤。

2003年,日本东京大学的研究团队利用低分子有机物并五苯分子制成薄膜,通过其表面密布的压力传感器,实现了电子皮肤可感知压力。

时隔两年,该研究团队在特殊塑料薄膜中重叠嵌入可感知压力和温度的两组晶体管,并在晶体管电线交叉的位置使用微传感器来记录电流起伏,由此可判断出日常温度和每平方厘米300克以上的压力。更令科学家欣喜的是,这种电子皮肤成本相当低,这也让人看到了大规模制造和推广的曙光。

在德国,慕尼黑工业大学的科学家也研制出了一款皮肤电路,利用红外线传感器和温度传感器,可探测相当于皮肤微小毛发所能感受到的物体距离,并模拟出人类皮肤的轻触觉。

近年来,随着尖端材料学研究的深入,石墨烯、碳纳米等高科技材料因超轻薄、韧性强、电阻率小等优良特性,也被科学家认为是电子皮肤的优良“基底”。例如由中国研究人员使用碳纳米管传感器制成的高灵敏度皮肤,甚至可感知20毫克的蚂蚁的重量。

美国斯坦福大学化学工程系华裔女科学家鲍哲南领导的科研团队,已成功研制出高灵敏度柔性橡胶材料。这种电子皮肤遍布高灵敏度电子感应器,获得压力时可改变内部密度,可感知一只蝴蝶落在上面的压力。此外,通过融合可拉伸式太阳能技术,这款电子皮肤还具备了自我发电等功能。

英国剑桥大学纳米科学中心的研究人员,也正在尝试将可随意拉伸和变形的电路移植到透明的弹性硅胶上,力图赋予电子皮肤更多近似于人体皮肤的物理特性。按照研究人员的设计,这种电子皮肤可包裹四肢与手臂,有望应用于皮肤移植。

大胆的设想

目前,对于大面积创伤、烧伤等病情,植皮几乎是唯一的挽救办法,而最好的植皮来源还是人体皮肤。进行这种手术时,医生们要切取患者自身或他人的皮肤进行移植修复,这常常会给人的身心带来新的创伤。此外,移植后的皮肤不仅十分脆弱,还存在触觉削弱、免疫力下降等后遗症。

如果电子皮肤能应用于临床,对于需要皮肤移植的人来说无疑将是一大福音。然而,电子皮肤若真正移植于机体,还要解决其与周围正常皮肤的神经、肌肉、淋巴及腺体等和谐共生,将感知的触觉反馈给神经细胞,接受神经元的指令等问题。这都是科学家下一步努力的方向。

但电子皮肤的应用将不仅仅限于替代人类皮肤。

它或将给智能机器人领域带来一场革命。机器人虽早已具备视觉和听觉等功能,并能进行一些复杂的技术操作,但由于皮肤是机器人技术研发中容易忽视的部分,直接导致了笨重的“盔甲”难以检测多方向的触觉三维力,难以体会拿起一个苹果、一个杯子或一块钢铁所需力量的差异。

机器实现智能的基础在感知,具备良好压敏特性和柔韧性的电子皮肤可最大程度上模拟人手的操作,突破握住鸡蛋而不捏碎,拿住酒瓶而不滑落等当前机器人研发领域存在的瓶颈。电子皮肤将能够解决机器人的触觉难题,使其敏感获知环境信息,又具有灵活性。

对于引导未来IT潮流的可穿戴式电子设备,电子皮肤也将大有可为。未来,将不再需要给慢性病患佩戴电子监视设备来跟踪心率、血压、血糖等指标,利用电子皮肤即可。比如,电子皮肤与智能手表和腕带等结合后,只需把电子皮肤输出的电学图形信号加以比对分析,就可以实现“智能把脉”。

目前,中国科学院纳米研究所科学家利用石墨烯与碳纳米制成的电子皮肤,可精确测量脉搏波形与声音波形,科学家假想,利用装有电子皮肤的设备监测咽喉部肌肉运动产生的微弱压力变化,完全可将压力变化信号转化为语音,使其成为聋哑人群的“传声筒”。

微软公司正在尝试的创新型电子皮肤应用更为大胆。该公司正在和美国卡内基梅隆大学合作,研发皮肤输入式技术。其原理是利用影像感应器,将皮肤视为轻触式屏幕,通过敲打与触摸来传输指令,实现控制家用电器、打电话、操作简单游戏等功能。目前,这项技术的操作准确率已超过80%,这或将推动智能家用设备的研发速率。

一汽奔腾B90 打造“旗舰升舱计划”

随着公务车采购政策的与执行,以及国家对乘坐自主品牌汽车的倡导,中国的自主品牌汽车开始逐渐成为公务车采购的新目标,并在整体市场中占据越来越大的比例。一汽奔腾B90也以此为背景全面发力,凭借强大的产品力与品牌力,成为公务车阵营中的中坚力量。

旗舰品质 ,成就公务车首选

早在2012年8月,福建省政府就一次性采购了72辆奔腾B90作为其政府用车。奔腾B90作为奔腾品牌全新中高级旗舰车型,能够赢得公务车市场的认可,其背后无疑是奔腾B90卓越的品质与实力的支撑。

在动力上,奔腾B90的研发与生产都基于中国一汽自主研发的全新M2轿跑车平台,搭载了中国一汽全新研发的ET3系列高性能全铝合金发动机,动力性和经济性兼备。

在车身轻量化方面,奔腾B90使用了大量轻质却更加坚韧的高强度钢材,降低车身自重的同时,也大大提高车身强度,实现了车身轻量化与安全性的完美平衡。

奔腾B90还将安全性提升到一个更高的标准,它采用了加强型3H结构车身,并在此基础上进行了多通道能量传递设计。自动车型全部标配了Bosch全新9代ABS/ESP系统。

在舒适性方面,奔腾B90进行了309项精确全面的振动噪声控制,使驾乘者享有宁静空间。

此外,在智能科技方面,奔腾B90装备了四大智能系统,同时还拥有诸多智能装备,为车主打造了一辆科技感十足的智能座驾。

“史上最强奔腾”打造“旗舰升舱计划”

微纳米制造技术及应用范文第7篇

魅族科技(中国)有限公司

最佳综合性能手机

创新性:PRO 5全金属机身设计,由魅族开发的独特着色和注塑工艺,让全金属后背免去天线带的困扰。

专业性:搭载ES9018K2M和OPA1612这两种专业的HiFi播放器,加入了标杆级的Solo耳放电路,引入4对NXP大电流三极管,打造专业音效体验。使用16nm制程工艺UFS 2.0技术,具备同时读写功能,相比只能单向读写的eMMC 5.0,速度约为其4倍。

前瞻性:基于mTouch与mPay,接入国内最大移动支付平台,支持指纹识别支付,在未来移动支付大潮中,魅族提前布局。

人本性:魅族PRO5采用mBack物理Home键,轻触以下返回,给予了用户理想的交互体验,同时又让MX5面板设计更为简洁。全新升级的“mCharge 2.0”,支持24W的快充规格,30分钟最多可充电65%。配合64位Flyme 4.5系统,更智能省电的Sensor Hub,拥有更强性能的同时,具备更长久的续航时间。

商业性:魅族PRO5后受到国内专业媒体和消费者的一致好评,24小时内便有500万用户预约。

nubia Z9

努比亚技术有限公司

中国手机设计天鹅奖

创新性:努比亚开创的aRC屏幕技术,将液晶显示面板中不可避免的封边进行视觉隐藏,为有边的LCD带来了无边的视觉效果;光绘2.0摄影技术让用户记录动态的艺术画面。

专业性:nubia Z9携定制Neovision 5.1拍照系统带来更多提升。新的拍照系统继承了电子光圈、星轨相机等场景化功能,拥有广阔的创作空间,可一键捕获转瞬即逝的精彩瞬间,实现流体雾化、时空凝固等专业效果。

前瞻性:aRC技术实现理想的无边视觉效果,握持解锁、玩转应用、调节亮度、快速启动等操作将通过对屏幕边缘的划动、点击、摩擦等方式实现,FiT边缘触控技术有效的使交互区域更丰富,极大地减化操作步骤。

人本性:nubia Z9的全新无边设计,简化用户操控体验的深度和难度,通过简单的边缘滑动就可完成的诸如亮度调节、清理内存、截屏、握边拍摄等多种功能,相较传统手机,操控步骤平均减少2.7步。

商业性:自上市以来,得到广大用户的关注,经过持续热销之后,将实现预期的百万级销量。

Qualcomm骁龙410处理器

Qualcomm Technologies, Inc.,

最佳手机芯片设计

创新性:Qualcomm骁龙410处理器是Qualcomm首款64位处理器,支持最高达150Mbps传输速度,为主流手机产品提供了优质的平台。

专业性:Qualcomm骁龙410处理器采用28纳米制程技术制造,支持64位计算,还支持所有主要模式和频段的4G LTE和3G蜂窝网络连接,同时支持双SIM卡和三SIM卡。

前瞻性:Qualcomm引领了移动生态系统向64位处理技术的过渡,骁龙410处理器则是Qualcomm的首款64位处理器,具备很强的前瞻性。

人本性:Qualcomm骁龙410处理器支持Qualcomm Quick Charge技术,为用户提供更理想的快速充电体验。

商业性:Qualcomm骁龙410处理器使千元范围的平价智能手机能够支持4G LTE。目前,采用骁龙410处理器的移动终端已经超过100款。此外,Qualcomm与中芯国际开展28纳米工艺制程和晶圆制造服务方面合作,采用中芯国际28纳米技术的骁龙410处理器已经成功应用于主流智能手机。

智能手机光学防抖摄像头及其方案

爱佩仪光电技术(深圳)有限公司

最佳手机方案设计

创新性:爱佩仪研发的自动化生产调试技术,降低了产品配置光学防抖解决方案的门槛,使得普通摄像头模组厂家也能在普通对焦摄像头模组的产线上生产高像素光学防抖摄像头具有开创意义。

专业性:爱佩仪通过驱动镜头实现自动对焦与四级(24dB)光学防抖,借助光学、电磁学、柔性机构学、图像处理、精密机械加工及高精度测量等先进控制理论与算法,提升专业性。

前瞻性:未来,高分辨率的拍照手机必须使用微型光学防抖技术,才能保证拍照效果与进一步提升拍照体验。在不久的将来,智能手机光学防抖技术将会迅速普及并成为智能手机标配功能。

人本性:爱佩仪防抖方案可让用户随时随地毫无顾忌地拍出高画质的照片,突出以人为本的拍照体验。同时用料环保,价格适宜更是普通大众期待的技术与产品。

商业性:爱佩仪设计的马达结构简单,有利于量产及降低生产成本,具备很强的商业价值。

视界

努比亚技术有限公司

中国手机APP天鹅奖

创新性:在该移动应用平台上,努比亚定期举行摄影大赛,专家点评,大神交流,专业手机摄影分享。让拍照与社交属性相结合,实现最大的创新。

专业性:在视界,用户可一次发表并上传9张图片(支持原图上传),作品细节清晰可见,更可一键分享到微博微信,让更多好友分享快乐。如果发现某张照片拍得特别好,可以深入了解该照片的一些信息,例如是用什么机器拍的、照片参数等,同时还可以将它设为手机壁纸,这是同类应用无法实现的功能。

前瞻性:通过视界可以实时关注附近的小伙伴分享的生活点滴,让更多用户接触到努比亚的信息,这种推广方式具有很强的前瞻性。

人本性:移动应用已经成为用户最重要的社交平台,分享信息已经成为用户的日常习惯。努比亚推出该应用,意在最大限度顺应用户的使用需求,让用户发现更多不同的美。

商业性:目前,很多人爱上了拍照,爱上了分享,爱上了记录生活中精彩的瞬间,这也成为视界具备更广阔商业空间的前提条件。

幻视

北京易讯理想科技有限公司

最具投资价值APP

创新性:幻视是一款实现增强现实技术的视觉识别软件,通过计算机生成的物体、场景,再累积叠加到真实场景中,把虚拟与现实很好地融合在一起,从而进一步增强体验者对真实环境理解与感知体验。

专业性:幻视拥有国内唯一的独立在线AR内容创建平台,内含10种功能模块,不仅支持图片、3D模型、人机交互和视频等多种内容形式,还具备跨平台特性,使用者都可以不受设备限制轻松上手。

前瞻性:幻视的应用范围非常广泛,覆盖IT、汽车、房产、餐饮、教育等多个层面和行业领域,无论是信息量还是展现形式都有它独特的优势,未来将应用在更为广泛的场景中。

人本性:幻视不仅能精确展示平面环境中的3D数字场景,它还能识别立体实物,大到地铁广告灯箱,小到电器上的Logo,实际条件下亿级图像识别准确率达到了95%,单幅图多目标的图像识别超过了30个,为用户提供了更理想的体验效果。

商业性:幻视帮助用户建立全新的体验环境,促使潜在消费者做出最终决策,具备很强的商业价值。

摩托罗拉新一代Moto 360

摩托罗拉移动

最佳年度智能硬件

创新性:新一代Moto 360“低功耗智能恒亮系统”可使屏幕持续常亮状态不会熄灭,成为真正意义上的手表。此外,新一代Moto 360还推出了全球首款专门针对女性设计的表款。

专业性:防刮擦康宁第三代大猩猩玻璃屏幕结合超窄边框与超薄抛光的切割工艺,拓展新一代Moto 360的视野。1.2GHz高通骁龙400四核处理器和主频为450MHz的Adreno305 GPU显示核心,搭配4GB机身内存和512MB运行内存,确保新一代Moto 360运行流畅、稳定。

前瞻性:新一代Moto 360是全球首款可完全定制的智能手表,通过Moto Maker选择合适的尺寸以及颜色各异的表圈,并搭配不同材质和颜色的表带。

人本性:新一代Moto 360内置运动跟踪器和Moto Body健身应用,提供专业的健身反馈和指导。此外,新一代Moto 360的表冠设计在2点钟方向,更加符合人体工程学。

商业性:新一代Moto 360自以来,受到了国内媒体的一致好评和广大中国消费者的青睐。

星镖4型北斗手持终端

广东侨兴宇航科技有限公司

最佳年度智能硬件

创新性:星镖4型北斗手持终端具有简洁的外观,小巧、轻便等特点,高级防护设计以及大容量锂电池低功耗的设计为用户保驾护航。通过与云端安全平台的紧密耦合,星镖4可持续工作48小时以上。

专业性:星镖4基于“北斗”卫星网络的通信方式,无需依赖传统的基站,也无需受终端无线电功率的约束,无论用户身处何地,均可通过卫星自由收发短信,云端安全平台提供7×24小时服务。

前瞻性:随着“中国制造2025”的推进,移动互联网、云计算、大数据、北斗卫星导航等项目已提升到国家发展的大战略当中。星镖4型北斗手持终端基于北斗卫星导航,符合国家战略发展和市场的需要。

微纳米制造技术及应用范文第8篇

X86的芯片设计将推广至手机、消费性商品和其他目前不常运用的领域―这是英特尔(.cn)于7月18日庆祝公司成立40周年前夕,其高级副总裁帕特・基辛格(Pat Gelsinger)对芯片产业未来做出的四大预测之一,他预言英特尔的产品将发展迅速,并将跨足到更多新领域中。这是继2006年的失败后,英特尔对手机市场的再次涉足。

MID只是前奏

在基辛格眼中,英特尔架构就是齐天大圣孙悟空的金箍棒,它能缩小、能放大,可以应用于从移动互联网设备到高性能服务器(HPC)的各种计算设备之中。

在X86架构诞生30周年之际,Atom带它走上了新的征程。

今年3月,计算机微处理器制造商英特尔宣布,将用Atom(原子)命名一种最新的低功耗微处理器系列产品。新的芯片将使用在移动互联网设备、超轻薄笔记本和台式机等产品中。

也许Atom的中文名字会让我们更好地领会它的不同――“凌动”。凌动芯片的面积小于25平方毫米,每个核心集成了4700万个晶体管,使用英特尔最新的45纳米制造技术,热设计功率的范围为0.6瓦至2.5瓦,不足酷睿2双核处理器的十四分之一。

4月,上海。在英特尔2008年全球唯一的一次春季IDF上,英特尔携手合作伙伴展示的基于Atom凌动处理器的MID(移动互联网设备)成为本次IDF最大的亮点。

两个月后,在北京国际新闻中心(BIMC)举行的“爱国者MID――开启移动互联网时代”新品会上,华旗爱国者全球首款基于英特尔Atom凌动处理器技术的移动互联网设备(Mobile Internet Device, MID)终于粉墨登场。

然而,目前推出的MID只是英特尔重新涉足手机市场的一块试金石。英特尔亚太区通讯产品行销及业务总监陈武宏(Michael W.Chen)指出,MID在加入手机语音通话功能后,X86架构的PC微型化设计及软件兼容性,更优于市面上采用ARM架构的同级产品,MID推出元年期望能提升市场对于MID全新领域认知,并改变消费者使用习惯,预计内建语音通话功能及待机耗电量(idle power)大幅下降的第2代MID,出货将会有显著增长。

对于未来的发展,英特尔CEO欧德宁则希望放长线钓大鱼――“我们对在非洲销售的35美元手机没有兴趣,10年后我们将在手机市场上获得成功。”

两年后回归

英特尔上一次涉足手机市场要追溯到2000年,虽然XScale芯片被广泛使用在摩托罗拉(.cn)、黑莓(BlackBerry)及Treo等WindowsMobile智能手机(如多普达)和PDA中,在2005年到2006年的一年时间里,由于德州仪器(.cn)、三星(.cn)的低价抢单,这些手机厂家的采购量大幅降低。2006年,英特尔在耗费了6年的时间和约50亿美元的资金投入后,最终放弃了手机芯片市场,将其XScale通信芯片业务全部出售给了Marvell。

然而英特尔并不甘心放弃这块在它看来汩汩冒油的“肥肉”,英特尔的有关人士表示,未来的三到五年内英特尔可能会对通信市场做一个新的评估,不排斥英特尔有杀回来的可能。

时隔两年,这个PC芯片巨擘果然又杀回来了,这再一次的出征,英特尔大有重整河山的壮志雄心,“在首次进军手机市场时,我们采用了ARM技术,但我们后来意识到:我们为什么要使用其它厂商的技术,我们能够使X86芯片的能耗各价格降低到与ARM芯片相当的水平。通过凌动芯片我们证明了这一点。”基辛格如是说。

尽管英特尔对于重返手机市场显得胸有成竹,然而业界却并不都是掌声。PNC Institutional Investments的分析师比尔・戈尔曼(Bill Gorman)就不够看好英特尔的此番举动―“我对此持怀疑态度,要进入手机芯市场很难。这一市场上有大牌竞争对手,高通仍然在开发最先进的技术,德州仪器也不会甘心拱手让出自己的市场。”

德州仪器手机业务部门掌门格雷格・德拉吉(Greg Delagi)表示,英特尔单单依靠性能无法赢得客户。他说,当前产品的能耗低于英特尔的移动互联网设备,续航时间更长。尽管英特尔称正在开发能耗只有当前产品十分之一的芯片,但这是不够的。基于德州仪器OMAP芯片的产品能耗约为1瓦,基于英特尔凌动芯片的产品能耗约为5瓦,两种产品的续航时间将因此有很大差别。

硝烟四起

随着手机市场的迅猛发展,手机已经成为人们生活必需品之一,在这种发展趋势下,人手一机的时代即将到来。面对着巨大的市场前景,英特尔公司当然不会放弃这块大蛋糕,然而它毕竟是后来者,那些早已在这块市场占地为王的厂商们会愿意将自己的蛋糕拱手让人么?

早前,全球著名的芯片IP及服务供应商ARM公司中国区总裁谭军曾对英特尔拟重返手机市场一事发表过这样的评论:“我看到了英特尔在手机等便携终端方面发表的观点,我们并不担心它能带来什么冲击。”

他说英特尔针对ARM的观点没有针对性。“我们两家公司的商业模式完全不同。”谭军说,ARM做的只是知识产权授权,不会参与完整的芯片产品的设计,更不会去生产与制造。而英特尔则是典型的IDM模式,两者之间有错位关系。

那么ARM的合作伙伴,倚赖ARM标准进行手机芯片生产和制造的厂商就成了英特尔最大的竞争对手。

在手机芯片市场上,高通几乎席卷全球3G手机芯片市场,加上其2008年抓紧在景气低潮加大投资的策略,不仅加码3.5G世代芯片开发,甚至在HSPA+及LTE技术的投资也不断领先。同时,面对竞争对手此时还在选择观望景气动态的被动情形,高通在全球3G及3.5G手机芯片市场已掌握发球权的优势,竞争对手要想取代的机会已微乎其微。据市场研究公司iSuppli数据显示,高通公司于去年占据了18.2%的手机芯片市场份额。

另一个颇具实力的竞争对手,总部位于美国达拉斯的德州仪器则也占据了16%左右的市场。

除了手机市场原有的几支雄厚的力量,英特尔在PC市场上的老对头也同样觊觎着这块大蛋糕。