首页 > 文章中心 > 逻辑推理的重要性

逻辑推理的重要性

开篇:润墨网以专业的文秘视角,为您筛选了八篇逻辑推理的重要性范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

逻辑推理的重要性范文第1篇

【关键词】中学数学 推理能力 培养

随着教育改革的全面推进,新教材纠正了旧教材那种过分强调推理的严谨性,以及渲染逻辑推理重要性,而是提出了新的观点“合

理推理”是新教材的一大特色。本文就新形势下的初中数学教学中学生推理能力的培养做了探索。

当今教育改革正在全面推进。培养学生的创新意识和创新能力是大家公认的新教改的宗旨。合情推理是培养创新能力的一种手段和过程。人们认为数学是一门纯粹的演绎科学,这难免太偏见了,忽视了合情推理。合情推理和演绎推理相辅互相成的。

一、合情推理与演绎推理的关系。

演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程。根据数学建构主义认为:知识并非是主体对客体的被动的镜面式的反映,而是一个主动的建构过程。学习者通过不断对各种信息进行加工、转换,形成假设,所以合情推理是数学建构主体思维的关键步骤,也是必不可少的思维方法,它可以促进知识的深化,加速知识的迁移,能力的提升。合情推理是演绎推理的前奏,演绎推理是合情推理的升华,作为数学逻辑思维的重要组成部分,在教学过程中要特别重视如何采用适当的途径强化合情推理的意识,培养学生的合情推理的能力。

二、培养学生合情推理能力的可行性途径

(一)精心设计实验,激发学生思维

Gauss曾提到过,他的许多定理都是靠实验、归纳法发现的,证明只是补充的手段。在数学教学中,正确地恰到好处地应用数学实验,也是当前实施素质教育的需要。著名的数学教育家GeorgePolya曾指出:“数学有两个侧面,一方面是欧几里得式的严谨科学,从这方面看,数学像是一门系统的演绎科学;但是另一方面,在创造过程中的数学更像是一门实验性的归纳科学”,从这一点上讲,数学实验对激发学生的创新思维有着不可低估的作用。

(二)仔细设计问题,激发学生猜想

数学猜想是数学研究中合情的推理,是数学证明的前提。只有对数学问题的猜想,才会激发学生解决问题的兴趣,启迪学生的创造思维,从而发现问题、解决问题。数学猜想是在已有数学知识和数学事实的基础上,对未知量及其规律做出的似真判断,是科学假说在数学的体现,它一旦得到论证便上升为数学理论。牛顿有一句名言:“没有大胆的猜想,就做不出伟大的发现。”数学家通过“提出问题—分析问题—作出猜想—检验证明”,开拓新领域,创立新理论。在中学数学教学中,许多命题的发现、性质的得出、思路的形成和方法的创造,都可以通过数学猜想而得到。通过猜想不仅有利于学生牢固地掌握知识,也有利于培养他们的推理能力。

(三)在“空间与图形”中培养合情推理能力

在“空间与图形”的教学中.既要重视演绎推理。又要重视合情推理。初中数学新课程标准关于《空间与图形》的教学中指出:“降低空间与图形的知识内在要求,力求遵循学生的心理发展和学习规律,着眼于直观感知与操作确认,多从学生熟悉的实际出发,让学生动手做一做,试一试,想一想,认别图形的主要特征与图形变换的基本性质,学会识别不同图形;同时又辅以适当的教学说明,培养学生一定的合情的推理能力。”并为学生“利用直观进行思考”提供了较多的机会。学生在实际的操作过程中。要不断地观察、比较、分析、推理,才能得到正确的答案。如:在圆的教学中,结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系;等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生对发现的性质进行证明,使直观操作和逻辑推理有机地整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续,这个过程中就发展了学生的合情推理能力。注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。同时也有助于学生空间观念的形成,合情推理的方法为学生的探索提供努力的方向。

(四)在学生熟悉的生活环境中培养合情推理能力

逻辑推理的重要性范文第2篇

[论文关键词]法律逻辑 司法实践 现代逻辑

一、何为法律逻辑

目前,法律逻辑学还没有一个统一的学术体系,提到法律逻辑学,仍被视为一个怪异且冷门的研究,许多个人学术观点大量存在。由于法学家们不愿意把精力放在一种方法论上,而那些熟通方法论的人,又未必对法律有兴趣,所以法律逻辑学的困难使其裹足不前。

第一种观点认为:“法律逻辑就是普通逻辑在法学领域中的具体运用,其理论基础就是形式逻辑所阐述的原理。”同意这种观点的学者认为,法律逻辑并不具备什么特定的研究对象,其只是在形式上,运用逻辑原理在法的理论、法的规范和法的实践中的应用。持这种观点的学者认为, 法律逻辑的研究对象就是法律中的逻辑问题,法律逻辑就是形式逻辑在法律规范或法律活动中的应用。

第二种观点则认为,法律逻辑作为一门学科,应有其独立的研究对象。现在很多学者同意第二种观点。这些学者认为法律逻辑作为一门学科,是应该有其特定的研究对象的,而其作为逻辑学的一门分支学科,法律逻辑的研究应是与一般逻辑学的研究对象相对应、相关联的。

由支持后一种观点的学者们的观点中,我们可以简单地将法律逻辑定义为:法律逻辑是一门主要研究法律思维形式及其逻辑方法的科学。

法律逻辑的历史大致分为三个阶段:

第一阶段主要是建立以传统逻辑或一阶逻辑内容为框架的法律逻辑体系,并将这些理论广泛地运用于法律思维领域之中;

第二阶段主要是从法律适用问题的研究扩展到了法律发现或获取问题的研究;

第三阶段主要是对事实发现、法律获取、诉讼主张与裁决证成的规律、规则与方法进行系统的研究,逐渐地建立以事实推理、法律推理、判决推理与法律论证理论为主要内容的不同于传统逻辑与一阶逻辑框架的法律逻辑体系,并将这些理论应用于事实的发现、法律的获取、诉讼主张与裁决的证立之中。

二、逻辑在法律中的作用遭到质疑

美国的大法官霍姆斯断然指出了“法律的生命不是逻辑”的结论后,各种批判法律与逻辑关系的理论,在法律和教学实践中产生了很大的影响。

对于许多有影响的重大疑难案件,形式逻辑的作用在下降,而本应独立性非常强的法律,却因其外在客观环境,诸如正义、人情、情势等因素的作用在强化。

于是逻辑在法律中的作用遭到质疑,其对法律工作的影响并无法量化,甚至能感受其在法律适用当中的作用微乎其微,面对这种实践和种种批判理论对法律逻辑的影响很大,其权威地位实际上已经有了很大的动摇。而且一度,在法学院的理论课堂上,逻辑与法律的密切关系被撕裂了,二者似乎变成了并不相关的两个概念。

一些法学类的高校专业课中并没有“法律逻辑”课程,即便学校设置了这样的课程,那么也是课时量、人员配备相对薄弱的。更多的是被作为选修课而开设,教学管理者、教师和学生们都对法律逻辑学不重视。产生这种情况的原因,主要是因为我们对于法律逻辑学研究十分欠缺,还没有研究出适应我国法学教育的法律逻辑学体系。

在学术界,许多法律人总会提出:“现代逻辑对法律到底有什么重要意义?”似乎并不显著的作用也正是许多法学家并不愿意将精力投身于这一学科的原因之一。

现代逻辑提供了具有内在一致性的表达和分析思维的全新原则和方法,而这种思维是正确、有效地完成法律工作所必不可少的。这可以作为一种简单回答上述问题的答案,但是也许这并不能彻底消除对现代逻辑在法律中应用的困惑。那么,如果希望有更进一步的了解,就必须深入到一些相关分析之中,它们从多个方面证明了现代逻辑对法律思维的重要作用。

三、法律逻辑应当受到重视的原因

通过深入分析,我们可以了解到,借助于法律逻辑,法律思维的合理性得到增强,其重要作用主要体现在以下几个方面。

(一)法律人的思维借助法律逻辑思维实现

法律思维不能违背最基本的逻辑规律,按法制模式的设计要求,法律人的主要思维形式应该是借助逻辑思维规律来完成的。在形式逻辑中,有许多对思维规律构成了一般的思维模式,指导着人们的思维,而这一点在法律思维中也不例外。

通过法律语言表达和法律思维是一个法律人存在的主要方式。那么如何认定上述定义中的两个条件呢?法律语言表达的基本要求之一是不违背逻辑思维的基本要求,即条理清楚。而法律思维则强调依据法律规范进行思维,其有多种表现形式,如强调程序优先、普遍性优于特殊性、形式合理性优于实质合理性等。

此外,法律思维不能与人们的日常逻辑思维明显违背,对法律判决的结论必须是依据推理的方式逻辑地得出,否则判决就缺少了说服力。

(二)法律解释依赖于法律逻辑

现代法学法律解释的方法论,必须以法律逻辑的方式来进行研究。在解释法律的时候需要运用逻辑规则。法律解释学是通过彻底的理性本质与那些直觉的解释形式加以区别的,其是逻辑的解释。

近代成文法主义非常推崇法律逻辑,但是他们研究的是司法格式,而不是具体的法律技术。这一点最明确的体现就是三段论在法律条文中的应用。以司法中的三段论为例,通过在许多简单的案件中直接运用,便可以推出判决结论。部分学者认为80%的案件都可以通过三段论推理加以解决。而在法律解释中其明晰性原则也是靠三段论来支撑的,即对明确的法律就必须坚决执行,不需要解释的就不能随意添加意义,这是法律解释的重要原则。而三段论的推理是法律解释的基本方式之一。

(三)法律逻辑巩固法律发展

法律逻辑可以巩固法律的发展,其可以在法律适用的如下几个方面得到印证:

在法庭辩论中,双方辩论的逻辑是一种出自法律的论证和反驳,该内容并不关心立法者想什么,而通过这个案件我们能够从法律条文中援引什么。通过法律逻辑的指引是法制能够得以实现的基本保证。

在诉讼事实的论证问题中,人们期望通过了解法律上的论证的性质,继而推断出证明的可能性是什么样的,并且证明的技术和手段是什么,要得出上述结论,就需要通过逻辑规则甚至反逻辑规则来证明证据的相关性,而这种结论的得出依赖于法律逻辑的运用。

在刑事案件侦查中,案件的正确侦查既需要侦查人员认真勘查现场、确定侦查范围、否定嫌疑对象,而案件的定论需要在掌握既有案件事实材料的基础上,追溯案情发生的真实时间、地点、作案动机等,再通过正确运用逻辑推理,对案件的性质、作案的手段等进行合理推测和断定。要从上诉案件线索中作出正确的侦查判断,就必须通过借助于一定的逻辑推理形式来完成。这样可以得出,逻辑推理是分析案情、案件侦查的重要工具。

四、如何加强法律逻辑的适用

法律逻辑作为法律学者、工作者需要拥有的一项重要的基本要素,其有着无法取代的重要作用。那么在法律逻辑的适用问题上,我们应当采取哪些措施来加强呢?

(一)在态度上正视法律逻辑的重要地位

法律逻辑作为一个基本要素,在人们适用法律时起着重要的作用,但是由于它的作用并不直接外在地表现出来,所以法律逻辑的重要地位被忽视。

如果将一个国家的法律体系比作一座摩天大楼的话,那么法律逻辑就是这个法律体系的内部设计,只有当内部设计合理且得到执行的时候,这座大楼才会在时间和客观环境的变化下,稳固地保持其体态。基础是每一个专业在达到巅峰的前提条件,我们只有正视法律逻辑的重要性,在态度上将其视为法学中一个重要的、不可分割的总体后,才会给予其应有的重要地位,而不能因为法律逻辑在表现出来的外在重要性不够明显时,将其忽略。只有真正地端正对待法律逻辑的态度,才能在接下来的法律逻辑教育及应用中使其得到发展,也为今后法律逻辑的适用提供了保证。

(二)在法律教学中注重法律逻辑的教育

在现在的法律教学中,对法律学者的法律逻辑教育并未得到充分的重视。很多学校在教学设计中,并没有将其作为一个重要的科目,这使得法律逻辑学渐渐淡出了法律学习者和爱好者们的视线,然而如果想要真正掌握法律知识,在现实的社会问题中很好地应用法律,拥有一个正确的法律思维和法律逻辑是必不可少的。

在现代社会中,法律逻辑是法治社会中法律评价的逻辑起点。在呼吁端正对法律逻辑的态度后,我们首先要做的就是普及法律逻辑的教育,使更多的人认识到它的重要性,积极地学习,以使得法律逻辑学在法律应用中发挥更加重要的作用。在教学中重视对法律逻辑的教育和研究,这也是提高法律逻辑地位的一个重要措施,同时给法律逻辑在法律适用中提供了理论基础。

(三)在实践中应用法律逻辑

条理性和逻辑性是决定一件事情完成效率和效果的有效保证,在态度上端正了对法律逻辑的认识,在接受了深入的法律逻辑教育之后,我们就要将理论联系实际,在实践中应用法律逻辑。

其实每一个法律工作者在实践中多会应用法律逻辑,只是其表象并不明显而被忽略,然而拥有一个正确的法律逻辑会提高法律工作的工作效率、保证法律工作的质量。所以定期对法律工作者的法律逻辑进行培训也是提高法律逻辑地位的一个重要措施。

后续的教育和学习,会使得在接触实务后的法律工作者们更好地了解以前所学习的知识,也为接下来的工作带来了更好的改善。更多地在实际工作中认识到法律逻辑的适用价值,在更加有效地提高法律逻辑的同时,也会为法律工作的顺利进行提供可靠基础。

五、总结

逻辑推理的重要性范文第3篇

关键词:中学;数学教学;推理能力;培养

当今,教育领域正在全面推进,旨在培养学生创新能力的教学改革。但长期以来,中学数学教学十分强调推理的严谨性,过分渲染逻辑推理的重要性而忽视了生动活泼的合情推理,使人们误认为数学就是一门纯粹的演绎科学。事实上,数学发展史中的每一个重要的发现,除演绎推理外,合情推理也起重要作用,合情推理与演绎推理是相辅相成的。在证明一个定理之前,先得猜想、发现一个命题的内容,在完全作出证明之前,先得不断检验、完善、修改所提出的猜想,还得推测证明的思路。你先得把观察到的结果加以综合,然后加以类比,你得一次又一次地进行尝试,在这一系列的过程中,需要充分运用的不是论证推理,而是合情推理。因此在数学学习中,既要强调思维的严密性,结果的正确性,也要重视思维的直觉探索性和发现性,即应重视数学合情推理能力的培养。

一、在“数与代数”中培养合情推理能力

在“数与代数”的教学中。计算要依据一定的“规则”――公式、法则、推理律等。因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:有理数加法法则是以学生有实际经验的向东向西问题用不完全归纳推理得到的,教学时不能只重视法则记忆和运用,而对产生法则的思维一带而过,又如,对于加乘法各运算律也都是采用不完全归纳推理形式提出的,重视这样的推理过程(尽管不充分)既能解释算律的合理性,又能加强对算律的感性认识和理解。再如,初中教材是用温度计经过形象类比和推理引入数学数轴知识的。再如:求绝对值

|-5|=? |+5|=? |-2|=? |+2|=? |-3/2|=? |+3/2|=?

从上面的运算中,你发现相反数的绝对值有什么关系?并作出简捷的叙述。通过这个例子,教学可以培养学生的合情推理能力,再结合数轴,可以让学生初步接触数形结合的解题方法,并且让学生了解绝对值的几何意义。

在教学中,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,要充分展现推理和推理过程,逐步培养学生合情推理能力。

二、在“空间与图形”中培养合情推理能力

在“空间与图形”的教学中。既要重视演绎推理。又要重视合情推理。初中数学新课程标准关于《空间与图形》的教学中指出:“降低空间与图形的知识内在要求,力求遵循学生的心理发展和学习规律,着眼于直观感知与操作确认,多从学生熟悉的实际出发,让学生动手做一做,试一试,想一想,认别图形的主要特征与图形变换的基本性质,学会识别不同图形;同时又辅以适当的教学说明,培养学生一定的合情的推理能力。”并为学生“利用直观进行思考”提供了较多的机会。学生在实际的操作过程中。要不断地观察、比较、分析、推理,才能得到正确的答案。如:在圆的教学中,结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系;等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生对发现的性质进行证明,使直观操作和逻辑推理有机地整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续,这个过程中就发展了学生的合情推理能力。注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。

三、在“统计与概率”中培养合情推理能力

统计中的推理是合情推理,是一种可能性的推理,与其它推理不同的是,由统计推理得到的结论无法用逻辑推理的方法去检验,只有靠实践来证实。因此,“统计与概率”的教学要重视学生经历收集数据、整理数据、分析数据、作出推断和决策的全过程。如:为筹备新年联欢晚会,准备什么样的水果才能最受欢迎?首先应由学生对全班同学喜欢什么样的水果进行调查,然后把调查所得到的结果整理成数据,并进行比较,再根据处理后的数据作出决策,确定应该准备什么水果。这个过程是合情推理,其结果只能使绝大多数同学满意。

概率是研究随机现象规律的学科,在教学中学生将结合具体实例,通过掷硬币、转动转盘、摸球、计算器(机)模拟等大量的实验学习概率的某些基本性质和简单的概率模型,加深对其合理性的理解。

四、在学生熟悉的生活环境中培养合情推理能力

逻辑推理的重要性范文第4篇

[关键词]初中数学教学 合情推理能力 培养

合情推理所得的结果具有偶然性,但也不是完全凭空想象,它是根据一定的知识和方法做出的探索性的判断,因而在平时的课堂教学中如何教会学生合情推理,是一个值得探讨的课题。当今,教育领域正在全面推进,旨在培养学生创新能力的教学改革。长期以来,中学数学教学十分强调推理的严谨性,过分渲染逻辑推理的重要性而忽视了生动活泼的合情推理,使人们误认为数学就是一门纯粹的演绎科学。

一、在“数与代数”中培养合情推理能力

在“数与代数”的教学中,计算要依据一定的“规则”――公式、法则、推理律等。因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:有理数加法法则是以学生有实际经验的向东向西问题用不完全归纳推理得到的,教学时不能只重视法则记忆和运用,而对产生法则的思维一带而过,又如,对于加乘法各运算律也都是采用不完全归纳推理形式提出的,重视这样的推理过程(尽管不充分)既能解释算律的合理性,又能加强对算律的感性认识和理解。再如,初中教材是用温度计经过形象类比和推理引入数学数轴知识的。在教学中,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,要充分展现推理和推理过程,逐步培养学生合情推理能力。

二、在“空间与图形”中培养合情推理能力

在“空间与图形”的教学中,既要重视演绎推理.又要重视合情推理。初中数学新课程标准关于《空间与图形》的教学中指出:“降低空间与图形的知识内在要求,力求遵循学生的心理发展和学习规律,着眼于直观感知与操作确认,多从学生熟悉的实际出发,让学生动手做一做,试一试,想一想,认别图形的主要特征与图形变换的基本性质,学会识别不同图形;同时又辅以适当的教学说明,培养学生一定的合情的推理能力。”并为学生“利用直观进行思考”提供了较多的机会。学生在实际的操作过程中.要不断地观察、比较、分析、推理,才能得到正确的答案。如:在圆的教学中,结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系;等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生对发现的性质进行证明,使直观操作和逻辑推理有机地整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续,这个过程中就发展了学生的合情推理能力.注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。同时也有助于学生空间观念的形成,合情推理的方法为学生的探索提供努力的方向。

教师要善于激发学生的“数形结合”兴趣,熏陶学生的“数形结合”意识。“兴趣是最好的老师”,学习数学尤其如此。怎样使一个初中一年级的学生带着浓厚的兴趣步入“数形结合”的圈子呢?首先,展现数学美本身所蕴涵的数形美感。比如,不妨考虑用新学期的第一节课,重点地去向学生介绍一下数学史方面的知识。你可以从欧几里得的古代《几何原本》,说到诸多数学发现再到近代数学的发展,关键是要举出那些有关数学美的经典事例,如勾股定理、黄金分割等,相信这样的启蒙课对于渴望求知的初中生而言是很必要的,其实在今后的课堂中,我们也可以适当地穿插一些类似的内容,让学生经常领悟到数与形结合的客观美感,激发其学习兴趣。其次,重视“数形结合”基础阶段的引导。其实有关数形结合思想的内容几乎贯彻于初中数学的始终,但我个人认为,“数轴”的学习对于处于“数形结合”萌芽时期的初中生而言是决定性的。因为它在初中生的数形结合能力培养过程中起到一个根基性的作用。一方面,它可以与有理数、无理数的学习联系起来,让初中生开始感受什么是数形结合;另一方面,它通过方程、不等式的应用让学生真正体验到数形结合的思想气息,而恰恰是这种体验令学生见证了数与形的和谐统一,并在潜移默化中最终形成运用数形结合的思想意识。

三、在“统计与概率”中培养合情推理能力

统计中的推理是合情推理,是一种可能性的推理,与其它推理不同的是,由统计推理得到的结论无法用逻辑推理的方法去检验,只有靠实践来证实。因此,“统计与概率”的教学要重视学生经历收集数据、整理数据、分析数据、作出推断和决策的全过程。如:为筹备新年联欢晚会,准备什么样的水果才能最受欢迎?首先应由学生对全班同学喜欢什么样的水果进行调查,然后把调查所得到的结果整理成数据,并进行比较,再根据处理后的数据作出决策,确定应该准备什么水果。这个过程是合情推理,其结果只能使绝大多数同学满意。

概率是研究随机现象规律的学科,在教学中学生将结合具体实例,通过掷硬币、转动转盘、摸球、计算器(机)模拟等大量的实验学习概率的某些基本性质和简单的概率模型,加深对其合理性的理解。

四、在学生熟悉的生活环境中培养合情推理能力

逻辑推理的重要性范文第5篇

“先猜后证”──这是大多数数学方法、规律、法则、定理、公理等的发现之道。解决问题时的合情推理的特征是不按逻辑程序去思考,但实际上是学生把自己的经验与逻辑推理的方法有机地整合进来的一种跳跃性的表现形式。因此在数学教学中,既要强调思维的严密性,结果的正确性,也要重视思维的直觉探索性和发现性,即应重视数学合情推理能力的培养。那么数学教师在课堂教学中如何培养学生的合情推理能力呢?

一、在“数与代数”教学中培养学生的合情推理能力

在“数与代数”的教学中,对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:有理数加法法则是以学生有实际经验的向东向西问题用不完全归纳推理得到的,教学时不能只重视法则记忆和运用,而对产生法则的思维一带而过,又如,对于加乘法各运算律也都是采用不完全归纳推理形式提出的,重视这样的推理过程(尽管不充分)既能解释算律的合理性,又能加强对算律的感性认识和理解。

在备课时,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,在教学中要充分展现推理和推理过程,并在黑板上演示出来,让学生一起模仿,加强师生互动,逐步培养学生合情推理能力。

二、在“空间与图形”教学中培养学生的合情推理能力

在“空间与图形”的教学中.既要重视演绎推理,又要重视合情推理。数学新课程标准关于《空间与图形》的教学中指出:“降低空间与图形的知识内在要求,力求遵循学生的心理发展和学习规律,着眼于直观感知与操作确认,多从学生熟悉的实际出发,让学生动手做一做,试一试,想一想,认识图形的主要特征与图形变换的基本性质,学会识别不同图形;同时又辅以适当的教学说明,培养学生一定的合情的推理能力。”

这为学生“利用直观进行思考”提供了较多的机会。学生在实际的操作过程中,要不断地观察、比较、分析、推理,才能得到正确的答案。如:在圆的教学中,结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生对发现的性质进行证明,使直观操作和逻辑推理有机地整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续,这个过程中就发展了学生的合情推理能力。同时也有助于学生空间观念的形成,合情推理的方法为学生的探索提供努力的向。

三、在“统计与概率”教学中培养学生的合情推理能力

统计中的推理是合情推理,是一种可能性的推理,与其它推理不同的是,由统计推理得到的结论无法用逻辑推理的方法去检验,只有靠实践来证实。因此,“统计与概率”的教学要重视学生经历收集数据、整理数据、分析数据、作出推断和决策的全过程。如:为筹备新年联欢晚会,准备什么样的水果才能最受欢迎?首先应由学生对全班同学喜欢什么样的水果进行调查,然后把调查所得到的结果整理成数据,并进行比较,再根据处理后的数据作出决策,确定应该准备什么水果。这个过程是合情推理,其结果只能使绝大多数同学满意。

概率是研究随机现象规律的学科,在教学中学生将结合具体实例,通过掷硬币、转动转盘、摸球、计算器(机)模拟等大量的实验学习概率的某些基本性质和简单的概率模型,加深对其合理性的理解。

四、在学生熟悉的生活环境中培养学生的合情推理能力

逻辑推理的重要性范文第6篇

【中图分类号】G 【文献标识码】A

【文章编号】0450-9889(2013)07B-0076-02

学生刚从小学升入中学时,心理和生理都发生着巨大的变化,而数学教学也发生着重大的转变,初中数学在小学数学的基础上增加了复杂的平面几何、代数、有理数、实数、一次函数与二次函数等,内容多,难度大,学生感到吃不消,因此对数学产生畏惧感。以下针对七年级学生学习初中数学时出现的问题,谈谈具体的解决方法。

一、提升学生的数学学习能力

初中数学较之小学数学更为复杂、抽象,特别是数字到字母的转变、具象到抽象的转变等,一些逻辑推理能力稍差的学生学习起来感到十分吃力,学生在七年级阶段学不好,会影响到今后对数学的深入学习。因此,提升学生的数学学习能力尤为重要。逻辑推理能力是学生学习初中数学的首要必备能力,在具体教学中,教师要注重对学生逻辑推理能力的培养。

例如,在几何教学中,培养学生将文字语言转化为数学语言的逻辑思维。

师:已知:HC是∠ACB的角平分线,同学们从已知条件可以知道什么?

生:因为HC是角平分线,所以∠HCA和∠HCB两个角相等。

师:没错,不仅∠HCA=∠HCB,而且别忘记∠HCA=∠HCB=∠ACB。

师:已知AB//CD,直线EF分别与直线AB和CD交于点G和H,请同学把图画出来。

学生根据对条件的理解画出图形,如图1。

师:∠AGH和∠GHD是内错角,所以∠AGH=∠GHD,同学们根据老师的思路,还能推理出什么?

生:因为AB//CD,所以∠FHD=∠FGB,并且∠AGH+∠CHG=180°。

教师先举例说明,再让学生自己进行观察推理,使学生不至于因为知识点理解有困难而走偏路。通过步步引导,逐渐提高学生的理解能力和逻辑推理能力。

二、把握教学内容的衔接

与小学数学相比,初中数学的内容更加系统丰富,如果教师处理不好中小学数学教学内容衔接的问题,会直接导致学生在初中数学的学习中脱轨。因此,在教学过程中,教师必须注意初中数学和小学数学的衔接,在接触一个新的知识点时,先分析小学数学与初中数学的差异,让学生意识到数学在初中阶段的系统化,同时,又要给予学生充分的信心,使学生不会因为初中数学与小学数学的巨大差异而产生恐惧心理。

例如,在“有理数”的教学中,我的教学过程如下:

师:小学数学是在算术数中研究问题的,我们现在开始学习一个新的知识――有理数。

学生从书上找到有理数的概念,师引入负数,并举例说明其用法。

师:同学们,我们怎样区别山峰的海拔高度与盆地的海拔高度这两个具有相反意义的量呢?

生:用负数,就像零上几度和零下几度一样。

师:没错。事实上,有理数与算术数的根本区别在于有理数由两部分组成:符号部分和数字部分,数字部分也就是算术数。

生:也就是说,有理数相比小学的算术数只是多了符号的变化。

师:对,例如:(-5)+(-3),同学们可以先确定符号是“-”,再把数字的部分相加。

生:答案是(-5)+(-3)=-(5+3)=-8。

在算术数到有理数这一重大转变中,教师明确了切入的方向和步骤,使教学内容与小学数学的内容很好地衔接,同时,又能帮助学生在小学的基础上理解有理数,使学生感受到初中数学与小学数学内容上的一脉相承,从而适应初中数学的学习。教师在教学中要注意由小学数学内容或生活中的实例引入教学,拉近学生与新知识的距离,加深对知识的理解,再实战练习,让学生不再对初中数学望而生畏。

三、培养学生良好的学习习惯

良好的学习习惯对于初中阶段的数学学习极其重要,在小学阶段,学生大多没有形成特定的学习习惯,往往以完成教师布置的作业为主要目标,临近考试才看书“临时抱佛脚”。大多数学生在进入初中后,面对快节奏的学习显得十分不适应。因此,教师要致力于培养学生良好的学习习惯,让学生面对高强度的学习任务也能游刃有余。在初中数学的学习习惯中,预习和复习尤显重要。

1.重视预习

进入初中阶段,数学教学进度陡然加快,学习难度也逐步加深,学生一时难以适应,在听课过程中,学生由于没有预览新知识,对教师所讲内容十分茫然,从而产生焦虑急躁的情绪,影响继续听讲。久而久之,不仅听课效率下降,更打击了学生学习初中数学的信心和兴趣。因此,教师应在布置当天学习内容的作业时,将预习次日学习内容作为一项作业布置给学生,并提出预习的具体要求,指导学生预习的方法,让学生逐渐养成预习的习惯。

2.正确把握复习的节奏和掌握复习的方法

复习也是一个极其重要的学习习惯。根据艾宾浩斯遗忘规律曲线,在识记的最初阶段遗忘速度很快,以后逐步减缓。因此,在学习新知后若不及时加以巩固复习,学习效果将大打折扣。教师应向学生强调复习的重要性,明确要求学生在做作业之前先复习当天所学内容,并阶段性回顾单元章节知识,以强化学习效果。

复习主要包括两部分,一部分是新授课后对已学知识点的回顾和巩固,另一部分是考试前对知识的回忆和温习。首先是新授课后对已学知识点的回顾和巩固,在这一环节,学生总感觉学习时间不够,光是完成教师布置的作业就已经很吃力了,更别说复习,这就要求学生学会把握复习的节奏。教师应该适时在课堂上复习已学知识或点评新旧知识点的联系,用课堂讲习题的方式间接提醒学生复习的重要性,使学生在潜移默化中适应教师的复习节奏和方法,最终化为自己的习惯和方法。其次是考试前对知识的回忆和温习。教师应提醒学生,复习要以教材为本,深入理解知识点,把握重点内容。另外,考过的测试卷也是复习的好资料,考试中暴露的问题正是学生应该重视的复习内容,尤其是七年级新生,不知复习从哪儿下手时,更应该珍惜每一份试卷,认真分析,找出自身知识点的薄弱环节,总结失败的教训,从中得到成长与进步。

逻辑推理的重要性范文第7篇

数学是一种语言,“以前,人们认为数学只是自然科学的语言和工具,现在数学已成了所有科学——自然科学、社会科学、管理科学等的工具和语言”。不过,这种语言与日常语言不同,“日常语言是习俗的产物,也是社会和政治运动的产物,而数学语言则是慎重地、有意地而且经常是精心设计的”。因此,美国著名心理学家布龙菲尔德说:“数学不过是语言所能达到的最高境界”。更有前苏联数学教育家斯托利亚尔言:“数学教学也就是数学语言的教学”。而语言的学习是离不开阅读的,所以,数学的学习不能离开阅读,这便是数学阅读之由来。

数学阅读过程同一般阅读过程一样,是一个完整的心理活动过程,包含语言符号(文字、数学符号、术语、公式、图表等)的感知和认读、新概念的同化和顺应、阅读材料的理解和记忆等各种心理活动因素。同时,它也是一个不断假设、证明、想象、推理的积极能动的认知过程。但由于数学语言的符号化、逻辑化及严谨性、抽象性等特点,数学阅读又有不同于一般阅读的特殊性,认识这些特殊性,对指导数学阅读有重要意义。

首先,由于数学语言的高度抽象性,数学阅读需要较强的逻辑思维能力。在阅读过程中,读者必须认读感知阅读材料中有关的数学术语和符号,理解每个术语和符号,并能正确依据数学原理分析它们之间的逻辑关系,最后达到对材料的本真理解,形成知识结构,这中间用到的逻辑推理思维特别多。而一般阅读“理解和感知好像融合为一体,因为这种情况下的阅读,主要的是运用已有的知识,把它与新的印象联系起来,从而掌握阅读的对象”,较少运用逻辑推理思维。

其次,数学语言的特点也在于它的精确性,每个数学概念、符号、术语都有其精确的含义,没有含糊不清或易产生歧义的词汇,数学中的结论错对分明,不存在似是而非模棱两可的断言,当一个学生试图阅读、理解一段数学材料或一个概念、定理或其证明时,他必须了解其中出现的每个数学术语和每个数学符号的精确含义,不能忽视或略去任何一个不理解的词汇。因此,浏览、快速阅读等阅读方式不太适合数学阅读学习。

第三,数学阅读要求认真细致。阅读一本小说或故事书时,可以不注意细节,进行跳阅或浏览无趣味的段落,但数学阅读由于数学教科书编写的逻辑严谨性及数学“言必有据”的特点,要求对每个句子、每个名词术语、每个图表都应细致地阅读分析,领会其内容、含义。对新出现的数学定义、定理一般不能一遍过,要反复仔细阅读,并进行认真分析直至弄懂含义。数学阅读常出现这种情况,认识一段数学材料中每一个字、词或句子,却不能理解其中的推理和数学含义,更难体会到其中的数学思想方法。数学语言形式表述与数学内容之间的这一矛盾决定了数学阅读必须勤思多想。

第四,数学阅读过程往往是读写结合过程。一方面,数学阅读要求记忆重要概念、原理、公式,而书写可以加快、加强记忆,数学阅读时,对重要的内容常通过书写或作笔记来加强记忆;另一方面,教材编写为了简约,数学推理的理由常省略,运算证明过程也常简略,阅读时,如果从上一步到下一步跨度较大,常需纸笔演算推理来“架桥铺路”,以便顺利阅读;还有,数学阅读时常要求从课文中概括归纳出一些东西,如解题格式、证明思想、知识结构框图,或举一些反例、变式来加深理解,这些往往要求读者以注脚的形式写在页边上,以便以后复习巩固。

逻辑推理的重要性范文第8篇

几何教学 教育价值 课程智慧

一、前言

新课标结束了过去一纲一本的教材体系,开始了在课程标准下的多版本教材体系。根据《数学课程标准》(实验稿)的精神,某版初中数学教材对“空间与图形”中的平面几何内容采用了两阶段的处理方式,即实验几何阶段和证明几何阶段:从七年级上册一直到八年级下册最后一章之前,基本都是采用实验的方法认识图形性质;从八年级下册最后一章才开始引入演绎证明的方法,而证明的大部分结论都是前面曾经探索过的结论。

对于这种处理方式,一些实验区教师存有异议:在近三分之二的时间里不学习严格的证明表述方式,学生做作业时随意性太大,很不规范,给教学带来了混乱;在这么长的时间内不学习证明,学生的几何证明能力很难得到保证;学生在实验几何阶段已经学习了大部分几何结论,到了证明几何阶段又对其中的一些结论进行证明,学生觉得是一种重复,没有必要。

实际上这些意见涉及到某些深层次的问题,比如,如何理解平面几何的教育价值?如何定位演绎证明在初中数学学习中的地位和作用?面对新教材如何做有课程智慧的数学教师,处理好实验探索与演绎证明的关系?

二、中学平面几何课的教育价值

1.中学平面几何课所涉及的基础知识,无论是对进一步学习,或是直接参加生产,或是作为一个现代社会的基本公民的一般素养,都是完全必要的。对此,一般都没有异议。无论国内外,平面几何在历史长河发展中所沉积的文化特性,对学生文化素质的提高所起的积极作用,都是其他学科教育难以超越的。

2.中学平面几何课的价值,主要在于发展学生的逻辑思维,培养他们的推理能力。几何的学习不是说学完了这些知识有什么用,而是针对它的逻辑推导能力和严密的证明。而这一点对一个人成为一个科学家,甚至成为社会上素质很好的公民都是非常重要的,而这个能力若能在中学里得到训练,会终身受益无穷。因此,一般人都认为,中学平面几何的课程内容,是培养学生逻辑思维能力的最好材料。

爱因斯坦曾说:“单凭传统的逻辑思维而想有所发现是困难的甚或是不可能的。但是,假如认为不必借助于逻辑思维而想有所发现,这同样是不可思议的事情。”爱因斯坦的这段话不仅深刻地指出了逻辑思维的重要性,也同时指出了逻辑思维的不足之处。平面几何课的价值是否仅限于逻辑思维的培养呢?

著名数学教育家G·波利亚的合情推理模式,在我国中学数学教育中产生了广泛而深刻的影响。这种推理模式“既教证明,又教猜想”,将自然状态下的合情推理,提高到一个更加合理,更加科学的层次。

从国际数学教育正反两方面的经验来看,凡系统讲授平面几何内容的国家,如中、俄、日等国,中学生的数学水平较高,反之则水平较低。这从国际教育成就评价课题研究(IAEP)公布的调查报告,就充分说明了这一点。

综上所述,无容置疑,中学平面几何在基础教育中仍将占据一席重要地位,在培养学生良好的个性品质方面起着其他学科所不能替代的重要作用。

三、把合情推理和逻辑推理尽可能统一在每一个几何内容中

中国曾经有过多次教育改革(或教育实验),其中很多教育改革实际上只是“教学改革”,也就是“教学方法改革”。从教学改革转向教材或课程改革,这里面隐含了一个重要的转变。对教师来说,以往的教育改革常常显示为教学方法的调整,却不知道真正应该调整的首先是教材。如果教材错了,教学方法无论如何调整,终归是一种微调,甚至会“助纣为虐”。也可以说,如果只改变教学方法而不改变教材,至多只有“正确地做事”的效应,而且很可能是正确地做错误的事情。方法是对的,方向却错了。教材改变意味着首先保证“做正确的事情”。显然,“做正确的事情”比“正确地做事情”更重要。

如果教师发现现有的教材绝大部分内容都比较过时、落后或者不适合学生学习,那么,教师就可以考虑用另外的教材替换现有的教材。在传统的教材制度背景中,更新、更换教材是不可想象的事情,但是,当市场上出现多种版本的教材之后,这种更新、更换教材已经不再是新闻。

调整教材是教师的权利,不过,正式发行的教材往往聚集了大量的专业智慧和实践经验,有些教材可能隐藏了一些错误或缺憾,但很少有教材会败坏到“一文不值”的程度。教师可以补充或开发新的教材,但补充和开发新教材的前提是尽可能“吃透”并“利用”现有的教材。

优秀的教师总是在调整、补充或开发教材,或者说,优秀的教师一直在参与课程资源的开发和利用。课程资源开发和利用可能表现为“补充教材”,这是比较温和的形态;也可能表现为“更新教材”,这是比较激烈的形态;还可能表现为“校本课程开发”,这是比较充分的形态。

据《数学课程标准》(实验稿)的精神,北师大版初中数学教材对“空间与图形”中的平面几何内容采用了两阶段的处理方式,即实验几何阶段和证明几何阶段。在实验几何阶段,《数学课程标准》中“图形的认识”所要求的多数几何命题都通过各种实验方式获得。到了证明几何阶段,再建立一个相对清晰的局部公理体系,对一些结论进行证明。

这种处理方式在体现《数学课程标准》的精神方面有其长处:

1.有利于体现研究图形方法的多样化。因为实验几何阶段尚未引入证明,这样就为用非证明手段研究图形提供了比较充分的时间和空间,同时还可以限制证明的使用,防止在证明方面“深挖洞”。

2.有助于感受公理化思想。如果把欧氏几何比作一个“城市”,那么证明阶段所构建的局部公理体系就可以看成是这个“城市”的“微缩景观”。一个身在“城市”之中的人可能无法感受其整体面貌,但当他站在“微缩景观”前面时,就对这个“城市”一目了然了。

最近,数学课程标准(实验修订稿)基本理念修改为:数学教育一方面要使学生掌握现代生活和学习中所需要的数学知识技能,另一方面要发挥数学在培养人的逻辑推理和创新思维方面的功能。在“双基”的基础上,提出了“四基”:即基础知识、基本技能、基本思想和基本活动经验;对问题解决能力方面,在原来分析问题和解决问题能力的基础上,进一步提出培养学生发现问题和提出问题的能力。数学课程标准(实验修订稿)明确要发展学生的全面思维,要发挥数学在培养人的逻辑推理和创新思维方面的功能。

所以,凸显几何的教育价值,做课程智慧型数学教师,“吃透”教材、“补充”教材、“更新”教材,把合情推理和逻辑推理尽可能统一在每一个几何内容中,是我们每一个一线教师值得思考与实践的紧迫问题。