首页 > 文章中心 > 量子力学的重要性

量子力学的重要性

开篇:润墨网以专业的文秘视角,为您筛选了八篇量子力学的重要性范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

量子力学的重要性范文第1篇

在建立科学理论体系的过程中,往往需要以一系列巨量的、通常是至为复杂的实验、归纳和演绎工作为基础。而且人们一般相信科学知识就是在这个基础上产生和累积起来的。但只要这种认识活动过程是为一个协调一致的目标所固有,只要它真正属于科学研究自我累进的进程,则不论其如何复杂,仍只是过程性的,而不从根本上规定科学的性质、程序,乃至结论。这就使我们在考察复杂的科学认识活动时,可以抽取出高于具体手段的,基本上只属于人类心智与外在世界相联络的东西,即科学语言,来作为认识的中介物。

要说明科学语言何以能成为这样的中介,需要先对科学的认识结构加以分析。

作为一种形式化理论的近现代科学,其目的是力图摹写客观实在。这种摹写的认识论前提是一个外在的、自为的客体和作为其思维对立面的内在的主体间的双重存在。这一认识论前提在科学认识方面衍生出一个更实用的前提,就是把客体看作是一种自在的“像”或者“结构”(包括动态结构,比如动力学所概括的各种关系和过程)。

这一自在的实在具有由它的“自明性”所保证的严格规范性。这种自明性只在涉及存在与意识的根本关系时才可能引起怀疑。而科学是以承认这种自明性为前提的。因此科学实际就是关于具有自明性的实在的思维重构。它必须限于处理自在的实在,因为科学的严格规范性(主要表现为逻辑性)是由实在的自明性所保证的,任何超越实在的描述都会破坏这种描述的前提。这一点对稍后关于量子力学的讨论非常重要。

上述分析表明,科学的严格规范性并非如有唯理论倾向的观点所认为的那样,是来自思维,也并非如经验论观点所认为的来自具体手段对经验表象的操作,也并不象当代某些科学哲学家所认为的纯粹出于主体间的共同约定。科学的最高规范是存在在客观实在中的,是来自客体的自明性。一切具体手段只是以这种规范为目标而去企及它。

在科学认识活动中,不论是一个思维过程还是一个实验过程,如果其中缺失了语言过程,那就什么意义都不会有。科学语言与人类思维形态固然有很大的关系,但是它们可能在一个很高的层次上有着共同的根源。就认识的高度而言,思维形态作为人类的一种意识现象,对它进行本质的追究,至少目前还不能完全放在客观实在的背景上。因此,在科学认识的层次上,思维形态完全可以被视为相对独立的东西。而科学语言则是明确地被置于实在自身这一背景之中的。这就使我们实际上可以把科学语言看作一种知识,它与系统的科学知识具有完全相同的确切性,即它首先是与实在自身相谐合,然后才以这种特殊性成为思维与对象之间的中介。这才能保证,既使科学语言所述说的科学是关于实在的确切图景,又使思维活动具备与实在相联络的手段。

科学语言作为一种知识所具备的上述特殊性,使它成为客观实在图景构成的基本要素,或科学知识的“基元”。思维形态不能独立地形成知识,但思维形态却提供某种方式,使科学语言所包含的知识基元获得某种特定的加成和组合,从而构成一种系统化的理论。这就是语言在认识中的中介作用。由于任何事物都必须“观念地”存乎人的意识中,才能为人的心智所把握,所以,在这个意义上,一个认识过程就是一个运用语言的过程。

二、数学语言

数学语言常常几乎就是科学语言的同义词。但实际上,科学语言所指的范围远比数学语言的范围大,否则就不会出现量子力学公式的解释问题。在自然科学发生以前,数学所起的作用也还不是后世的那种对科学的叙录。只是由于精密推理的要求所导致的语言理想化,才推进了数学的应用。但归根究底,数学与前面说的那种合乎客观实在的知识基元是不同的。将数学用作科学的语言,必须满足一个条件,即数学结构应当与实在的结构相关,但这一点并不是显然成立的。

爱因斯坦曾分析过数学的公理学本质。他说,对一条几何学公理而言,古老的解释是,它是自明的,是某一先验知识的表述,而近代的解释是,公理是思想的自由创造,它无须与经验知识或直觉有关,而只对逻辑上的公理有效性负责。爱因斯坦因此指出,现代公理学意义上的数学,不能对实在客体作出任何断言。如果把欧几里德几何作现代公理学意义上的理解,那么,要使几何学对客体的行为作出断言,就必须加上这样一个命题:固体之间的可能的排列关系,就象三维欧几里德几何里的形体的关系一样。〔1〕只有这样,欧几里德几何学才成为对刚体行为的一种描述。

爱因斯坦的这种看法与上文对科学语言的分析是基本上相通的。它可以说明,数学为什么会一贯作为科学的抽象和叙录工具,或者它为什么看上去似乎具有作为科学语言的“先天”合理性。

首先,作为科学的推理和记载工具的数学,实际上是从思维对实在的一些很基本的把握之上增长起来的。欧几里得几何学中的“点”、“直线”这样一些概念本身就是我们以某种方式看世界的知识。之所以能用这些概念和它们之间的关系去描绘实在,是因为这些“基元”已经包含了关于实在的信息(如刚体的实际行为)。

其次,数学体系的那种严密性其实主要是与人类思维的属性有关,尽管思维的严密性并不是一开始就注入了数学之中。如前所述,思维的严密性是由实在的自明性来决定的,是习得的。这就是说,数学之所以与实在的结构相关,只是因为数学的基础确切地说来自这种结构;而数学体系的自洽性是思维的翻版,因而是与实在的自明性同源的。

由此可见,数学与自然科学的不同仅表现在对于它们的结果的可靠性(或真实性)的验证上。也就是说,科学和数学同样作为思维与实在相互介定的产物,都有可能成为对实在结构的某种描述或“伪述”,并且都具有由实在的自明性所规定的严密性。但数学基本上只为逻辑自治负责,而科学却仅仅为描述的真实性负责。

事实正是如此。数学自身并不代表真实的世界。它要成为物理学的叙录,就必须为物理学关于实在结构的真实信息所重组。而用于重组实在图景的每一个单元,实际上是与物理学的基本知识相一致的。如果在几何光学中,欧几里德几何学不被“光线”及其传播行为有关的概念重组,它就只是一个纯粹的形式体系,而对光线的行为“不能作出断言”。非欧几何在现代物理学中的应用也同样说明了这一点。

三、物理学语言

虽然物理学是严格数学化的典范,但物理学语言的历史却比数学应用于物理学的历史要久远得多。

在认识的逻辑起点上,仅当认识论关系上一个外在的、恒常的(相对于主体的运动变化而言)对象被提炼和廓清时,才能保证一种仅仅与对象自身的内在规定性有关的语言描述系统成为可能。对此,人类凭着最初的直觉而有了“外部世界”、“空间”、“时间”、“质料”、“运动”等观念。显然,这些观念并非来自逻辑的推导或数学计算,它是人类世代传承的关于世界的知识的基元。

然后,需要对客观实在进行某种方式的剥离,才能使之通过语言进入我们的观念。一个客观实在,比如说,一个电子,当我们说“它”的时候,既指出了它作为离散的一个点(即它本身),又指出了它身处时空中的那个属性。而后一点很重要,因为我们正是在广延中才把握了它的存在,即从“它”与“其它”的关系中“找”出它来。

当我们按照古希腊人(比如亚里士多德)的方式问“它为什么是它”时,我们正在试图剥离“它”之所以为“它”的属性。但这个属性因其离散的本质,在时空中必为一个“奇点”,因而不能得到更多的东西。这说明,我们的语言与时空的广延性合若符节,而对离散性,即时空中的奇点,则无法说什么。如果我们按照伽利略的方式问“它是怎样的”时,我们正是在描绘它与广延有关的性质,即它与其它的关系。这在时空中呈现为一种结构和过程。对此我们有足够的手段(和语言)进行摹写。因为我们的语言,大多来自对时空中事物的经验。我们运用语言的主要方式,即逻辑思维,也就是时空经验的抽象和提升。

可见,近现代物理学语言是一种关于客观实在的时空形式及过程的语言,是一种广延性语言。几何学之所以在科学史上扮演着至为重要的角色,首先不在于它的严格的形式化,而在于它是关于实在的时空形式及过程的一个有效而简洁的概括,在于与物理学在面对实在时有着共同的切入点。

上述讨论表明了近现代物理学语言格式包含着它的基本用法和一个根深蒂固的传统,这是由客观实在和复杂的历史因素所规定的。至为关键的是,它必须而且只是关于实在的时空形式及过程的描述。可以想象,离开了这种用法和传统,“另外的描述”是不可能在这种语言中获得意义的。而这正是量子力学碰到的问题。

四、量子力学的语言问题

上文说明,在描摹实在时,人类本是缺乏固有的丰富语言的。西方自古希腊以来,由于主、客体间的某种相互介定而实现了有关实在的时空形式和过程的观念及相应的逻辑思维方式。任何一种特定的语言,随着时代的变迁和认识的深入,某些概念的含义会发生变化,并且还会产生新的语言基元。有时,这样的变化和增长是革命性的。但不可忽视的是,任何有革命性的新观念首先必须在与传统语言的关系中获得意义,才能成为“革命性的”。在自然科学中,一种新理论不论提出多么“新”的描述,它都必须仍然是关于时空形式及过程的,才能在整体的科学语言中获得意义。例如,相对论放弃了绝对时空、进而放弃了粒子的观念,但代之而起的那种连续区概念仍然是时空实在性的描述并与三维空间中的经验有着直接联系。

量子力学的情况则不同。微观粒子从一个态跃迁到另一个态的中间过程没有时空形式;客体的时空形式(波或粒子)取决于实验安排;在不观测的情况下,其时空形式是空缺的;并且,观测所得的客体的时空形式并不表示客体在观测之前的状态。这意味着,要么微观实在并不总是具有独立存在的时空形式,要么是人类无法从认识的角度构成关于实在的时空形式的描述。这两种选择都将超出现有的物理学语言本身,而使经典物理学语言在用于解释公式和实验结果时受到限制。

量子力学的这个语言问题是众所周知的。波尔试图通过互补原理和并协原理把这种限制本身上升为新观念的基础。他多次强调,即使古典物理学的语言是不精确的、有局限性的,我们仍然不得不使用这种语言,因为我们没有别的语言。对科学理论的理解,意味着在客观地有规律地发生的事情上,取得一致看法。而观测和交流的全过程,是要用古典物理学来表达的。〔2〕

量子力学的反对者爱因斯坦同样清楚这里的语言问题。他把玻尔等人尽力把量子力学与实验语言沟通起来所作的种种附加解释称之为“绥靖哲学”(Beruhigunsphilosophie)〔3〕或“文学”〔4〕,这实际上指明了互补原理等观念是在与时空经验相关的科学语言之外的。爱因斯坦拒绝承认量子力学是关于实在的完备描述,所以并不以为这些附加解释会在将来成为科学语言的新的有机内容。

薛定谔和玻姆等人从另一个角度作出的考虑,反映了他们以为玻尔、海森堡、泡利和玻恩等人的观点回避了经典语言与实在之间的深刻矛盾,而囿于语言限制并为之作种种辩解。薛定谔说:“我只希望了解在原子内部发生了什么事情。我确实不介意您(指玻尔)选用什么语言去描述它。”〔5〕薛定谔认为,为了赋予波函数一种实在的解释,一种全新的语言是可以考虑的。他建议将N个粒子组成的体系的波函数解释为3N维空间中的波群,而所谓“粒子”则是干涉波的共振现象,从而彻底抛弃“粒子”的概念,使量子力学方程描述的对象具有连续的、确定的时空状态。

固然,几率波的解释使得理论的数学结构不能对应于实在的时空结构,如果让几率成为实验观察中首要的东西,就会让客观实在在描述中成了一种“隐喻”。然而薛定谔的解释由于与三维空间中的经验没有明显的联系,也成了另一种隐喻,仍然无法作为一种科学语言而获得充分的意义。

玻姆的隐序观念与薛定谔的解释在语言问题上是相似的。他所说的“机械序”〔6〕其实就是以笛卡尔坐标为代表的关于广延性空间的描述。这种描述由于经典物理学的某些限定而表现出明显的局限性。玻姆认为量子力学并未对这种序作出真正的挑战,在一定程度上指出了量子力学的保守性。他企图建立一种“隐序物理学”,将量子解释为多维实在的投影。他以全息摄影和其它一些思想实验为比喻,试图将客观实在的物质形态、时空属性和运动形式作全新的构造。但由于其基础的薄弱,仍然只是导致了另一种脱离经验的描述,也就是一种形而上学。

这里所说的“基础”指的是,一种全新的语言涉及主客体间完全不同的相互介定。它涉及对客体的完全不同的剥离方式,也就是说,现行科学语言及其相关思维方式的整个基础都将改变。然而,现实地说,这不是某一具有特定对象和方法的学科所能为的。

可见,试图通过一种全新的语言来解决量子力学的语言问题是行不通的。这个问题比通常所能想象的要无可奈何得多。

五、量子力学何种程度上是“革命性”的

量子力学固然在解决微观客体的问题方面,是迄今最成功的理论,然而这种应用上的重要性使人们有时相信,它在观念上的革命也是成功的。其实,上述语言与实在图景的冲突并未解决。量子力学的种种解释无法在科学语言的基础上必然过渡到那种非因果、非决定论观念所暗示的宇宙图景。这就使我们有必要对量子力学“革命性”的程度作审慎的认识。

正统的量子力学学者们都意识到应该通过发展思维的丰富性来解决面临的困难。他们作出的重要努力的一个方面是提出了很多与经典物理学不同的新观念,并希望这些新观念能逐渐溶入人类的思想和语言。其中玻恩用大量的论述建议几率的观念应该取代严格因果律的概念。〔7〕测不准原理以及其中的广义坐标、广义动量都是为粒子而设想的,却又不能描述粒子在时空中的行为,薛定谔认为应该放弃受限制的旧概念,而玻尔却认为不能放弃,可以用互补原理来解决。玻尔还希望,波函数这样的“新的不变量”将逐渐被人的直觉所把握,从而进入一般知识的范围。〔8〕这相当于说,希望产生新的语言基元。

另一方面,海森堡等人提出,问题应该通过放弃“时空的客观过程”这种思想来解决。〔9〕这又引起了量子力学的客观性问题。

这些努力在很大程度上是具有保守性的。

我们试把量子力学与相对论作比较。相对论的革命性主要表现在,通过对时间和空间的相对性的分析,建立起时间、空间和运动的协变关系,从而了绝对时空、绝对同时性等旧观念,并代之以新的时空观。重要的是,在这里,绝对时空和绝对同时性是从理论上作为逻辑必然而排除掉的。四维时空不变量对三维空间和一维时间的性质依赖于观察者的情形作了简洁的概括,既不引起客观性危机,又与人类的时空经验有着直接关联。相对论排除了物理学内部由于历史和偶然因素形成的一些含混概念,并给出了更加准确明晰的时空图景。它因此而在科学语言的范围内进入了一般知识。

量子力学的情况则不同。它的保守性主要表现在:

第一,严格因果律并不是从理论的内部结构中逻辑地排除的。只是为了保护几率波解释,才不得不放弃严格因果律,这只是一种人为地避免逻辑矛盾的处理。

第二,不完全连续性、非完全决定论等观念并没有构成与人类的时空经验相关联的自洽的实在图景。互补原理和并协原理并没有从理论内部挽救出独立存在于时空的客体的概念,又没有证明这种概念是不必要的(如相对论之于“以太”那样)。因此,量子力学的有关哲学解释看似抛弃旧观念,建立新观念,实际上,却由于这些从理论结构上说是附加的解释超出了关于实在的描述,因而破坏了以实在的自明性为保证的描述的前提。所以它实际上对观念的丰富和发展所作的贡献是有限的。

第三,量子力学内在地不能过渡到关于个别客体的时空形式及过程的模型,使得它的反对者指责说这意味着位置和动量这样的两个性质不能同时是实在的。而为了保护客观性,它的支持者说,粒子图像和波动图象并不表示客体的变化,而是表示关于对象的统计知识的变化。〔10〕这在关于实在的时空形式及过程的科学语言中,多少有不可知论的味道。

第四,人们必须习惯地设想一种新的“实在”观念以便把充满矛盾的经验现象统一起来。在对客体的时空形式作抽象时,这种方法是有效的。而由于波函数对应的不是个别客体的行为,所以大多新的“实在”几乎都是形而上学的构想。薛定谔和玻姆的多维实在、玻姆在阐释哥本哈根学派观点时提出的那种包含了无限潜在可能性的“第三客体”〔11〕,都属于这种构想。玻恩也曾表示,量子力学描述的是同一实在的排斥而又互补的多个影像。〔12〕这有点象是在物理学语言中谈论“混元”或“太极”一样,很难说对观念有积极的建设。

本文从科学语言的角度,对量子力学尤其是它的哲学基础的保守性作出一些分析,这并不是在相对论和量子力学之间作价值上的优劣判断。也许量子力学的真正价值恰恰在于它所碰到的困难是根本性的。

海森堡等人与新康德主义哲学家G·赫尔曼进行讨论时,赫尔曼提出,在科学赖以发生的文化中,“客体”一词之所以有意义,正在于它被实质、因果律等范畴所规定,放弃这些范畴和它们的决定作用,就是在总体上不承认经验的可能性。〔13〕我们应该注意到,赫尔曼所使用的“经验”一词,实际上是人类对客观事物的广延性和分立性的经验。这种经验是科学的实在图景成立的基础或真实性的保证,逻辑是它的抽象和提升。

在本文的前三节已经谈到,自从古希腊人力图把日常语言理想化而创立了逻辑语言以来,西方的科学语言就一直是在实在的广延性和分立性的介定下发展起来的。我们也许可以就此推测,对于人的认识而言,世界是广延优势的,但如果因此认为实在仅限于广延性方面,却是缺乏理由的。广延性优势在语言上的表现之一是几何优势。西方传统中的代数学思想是代数几何化,即借助空间想象来理解数的。不论毕达哥拉斯定理还是笛卡尔坐标都一样。直角三角形的斜边是直观的,而根号2不是。我们可以用前者表明后者,而不能反过来。可是一个离散的数量本身究竟是什么呢?它是否与实在的另一方面或另一部分(非广延的)相应?也许在微观领域里不再是广延优势而量子力学的困难与此有关?

如果量子力学面临的是实在的无限可能性向语言的有限性的挑战,那么问题的解决就不单单是语言问题,甚至不单单是目前形态的物理学的问题。它将涉及整个认识活动的基础。玻尔似乎是深刻地意识到这一点的。他说“要做比这些更多的事情完全是在我们目前的手段之外。”〔14〕他还有一句格言;“同一个正确的陈述相对立的必是一个错误的陈述;但是同一个深奥的真理相对立的则可能是另一个深奥的真理。”〔15〕

参考文献和注释

〔1〕〔3〕〔4〕《爱因斯坦文集》第一卷,商务印书馆,1994,第137、241、304页。

〔2〕〔5〕〔9〕〔13〕〔14〕〔15〕海森堡:《原子物理学的发展和社会》,中国社会科学出版社,1985,第141、84、82、131、47、112页。

〔6〕玻姆:《卷入——展出的宇宙和意识》,载于罗嘉昌、郑家栋主编:《场与有——中外哲学的比较与融通(一)》,东方出版社,1994年。

〔7〕玻恩:《关于因果和机遇的自然哲学》,商务印书馆,1964年。

量子力学的重要性范文第2篇

关键词:实验探究;边缘科学知识 ;综合科学知识;实际应用科学知识

江西省2008年实行人教版高中物理新课程至今,教材有较大突破,体现为以下几点:

一、教材将以前的三本书分成七本书,其中必修为两本,是所有学生必学的内容。选修有五本,是侧重理科学生学习的。而且选修的五本就不同省份高考的考生来说,只须选学其中四本。这样学生的负担大大降低了。

二、教材内容梯度好,栏目丰富。

例如选修3-4第十一章机械振动共分五节,第一节主要通过水平弹簧振子、沙漏的摆动、竖直弹簧振子的实验探究得出简谐运动的位移随时间变化的关系,从而定义简谐振动。书中的两个两“做一做”又从其他角度实验探究验证简谐振动的位移随时间变化的图象,该节提供了七个实验探究简谐振动的位移随时间变化的图象,让学生思维更开阔,对简谐振动定义获得过程留下很深的络印,和较大的兴趣。

三、教材新增实际应用的理论探究,对学生理解新问题有更深的指导,有利于提高学生的综合素质。

例如选修3-4第十二章机械波新增了“多普勒效应”和“惠更斯原理”两节。通过学习“多普勒效应”,学生就能理解如何测车速来监控车的违章情况;如何算出星球靠靠近或远离我们的速度;彩超的原理等,还可激发学生对科学的兴趣。通过学习“惠更斯原理”,学生增强了对波的反射、折射、衍射现象的逻辑理解,对学生利用逻辑思维理解和分析问题有较大的提高。

四、教材新增了对边缘科学的学习

例如选修3-2第十章“传感器”和选修3-4第十五章“相对论简介”,让学生知道狭义相对论和广义相对论的基本逻辑理解,对科学的探究有更广的猜想。而传感器是实际应用较普遍的,介绍了光敏电阻、热敏电阻、温控开关等文件在电器中的工作原理,还有一些常见电路的分析,使学生对电子技术在现代化产品的开发与应用有了解,加强了学生对科学学习的重要性认识和兴趣。

五、增设实验,培养探索式学习

选修3-5第十六章第一节 实验:探究碰撞中的变量

从生产、生活中的现象(包括实验现象)中提出研究的问题——碰撞前后会不会有什么物理量保持不变呢?接着提出了猜想。为了证实猜想而提出了“实验的基本思路”和实验中“需要考虑的问题”。同时,提供三套实验方案供学校选择,最后让学生亲自动手,经历并体验寻找碰撞中“不变量”的过程。重点是引导学生经历碰撞问题的研究过程。

一方面为下两节“动量和动量定理”“动量守恒定律”的引入提高实验的基础;另一方面,让学生亲自经历探究自然规律的过程,感悟自然界的和谐与统一;同时,将实验技能的训练与科学探究过程的体验,有机地结合。教科书设计这一节实验课,重在培养探究式学习的目的。

六、增设与其它学科相关知识,提高学习认识综合知识的联系。牢固树立人类对世界探求是不断深入的思想。

例如:3-5第十七章 波粒二象性 第5节“不确定性关系”,本节内容是在上一节基础上进一步深化的。学生已经知道单个微观粒子的运动具有不确定性,但它在空间某点出现的概率却可通过波动规律确定。本节通过光的单缝衍射实验,具体分析了这种不确定性的数量关系,给出了量子力学中一个著名的教学关系式——不确定性关系:。通过介绍经典物理学和围观物理学中物理模型与物理现象的巨大差异,量子力学对社会进步的重要性及对量子理论的论争,为学生用新的观点来认识微观物理世界提供了有效的空间,也为学生今后学习量子力学搭建过渡之桥。虽然我们不可能知道单个粒子运动情况,但是大量粒子的运动却是有规律的。这种随机现象遵从统计规律,要从波的理论推测它的哪个地方的几率有多大。反复强化这个概念,不确定性关系的模型才能逐渐在学生心中建立。通过物理模型与物理现象的教学,让学生明确,模型是人类认识自然的一种方式,模型是对自然的一种抽象、纯化,但模型本身并不是自然本身。

教材简要介绍了量子力学对人类社会的重要贡献,让学生明确已学的能量子、光子、波粒二象性、不确定关系是量子力学的基础,尽管以量子理论为基础建立起来的现代技术已取得巨大成功。但是,对于“量子”的图景和哲学意义,却一直存在严重的分歧和激烈的争论。让学生树立科学是不断发展的思想,将争议回归到爱因斯坦那句话:整整50年有意识的思考,并没有使我更接近“光量子是什么”这个问题的答案。现在的理论并不是对微观粒子运动规律的终极观念,这种为了满足我们“肉眼凡胎”而创立的模型,虽然比较完美地解释了现在所观测到的一切,但随着认识的深入,我们现在认为的单个微粒运动的随机规律也可能是不完备的模型,我们也可能会了解它的真实图景,科学研究没有终点站。

量子力学的重要性范文第3篇

关键词:微电子;半导体物理;教学质量;教学方法

作者简介:汤乃云(1976-),女,江苏盐城人,上海电力学院计算机与信息工程学院,副教授。(上海200090)

基金项目:本文系上海自然科学基金(编号:B10ZR1412400)、上海市科技创新行动计划地方院校能力建设项目(编号:10110502200)的研究成果。

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)13-0059-02

随着半导体和集成电路的迅猛发展,微电子技术已经渗透到电子信息学科的各个领域,电子、通信、控制等诸多学科都融合了微电子科学的基础知识。[1]作为微电子技术的理论基础,半导体物理研究、半导体材料和器件的基本性能和内在机理是研究集成电路工艺、设计及应用的重要理论基础;作为微电子学相关专业的特色课程及后续课程的理论基础,“半导体物理”的教学直接影响了后续专业理论及实践的教学。目前,对以工程能力培养为目标的微电子类相关专业,如电子科学与技术、微电子、集成电路设计等,均强调培养学生的电路设计能力,注重学生的工程实践能力的培养,在课程设置及教学上轻视基础理论课程。由于“半导体物理”的理论较为深奥,知识点多,涉及范围广,理论推导复杂,学科性很强,对于学生的数学物理的基础要求较高。对于没有固体物理、量子力学、统计物理等基础知识背景的微电子学专业的学生来说,在半导体物理的学习和理解上都存在一定的难度。因此需要针对目前教学过程中存在的问题与不足,优化和整合教学内容,探索形象化教学手段,结合科技发展热点问题,激发学生的学习兴趣,提高半导体物理课程的教学质量。

一、循序渐进,有增有减,构建合理的教学内容

目前,国内微电子专业大部分选用了电子工业出版社刘恩科等编写的《半导体物理学》,[2]教材知识内容体系完善,涉及内容范围广、知识点多、理论推导复杂、学科交叉性强。该教材的学习需要学生有扎实的固体物理、量子力学、统计物理以及数学物理方法等多门前置学科的基础知识。但是在以培养工程技术人员为目标的微电子学类专业中,国内大部分高校均未开设量子力学、统计物理学及固体物理学等相应的前置课程。学生缺少相应固体物理、统计物理与量子力学等背景知识,没有掌握相关理论基础,对半导体物理的学习感到头绪繁多,难以理解,容易产生畏学和厌学情绪。

在课程教学中教师必须根据学生的数理基础,把握好课程的内容安排,抓住重点和难点,对原有的教材进行补充更新,注意将部分量子力学、统计物理学、固体物理学等相关知识融合贯穿在教学中,避免学生在认识上产生跳跃。例如在讲解导体晶格结构内容前,可以增加2-3个学时的量子力学和固体物理学中基础知识,让学生在课程开展前熟悉晶体的结构,了解晶格、晶胞、晶向、晶面、晶格常数等基本概念,掌握晶向指数、晶面指数的求法,了解微观粒子的基本运动规律。在讲解半导体能带结构前,增加两个学时量子力学知识,使学生了解粒子的波粒二象性,掌握晶体中薛定谔方程及其求解的基本方法。在进行一些复杂的公式推导时,随时复习或补充一些重要的高等数学定理及公式,如泰勒级数展开等。这些都是学习“半导体物理学”必备的知识,只有在透彻理解这些基本概念的前提下,才能对半导体课程知识进行深入地学习和掌握。

另一方面,对于微电子学专业来讲,侧重培养学生的工程意识,“半导体物理”课程中的部分教学内容对于工科本科学生来说过于艰深,因此在满足本学科知识的连贯性、系统性与后续专业课需要的前提下,大量删减了涉及艰深物理理论及复杂数学公式推导的内容,如在讲述载流子在电场中的加速以及散射时,可忽略载流子热运动速度的区别及各向异性散射效应,即玻耳兹曼方程的引入,推导及应用可省略不讲。

二、丰富教学手段,施行多样化教学方法,使教学形象化

半导体物理的特点是概念多、理论多、物理模型抽象,不易理解,如非平衡载流子的一维飘移和扩散,载流子的各种复合机理,金属和半导体接触的能带图等。这些物理概念和理论模型单一从课本上学习,学生会感觉内容枯燥,缺少直观性和形象性,学习起来比较困难。为了让学生能较好地掌握这些模型和理论,需要采用多样化的教学方法,充分利用PPT、Flash等多媒体软件、实物模型、生产录像等多种信息化教学手段,模拟微观过程,使教学信息具体化,逻辑思维形象化,增强教学的直观性和主动性。同时,教师除开展启发式、讨论式等教学方法调动学生学习的主动性、积极性外,[3,4]还可以应用类比方法帮助他们理解物理概念或模型。如讲半导体材料中的缺陷及跃迁机制时,为了帮助学生理解,可以做一个类比:将阶梯教师里单位面积的座位数比做晶格各能级上的电子能态密度,把学生当作电子,一个学生坐在某一排的某个座位上,即认为这个电子被晶格束缚。当有外来学生进入教室,在教室过道上走动时,可类比为间隙式缺陷;而当外来学生取代现有学生的座位时,可类比为填隙式缺陷等等。通过类比,学生对半导体内部的点缺陷的概念的理解就清楚形象多了。

三、结合微电子行业领域的迅速发展,以市场为导向,培养学生兴趣

微电子技术的发展历史,实际上就是固体物理与半导体物理不断发展和创新的过程,[5]1947年发明点接触型晶体管、1948年发明结型场效应晶体管以及以后的硅平面工艺、集成电路、CMOS技术、半导体随机存储器、CPU、非挥发存储器等微电子领域的重大发明,都与一系列的固体物理、[6]半导体物理及材料科学的重大突破有关。纵观微电子工业的发展,究竟是哪些半导体理论推动了微电子技术的发展,哪些科学家推导并得出了这些理论?他们在理论推导的同时遇到了哪些困难?这些理论规律又起源于哪些实验?到了21世纪,也就是今后50年微电子技术的发展趋势和主要的创新领域,[5,6]即以硅基CMOS电路为主流工艺,系统芯片SOC(System On A Chip)为发展重点,量子电子器件和以分子(原子)自组装技术为基础的纳米电子学;[7]与其他学科的结合诞生新的技术增长点,如MEMS,DNA Chip等,也都于半导体科学相关。这些新的微电子发展趋势主要涉及半导体物理中的哪些知识?涉及哪些领域等?

针对以上问题,教师在讲授半导体物理的基础上,对教材进行补充更新。在保持基础知识体系完整性的同时,避免面面俱到,删减课本中一些不必要的内容,大量加入近几十年来发展成熟的新理论、新知识,突出研究热点问题,力求做到基础性和前瞻性的紧密结合,使学生在掌握基础知识的同时对微电子发展历史中半导体技术的发展趋势有一个清晰地认识,让学生能从中掌握事物的本质,促进思维的发展,形成技能;同时注重与信息化技术相结合,将近几年半导体技术的最新研究成果,如太阳能电池等半导体光伏发电技术在国家绿色能源战略上的地位,半导体光电探测器在国家航天战略上的应用等,使学生能及时掌握半导体技术前沿发展趋势。将这些问题分成若干个相关的专题分派给学生,学生自行查阅和搜集资料,他们在课堂上讲述该专题,教师加以引导和帮助。这种方式不仅充分调动课堂气氛,加深他们对所学知识的理解,同时也让学生学习了半导体物理课程在微电子专业中课程体系的作用,在科学意识上加深了半导体物理课程的重要性,激发学习兴趣和欲望。

同时,为帮助学生了解学术前沿,培养专业兴趣,还可邀请校内外的专家做讲座,学生可以利用课余时间,根据自己的兴趣选择听取,加深对半导体物理课程的了解,培养专业学习兴趣。

四、总结

总之,“半导体物理学”是微电子技术专业重要的专业基础课,为后续专业课程的学习打下理论基础。在“半导体物理”教学过程中,应积极采用现代化教学手段提高学生积极性,在教学过程中合理安排教学内容,与时俱进引入科技热点,削弱传统的课本知识与市场需求的鸿沟,培养适应社会需求的微电子人才。

参考文献:

[1]张兴,黄如,刘晓彦.微电子学概论[M].北京:北京大学出版社,2000.

[2]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,

2008.

[3]陈国英.《半导体器件物理基础》课程教学的思考[J].常州信息职业技术学院学报,2007,(6):56-57.

[4]王印月,赵猛.改革半导体课程教学融入研究性学习思想[J].高等理科教育,2003,(1):69-71.

[5]王阳元,张兴.面向21世纪的微电子技术[J].世界科技研究与发展,

1999,(4):4-11.

量子力学的重要性范文第4篇

关键词: 科学实在论 内在实在论 带人面的实在论

美国当代著名科学哲学家希拉里.普特南(Hilary Putnam )作为科学实在论的主要代表人物之一,原本是一个唯物主义的科学实在论者,然而由于受到自尼采以来兴起的,人本主义、后现代主义即非理性主义、多元主义、相对主义、怀疑主义和认识论的无政府主义的哲学思潮的影响,尤其是经过80年代科学实在论与反实在论的激烈争论,使他开始逐渐对科学实在论立场产生怀疑,并最终由强实在论转变为弱实在论,由科学实在论向人本主义实在论退让。《带人面的实在论》一书就集中体现了他的这一根本立场的动摇。那么,普特南又为什么仅仅表现为一种立场上的转变,而不放弃实在论,却坚持捍卫一种内在实在论,并进一步从人的立场给予阐释呢?

一、从科学实在论立场退却

众所周知,W.塞拉斯作为美国科学实在论的创始人,因受其父R.塞拉斯的物理实在论的薰陶,具有坚定的唯物主义立场。正是这一基本立场对普特南的强烈影响,使他成为继W. 塞拉斯之后最具代表性和感染力的科学实在论者。概括普特南的哲学,主要在如下方面突出了“科学实在论”的基本观点和思想:

在科学观上,他认为成熟的科学理论近于真实,前后相继的理论拥有共同的指称,这证明科学研究的对象是客观存在的。基于这种客观实在性,他反对库恩的范式信念、不可通约性和科学革命的理论;坚持认为科学知识通过逐渐累积的方式而增长是科学的基本特征。库恩所反对的传统累积观的错误在于:原来用于辨认一个实体或自然种类的那些属性不必一定属于该实体或种类;人们也许会在后来发现那些属性并不是决定性的;也可能在其它的实体或自然种类中发现。因此,我们必须拒绝认为最初给某一实体或自然种类所指定的属性就构成了指称它们的那些名词的“意义”。实际上,在科学发展的不同时期的连续性中和不同的科学理论之间的可比较性中,以及不同概念的变化中保持的某些共同的东西,不是传统理论所主张的构成名词或概念的不可改变的意义,而是固定的指称。换句话说,尽管人们对于一个事物所说的话不同,但都是谈的“相同的事物”。这是根据最初一次“命名”的因果关系得到的逻辑保证。以后所谈的有关属性便都必然地归属于那个最初指称者。另外,既然科学是逐渐累积而增长的,是对客观对象的认识,因此科学进步也是无可怀疑的。新的科学理论总是比旧的科学理论能提供更正确的预言、更好的控制自然界的方法和更接近于科学真理。

在本体论上,虽然他声称自己的实在论既不是唯物主义实在论,也不是形而上学实在论,而是趋同实在论,但是他的唯物主义立场却是显而易见的。比如他说:“如果给出适当的条件(包括适当语言的其它方面),‘有电子流经导线’这个陈述可以和‘房间里有一把椅子’的陈述,或‘我头痛’这个陈述同样在客观上是真的。在椅子(或感觉)存在的任何意义上,电子都存在着。”(〔1〕,第848页)即在他看来,任何一个科学术语都是有所指的,即便是“电子”这样的术语也如同“椅子”一类的词汇一样具有客观实在的指谓对象。

在认识论上,普特南坚持“真理符合说”;强调科学理论的任务就是表述外部世界;决定科学陈述的真假,既不是人们的主观感觉,也不是人的内心结构或语言,而是外部事物。他说:“如果没有一个描述性术语有所指谓,那么在理论科学中,真理的概念会出现什么问题呢?也许所有的理论句子都是‘假的’;或者当谓词无所指谓时,就代之以为指定真值所作出的某种约定。总之,对于包括理论术语的句子来说,‘真值’概念会变得没有什么意思。所以也就无所谓真理了。”([2],p.25)为此,他认为只有坚持科学实在论的真理符合论才能把科学研究 引上正确轨道。只是这种符合不是绝对的符合,而是存存一种趋同现象,即较新的理论总比较旧的理论更逼进真理。

但是,在长期的理论研究中,尤其是面对反实在论的激烈挑战,使他逐渐发现自己的科学实在论立场中存在许多疑点。一是“词和特定客体之间”、“表达与实在之间”是否一致的问题。他认为自己过去把追求概念与实在之间的吻合与一致看作是实在论的目的,认为概念或符号表达式可以通过指谓世界中的事物和事件而获得意义,是将问题过分简单化了。这种“一致性”理论实质上是一种朴素的常识观念,而“常识在这个世界中已经没有任何地位”。二是如果人们仅仅从反对“证实原则”的角度来批判分析哲学,那只是简单地把自己描绘成为一个实在论者。事实上,具有组织信息功能的大脑,所能够熟练操作和把握的只是对某物的“感觉”、有关某物的“信息”、“符号”等等,而不是某物本身。换句话说,人的认识只能局限于感觉和影像方面,而与客观性无关。这个长期存在的、而且从未被真正解决的主体和客体、观察者和观察对象之间的矛盾性是动摇实在论的基础。三是当代的科学观不在于研究所谓的“主客观相符合的真理”是什么,而在于真理的价值、真理的意义,如何产生真理,如何从事科学发现、科学应用,即主要是认识论、方法论和价值观的问题,是生活、行为惯例和社会实践的问题;方法、实践和价值问题不解决,“真理”问题就不能够解决。他说,他提出有关真理的合理性标准的最终目的是为了说明我们如何才能够认识到真理,以及如何才能够理解这个世界。这种反思的结果使他从早期的强实在论立场撤退,力图以弱实在论的形式来摆脱科学实在论面临的困境。其具体做法是:

1.他以纠正实证主义的“证实原则”和证实方法为前提, 从以客观实在为基础的本体实在论转向以感觉经验为基础的认识实在论。由于比早期更自觉地注重逻辑问题,更倾向于对真理概念进行逻辑思考,故他从注重本体论上的“一致性”立场转变到认识论上的“逻辑性”立场上来看待和分析真理。在转变后的普特南看来,真理主要是语言、意义和实用价值的问题;一切概念和符号只有在使用中才有意义,不论它们是个人心理的还是公众性的,“它们本身如果不被使用就不是概念。符号本身并不内在地指称什么。”([3],p.18)只有在人们进行认识活动时,才能够将它们同特定的对象相对应。在这里,普特南实际上继承了维特根斯坦后期哲学的实用主义观点,突出了“指称问题上的语境的重要作用”;暗示了符号和概念的意义都是社会地和历史地被确定的,因而也都是变化的和相对的,确立了一种文化上和概念上的相对主义观点。

2.他放弃了“真理符合说”,提出了真理是理想化的, 是逻辑地被证实了的可能性的思想。他说,真理是在理想化的证实意义上与证实相一致的。它与靠现存证据的证实是对立的。这种理想化的证实和真理发展的可能性是多种多样的。那种机械的和僵化的真或假的“二价原则”只能是对具有各种可能性的真理发展的约束和限制,因为真理在本质上不是直观地、外在地可参照的,而是理性范围内的、逻辑的、抽象的、内在的相互关系。真理不涉及。直接外在的经验证实。比如一位具有实在论思想的科学家,如果他拥有某种逻辑,他就会认为有某种行为在保护着真理。这样,“如果他认为理论T1是真的,而且认为理论T2也是真的,那么从逻辑上,他就会认为T1和T2,即T1和T2的结合也是真的。”([4],p.90)为此,他非常欣赏康德的自在之物和不可知论的观点,认为康德是最先提出内在真理观的人,认为“康德不仅放弃了我们的观念和物自体之间的相似的概念,甚至还放弃了任何抽象同构的概念。这就意味着他的哲学中不存在真理符合理论”。他说,从康德的著作中能够引出的唯一答案是:“一种知识,即一个‘真陈述’,是这样一个陈述,它能够在一和我们的本性实际上可能具有的充分的经验基础上被有理性的东西所接受。而在其它任何意义上,‘真理’都无法为我们接受和理解,真理就是最完善的适合性。”([3],p.64)这也就是普特南的有关真理的“合理性”的构想。

3. 他认为真正具有逻辑性的真理概念是概率的或非决定论的实在论观点,即非传统的形而上学的决定论观点。传统的所谓“与实在一致”是一种非认识论关系。为此他表明:在经典逻辑和决定论的本体论的意义上,他不是一个实在论者。他说,传统的两分法将事实判断与价值判断完全割裂开来是太绝对了。判断是不是事实的唯一标准就是看接受它是不是合理的。“事实陈述本身,以及我们据以决定什么是事实和什么不是事实的科学探究实践,都预设了价值。”([3],p.128 )没有价值,也就没有事实和世界。“我们必须具有理性的可接受性标准,才能有一个经验的世界,这些标准展示了我们理想思辨的理智概念的一部分。简言之,我主张‘实在世界’依赖于我们的价值,当然后者也依赖于前者。”([3],p.134)再一方面,他也反对在多种现象之后, 总存在一个反映共同的和终极本质的单一的“实在”的形而上学假定。他认为,在现实中并不存在任何特定的意向性现象的一切情形共同具有的可以科学地描述的性质。因此,也不要企图探察现象背后的实在和本质。但是,在量子力学所展示的非决定论的本体论的意义上,他仍然坚持自己是一个科学实在论者。

4.在坚持真理是一种极限,因而具有趋向性的基础上, 他又进一步把真理看作是一种可能性、而非现实性,真理不是已经达到,而只是趋向,而且可能有多种趋向。因此一个陈述被证实,只是说它有成为真理的可能性,不等于它就是真理。比如,牛顿的万有引力理论以及根据这一理论所作出的一些预言,虽然已经多次得到证实,但并不等于说它就是真理,因为“这里的困难是,起到真理作用的谓词,即导致成功预测的谓词并不具有真理的性质。”([4],p.90)再一方面,一个命题或句子的证实条件总是随着人类的整个知识体系的变化而变化;它不可能永远被固定。我们不仅可以发现现在认为被已经证实了的一些命题或理论是错的,而且可以发现现在认为是正确的程序也是不正确的,而其它的程序则更好。所以,当下被证实的命题或理论可能是假的,而导致我们相信这个命题或理论的检验也可能是非常不可靠的。既然真理只是一种可能性和理想化的证实,而非完全现实的证实,所以真理是多维的。这种多维性能够更好地反映世界复杂的内在结构。只坚持一种真理的观点是狭隘的和站不住脚的。

二、保卫内在实在论

面对反实在论的不断冲击,普特南并没有完全退出实在论的阵地,相反在1990年出版的《拥有人面的实在论》一书中又公开提出“保卫内在实在论”的口号。那么究竟何谓“内在实在论”呢?普特南解释说,以前的“形而上学实在论”主要有三种:其一主张世界是由总量恒定的非精神客体构成的,即朴素的唯物主义或客观主义;其二主张只存在一种有关这个世界的实际情形的真实而完整的描述,即经验主义或真理一元论;其三主张真理只涉及一致性,即观念与实在之间的符合论或一致论。这三种观点除了拥有一套华而不实的东西外,并没有什么清楚明白的内容。离开一种哲学传统,所谓“客体”、“总量恒定”、“非精神的”、“有关世界的唯一真实而完整的描述”都没有确切的性质与含义。所以,依照内在实在论的观点,这三种形而上学实在论,实质上都不是各自独立的,而是内在地相互联系、相互依存的,并依赖于各种进一步的假设和概念,否则必将陷入自相矛盾。比如一个形而上学实在论者,如果他承认“存在一种构成世界的总量恒定的非精神物质”,那么他就不能不接受真理符合论;如果他说,“存在一种构成世界的总量恒定的非精神物质”,但这种物质只有在“内在真理”的意义上,即在构成认识主体的一部分的意义上,才可以被当作真,这样,也就等于否定了物质的客观实在性。而内在实在论既不否定物质世界的客观实在性,也不否定真理的绝对性。它认为“真理是一种性质,这一性质不同于论证、或现存证据的或然性;它不是仅仅取决于说话者的现存记忆和经验,而是我们不应该抛弃的对实在的一种洞察。”([5],p.32)

那么在内在实在论看来,应该怎样理解抽象层次上的词和概念的指谓或理论描绘的世界图象呢?普特南说,一般科学上的术语、概念都有确定不移的指谓,从而显示了它们的客观实在性。比如最有争议的“电子”,反实在论者总是否定它的真实存在,然而科学家们却坚信其存在已经得到证明。否则为什么我们会认为玻尔在1900年和1934年使用的同一个词“电子”是合理的,并认定他的两种截然不同的理论是描述同一个对象?

“虽然玻尔在1900 年的主观概率度规(subjectiveprobability metric)并不是他在1934年的主观概率度规:但这并不是说,在玻尔的习用语汇中‘电子’这个词,或是任何其它的德语词,是否改变了它的指谓(reference)”。([5],p.33)在这种情况下, 假设为真的原理告诉我们,应当采纳玻尔一贯指称过的那个被称之为电子的东西。我们应该说,我们有了一个关于相同实体的不同理论,而不应该说,有多少种理论就有多少种实体。所以不论是词和概念,还是理论的辩护和解释都存在客观性。

当然不能否定解释具有主观性,但是这并不意味着指谓也是主观的;不能说只存在“理性重建”或“经验建构”的事实,不存在有关科学和日常实践中说话者所指谓的客观事实。恰好相反,“我们拥有一种独立于一般程序和实践的指谓概念;我们一直是通过这种程序和实践认定处于不同地位,拥有不同信念背景的人们,其所作所为实际上涉及的是同一事物。”([5],p.34)以人类对植物的认识为例,毫无疑问我们都会认为200年前人类称作“植物”的东西, 与今天人类叫做“植物”的东西是一类(或近似于我们今天叫做“植物”的东西)。尽管我们不同意200年前人类对植物的本质特征持有的观念,因为200年来人类语言中绝大多数的常用词都或多或少地改变了它们的指谓含义,但是如果所有这些都被认为是主观的,如果翻译实践也是主观的,那么我们就看不到任何有关指谓和真理的理论之间或语言之间的概念能够完全保留下来。

但是如果认为所有的指谓都是客观的,那么又怎么样为客观辩护?是否在大家都作了一致理解的情况下就是客观的,在理解不一致的地方就是主观的?如果是这样,那么决定于人们确立的“多数”一致的标准有多高,也取决于时间、地点和文化。比如在宗教领域,教皇的一贯正确性,早就被作为客观证明了的东西。这样一来,就必然使人想到这一点,“证实了的东西不一定是指人们实际上说已得到证实的东西,而是人类中某种理想的有‘能力’的成员所要说的东西得到辩护。”([5] ,p.35)这种为客观性提出的论据, 实际上与街上那些把所有哲学当作主观的东西的人们所提出的论据并无二致。因此,为客观辩护的标准也不应是大家认为的“一致”,客观就是指指谓对象的实在性。不论是翻译的概念、解释的概念还是辩护的概念,只要拥有指谓对象就具有客观性。

所以,“我相信存在一种真理的概念,或说得普通一点,存在正确的概念。这种概念,我们经常使用,而且完全不是形而上学实在论者用以描述‘符合’本体事实状况的概念。”([5],p.40)比如从日常生活与理智实践的观点上看,把点作为个体的理论和把点作为极限的理论在适当的环境中,两者都是正确的。根据超距作用描述物体间的相互作用的理论和根据场的概念描述同样情况的物理学理论,两者也都可以是正确的。这也就是说,在人们的日常生活中包含着真理的认识;在精确的理性思维和实践中也包含着真理的认识;在科学的、数学化的认识形态中有真理,在非科学的、非数学化的认识中也有真理。对象是一个,而承担真理的知识形态和科学理论却可以是多种多样的。

普特南说,每一位哲学家都为自己构绘出一幅有关外部世界的哲学概念图,这并不是件坏事。坏的是忘记它们是图,并把它们看作就是“这个世界”。与其他哲学家一样,普特南也有一幅概念图,在他的图中,从理论的两种不相容的本体论,即唯物主义和唯心主义的本体论都可以是正确的意义上看,客体是与理论相依赖的。说这些本体论都是正确的,并不是说存在着与拥有广延性的实体一样的“在那里头”的场以及逻辑建构意义上的场;也不是说同时存在绝对时空点和仅仅作为界限的点。而是说各种表述和各种理论在一定场合下都同样是适宜的。在实用主义的传统中,它是说,各种手段在其为之设计的关系中,如果功能是相同的话,那么它们在我们所能控制的各方面都是等效的。

既然客体是与理论相依赖的,所谓真理是根据某一语言中各分项间以及固有的非理论化实体中各分项间的“对应联系”而定义或解释的思想就必须被放弃,而确立这样一种观念或认识论的图景:“真理不过是观念理性化的可接受性。”那些被认定为“真”的东西,在赋有“理性和可感觉性”的生物拥有的经验与智力的基础上,应被认为是有保证的。但是我们却不能草拟一种有关“实在”的保证理论(即一种有关保证的“本质”的理论),更不用说一种观念化的保证理论了。在实践中,我们实际上也没有建构起一种有关世界的独一无二的理论,只是建构起各种不同的理论,而且不是所有的理论都是等效的。因为我们实践的多元论必然导致理论的多元论。所以在普特南的概念图中,存在许多个世界,而不是一个世界;这个世界作为描绘的对象当然有客观性,但也有多面性和模糊性。不过模糊的谓项并没有什么错误,错误的是在特定场合中太模糊,这常常是一些实在论者忽略或错误表述的另一个事实。

三、人本主义倾向

在科学实在论与反实在论的激烈争论中,普特南虽然没有完全抛弃实在论,并力图保卫它,但是在实在论的内涵方面,他已从早期的客观实在的立场转向客观实在对人的依赖性立场,即从外在实在论转向内在实在论;从科学知识的独立性转向对认识主体、认识工具的依存性;从科学理论的辩护和证明转向科学理论的解释;从真理的趋同性和符合论转向真理的多元论和实用论;从欣赏唯物主义转向欣赏唯心主义和操作主义;从注重本体论研究转向到注重认识论和方法论研究,继而又转向到注重人类的日常生活和社会实践的研究。而所有这一切,尤其是他的内在实在论立场集中地反映了他的实在论日益带有人本主义色彩。这种带人性的实在论色彩可以从如下方面证明:

首先在对待科学和世界的态度问题上,他对尼采所谓的“随着科学范围的日益扩大,它所触及的悖论的地方也就越多”的观点表示欣赏,并进一步考察:是否随着科学知识范围的不断扩大,科学和这个世界本身也变得愈来愈自相矛盾。以只有少数人理解和熟悉的量子力学为例,一方面,它与经典物理学相区别的独特性就在于:有关这一理论的任何应用都需要没有被包括在这一理论系统之内的“科学仪器”或“观察者”的存在;另一方面,“原则上又没有关于整个宇宙的量子力学理论”。许多量子力学的创始人都已经注意到:在理论系统和观察者的切面之间,用来测量和检验理论应用的仪器最终是靠在观察者一边的。以至玻尔在他的所谓“哥本哈根解释”中明确表示:“只有与特殊的实验场景中的特殊的测量仪器相联系,该系统中的每一种性质才被认为是有意义的和存在的。”([5],p.4 )这也正是许多人认为量子力学与经典物理学不可比较的原因所在。然而要想利用测量仪器获得满意的描述和结果,就必须利用同样存在于经典物理学中的语言和数学公式。这样,在玻尔看来,量子力学又没有简单地使经典物理学废弃不用。

从上述量子力学和经典物理学的关系上看,这好象是足够悖谬的,但是普特南却证明:量子物理学对于经典物理学的依赖性却不是悖论。在他看来,所谓的量子力学理论只不过是“牛顿的想象力所要求的一部分”。因为牛顿的物理学拥有一种特殊的感染力;它对几个世纪以来的神学、哲学、心理学、乃至整个文化都产生了巨大的影响;它给予我们的是“上帝的视野”,是上帝对整个宇宙的洞察。这个宇宙是一架巨大的机器。如果你是一个唯物主义者,就会认为我们自身就是这架巨大机器的一个分系统。如果你是一个二元论者,就会认为只有我们的身体才是这架机器的一部分。迄今以来,我们对于这架机器的测量、观察和物理学上的描绘,只不过是整个事物内部的相互作用。这幅完美的宇宙图的梦,即实际上包括描绘这个宇宙的理论家—观察者在内的宇宙图的梦,既是物理学的梦,也是形而上学的梦,甚至象笛卡尔这样的二元论者也梦想构绘一幅完美的宇宙图。值得注意的是,所有梦想绘制一幅宇宙图的人都感觉到需要一门额外的基础科学,即一门与描述“灵魂、思维或智力”的心理学有关的基础科学,以实现自己的美梦。自十七世纪以来,整个西方文化一直在做着这种美梦,而且凡是借助一种真正的科学理论,利用实验或数学方法从事过这种工作的人都一定感觉到这是一场梦。

但是,玻尔的哥本哈根解释却恰恰放弃了这种梦想。象康德一样,玻尔感觉到这个世界“本身”是超越描绘它的人类思维的能力的。即便是一个“经验的世界”,即我们的经验的世界也不能只凭借一幅图就实现其完整的描绘,而常常需要的是不同类型图的互补。在一些实验场合中必须绘制一幅波动图,在另一些实验场合中又必须绘制一幅粒子图。要放弃只利用一种描绘来说明所有场合的观念;要确立物理学概念与实验场合相互依存的思想;要认识到在观察者与观察对象,即整个宇宙系统之间存在一个不可逾越的鸿沟,这是量子力学的核心,是与经典物理学不同的本质所在。但是,却不能由此说量子力学与经典物理学是完全对立的。只能说量子力学在本质上涵盖了经典物理学的应用。比如冯诺依曼(Von Neumann )的经典著作就向我们表明了如何利用纯粹的量子力学术语来分析测量的案例。所以,量子力学与经典物理学之间具有一种依存关系和包含关系,并不相互矛盾。只是经典物理学认为它所描绘的世界是唯一真实的世界,而量子力学则认为人类只能描绘包含自身在内的世界,而且这个世界因实验场合的变化而变化,人类理智无能力认识一个“自在”的世界。

这是不是说,普特南已经成为一个地地道道的不可知论者和康德意义上的形而上学实在论者?关于形而上学,普特南说,“作为人类生活中的一种事实,在一种意义上,哲学的任务是克服形而上学;而在另一种意义上,它的任务又是持续形而上学的讨论。每一个哲学家都会一面在叫喊,“这项事业是徒劳的、轻薄的、疯狂的——我们必须说:停止!”,而另一面又叫唤,“这项事业完全是最一般、最抽象层次上的反映,停止它将是对理性的一种犯罪。”当然,哲学问题是不可解决的,但是正如S.卡威尔(Stanley Cavell)曾经论述的,“存在有关它们的或是更好或是更坏的思考方式。”不论有多少人认为哲学作为一种认识论和方法论是如何的无益和带来了怎样灾难性的失败,但“我还是想展示一些原理,这些原理在我们面对一些叫做形而上学的事情以及一些叫做认识论的事情遭受失败而感到失望的时候不应当抛弃。”([5],p.19)哲学虽然不能构成存在、知识和文化得以确立的基座, 但是作为一种讲话和思维的方式对于人类的实践和精神无疑有着重要价值。当然哲学的重要性不在于说“我拒绝实在论者与反实在论者的争论”,但是它却可以表明实在论者和反实在论者都歪曲了我们借助概念而生活的生命。一场争论是无益的,并不意味着相互竞争的图象是不重要的。因为哲学所编造的幻觉属于人类生活自身的本性,而且需要进一步阐明。

那么普特南究竟展示了哪些不应当抛弃的哲学原理呢?1 )在一般情况下,人们所作的陈述不管是否有根据,都是事实,但是其中多数事实都是“价值事实”。2 )一个陈述的意义不管是否有根据都不取决于处于一种文化中的多数公民的口头评判,而是取决于一定的社会、文化背景和实际功用。3)有根据的断言的规范和标准是社会历史的产物;它们是随时间而演变着的。4 )这些规范和标准总是反映我们的兴趣和价值,而我们的理智兴趣图通常只是人类兴趣图的一部分。5 )一切事物(包括有根据的断言)的规范和标准都能够改变。存在着更好或更坏的规范和标准。这五条原理概括到一点:评判一切陈述和命题都取决于人们的兴趣和价值;人们的兴趣和价值观念变了,一个陈述或命题是否有根据和理由也就变了。这既是一种实用主义的哲学观点,也是一种人本主义的哲学观点。一切有无、真伪、好坏都以人而论。

既然如此,普特南虽然一再强调要保护内在实在论,然而他的“实在论”已经完全人本主义化了。这正象他自己所陈述的,“如果说我们所说的和我们所做的就是一个‘实在论者’,那么我们最好都是实在论者——用小r代表这类实在论者。 但是关于‘实在论’的形而上学说法却超出拥有小r的实在论之外,而具有某种哲学幻想的特征。”([5],p.26)对于小r的实在论来说,它不需要回答形而上学实在论者渴望解答的问题。诸如:“一个具体客体(空—时域)的存在怎么可能是一种约定?A(椅子)和B(空—时域)的同一性怎么可能是一种约定?”等问题。在小r看来,这些恰恰是生活中的一种事实。他能够感觉到它。 那对于其他人是一种压力的东西,对于他来说,则可能是一种有趣的东西。而形而上学实在论的基本特征则集中体现在这一观念中,即主张“解决哲学问题的方式是构造一个比较好的科学的世界图景”([6],p.107)为此他们总是竭力描绘一幅巨大的先验论的图画; 在这幅图中存在一套固定的“独立于语言”的客体(其中一些是抽象的,另一些是具体的),以及术语与它们的附加物之间的一种“关系”。普特南认为,形而上学实在论的宇宙图景只是部分地与它意欲解释的常识观点相一致。从常识的观点上看,形而上学实在论所描绘的图象是非常模糊的。“我们抓牢哲学家们的拥有小r的实在论,放弃拥有大R的实在论(形而上学实在论)完全没有任何错。”([5],p.28)

作为结论,普特南所描绘的有关这个世界的图象是:“一方面没有任何东西能为之辩护,只能够通过成功来证明它正当;而成功又要通过人的兴趣和价值来判断,而人的兴趣和价值不仅在进化着,并同时获得改造,而且与我们的有关这个世界本身的进化着的图象相互作用。正象必须抛弃‘约定和事实’的绝对两分法一样,基于类似的理由,也必须抛弃‘事实和价值’的绝对两分法。另一方面,它又毕竟是这个世界本身的图象的一部分,而这个世界既不是我们意志的产物,也不是我们以某种方式讲话的气质的产物。”([5],p.29)换句话说,既不是我们制造了这个世界,也不是我们的语言或文化制造了这个世界;这个世界不是从无中生有的;它不是一种产品,而是:“世界就是世界”。但是,我们所认识的这个世界却是与理论相依赖的,是与我们的兴趣、价值观念和最后的审视紧密相关的。

参考文献

[1] 刘放桐主编:《现代西方哲学》,人民出版社,1990。

[2] Hilary Putnam,Meaning and the Moral Science,1978.

[3] Hilary Putnam, Reason, Truth  and  History, CambridgeUniversity Press,1981.

[4] A.Baruch,Readings in the Philosophy of Science, 3ed,New Jersey,1989.

量子力学的重要性范文第5篇

重大天文发现的偶然性

科学史明确地告诉我们,导致了人类认识宇宙七次大飞跃的重要科学成果的发现过程,都具有某种偶然性。在這些工作开展之前,无论是资助方还是科学家们,都没有预料到会获得這样的科学成果,更没有意识到這些成果会有如此重大的意义。尽管诺贝尔奖成果并不是每一个都直接导致了人类认识宇宙的大飞跃,而且也不一定是最重要的天文学成果,但是這些成果却对20世纪的物理学发展带来了重要的影响,也因此获得了诺贝尔物理学奖。事实上,除了2006年授予发现宇宙微波背景辐射各向异性的诺贝尔物理学奖之外,其它的天文学研究获得的诺贝尔物理学奖的最初研究目的和最后获奖的天文发现明显不一样,它们不但“不是”预期的结果,而且大部分的成果不是和预期结果“没有关系”就是“完全相反”。从研究类型看获奖的理论研究成果数量远远少于观测研究,這表明天文学研究的重大而且是开创性的突破主要来自于观测研究,而這些突破大部分都不是预期的科学成果,也就是说大部分重大天文观测成果的获得,看起来都是偶然的。

科学发现的必然性

既然大部分重大天文观测成果的获得看起来都是偶然的,那么是否重大科学发现都是“瞎猫碰死耗子”?在总结了以往获得重大天文观测成果的研究项目后,我认为在這些看似偶然的成果背后,其实有三个要素构成了科学发现的必然性:1、项目提出,要求重要的目标加上可行的实现途径,确保项目不会一无所获;2、仪器设计,要求在某些参数空间必须有超越以前仪器的能力,确保具有新的科学发现能力;3、获取结果,要求有坚实的基础、宽广的知识和对领域的全面理解加上突破常规的新思想。其中前两个要素是对项目本身的要求,也就是必须有“保底”的科学目标,同时应该具备做出新的科学发现的能力。而第三个要素则是对项目科学团队的研究水平、研究态度和研究文化的要求。

一个科学项目在满足了這三大要素的情况下,必然会做出新的科学发现,這是必然性。但是到底做出什么科学发现、尤其是在新的发现空间里面的预料之外的发现,则很有可能是偶然的,至少在天文学领域是這样的。這正是偶然性和必然性之间的辩证统一。

量子力学的重要性范文第6篇

1 理论物理与实验物理对物理美之争

复仇女神曾经留下带有“给最美的人”的字的苹果,挑起了特洛伊战争,而如今这个苹果落在了实验物理与理论物理之间。从法拉第和麦克斯韦那里开始,象与相的美始终无法争出一个高低。

在实验物理这边,真,这个和善一起长期作为美的伴侣的性质,使得实验物理因为其在现实世界的可复制性而成为美的。弗朗西斯?培根站在近代哲学经验论的开端上,提出了科学实验对于人类经验的重要性,而经验对于审美活动而言是至关重要的。无论是牛顿用棱镜分解的太阳光还是托马斯?扬应用了双缝演示的光的干涉实验,即使是没有物理学知识的人也不得不赞叹它们。实验物理是揭示物理学美的最直接也最直观的途径。

而在理论物理这一方,毕达哥拉斯和柏拉图是他们自古以来的支持者。理论物理的支柱是数学。麦克斯韦用数学将法拉第的电磁理论推向了一个新的世界,狄拉克则直接在1963年的scientific american上写道:“使一个方程具有美感比使它去符合实验更重要”,这样看来,狄拉克直接将实验和美对立起来了。数学所带给我们的柏拉图所说的“理念”世界是最具有完满性的世界,现实的瑕疵在理念世界里被完全地排除了,如同古希腊的雕塑——雕塑家们通过解剖研究人体结构,再将最完美的比例(完美到无法在现实世界中找到这样的模特)赋予他们的作品。于是实验物理与现实世界自然地成为了流于表面的“表象”,甚至是柏拉图的“幻象”。

随着近代物理学与本身不断发展着的数学结合得日益紧密,越来越多的物理学家趋向于认为物理学的美在于其数学构架。他们认为,当物理学的定律被公式化以后,物理世界的基本结构变成了简单、精确的数学语言,而美则恰恰就在这种简单性与统一性之中。

2 现代美学与现代物理学的趋向

尽管物理学家们似乎要在传统的数学的基础上给他们的美丽的工作一个确定的审美标准,但是随着他们的工作继续向前推进,上帝似乎真的掷起了骰子。

杨振宁先生曾经将理论物理的美直接归结为五点,即和谐、优雅、一致、简单以及整齐。这样的归纳还停留在古希腊人的美学思想上。自从manet作为印象派的先锋,带领着monet、renoir等巨匠颠覆了古典主义之后,艺术美的标准也就受到了挑战:古典的恬静被工业社会匆匆而游移的目光所打破,印象派宣称他们画的不是事物本来的样子而是它们看起来的样子,精准细腻的笔法被快速的涂抹代替,但印象派却获得了前所未有的真实感。在现代主义绘画运动进入到、不断改变着人们审美趣味的时候,物理学界的审美标准也接着被打破——相对论打碎了经典物理学中被凝固的时空,量子力学的诞生宣告了精确的、决定论的、归于简单的经典物理学思想的终结,系统科学将科学思维引向复杂性理论和混沌学。世界似乎更像一幅现代大师泼墨完成的画作——晦涩而令人眼花缭乱。

如今现代艺术已然完成了美的标准的蜕变。renoir的le bal au moulin de la galette(《煎饼磨坊的舞会》)被形容为“看起来像未完成一样”,而这个特点恰恰体现了现代西方美学的转向——主客统一,印象主义的绘画需要观赏者来完成,只有有人在场,审美对象才真正地存在:“这就是体验统一体,这种统一体本身就是意义统一体” [3]。有意思的是,尽管我不赞同杨振宁先生的物理学美的五个特点,但我们又回到了开篇时杨先生对美的标准的界定,即“美的最终标准是人是否与它有关”。

但针对现代物理学的审美观点却并没有如此迅速地完成艺术界所完成的转变,相反地,和谐与简单的缺失却造成了科学美岌岌可危的境况。虽然杨振宁先生对科学美的五个具体定义有一定的普遍性(大部分能够接受科学美作为一种美学意义上的“美”的人们能够接受的也是这样的一种定义),但是由于现代物理学的发展,系统科学、混沌学、复杂性思想的产生,以及传统的微积分被能够更精确地描述不确定性的概率论所替代,精确和统一之美正在离开自然科学领域,当然也包括物理学。“复杂性并不仅仅包含向我们的计算能力挑战的组成单元的数量和相互作用的数量,它还包含着不确定性、非决定性、随机现象。”[4]重新定义物理学之美成为了挽救其的唯一方法。

3 中国传统美学观念与现代科学的物理美

中国古代诗人柳宗元曾有言道:“夫美不自美,因人而彰。”在中国传统绘画中,始终对于西方绘画所追寻的与客观世界的相像——甚至一致——不甚追求,而是寻求一种介于像与不像之间的韵味,给人留以品味的空间,即意象。中国传统的情景交融、不分主客的审美方式长久以来并没有受到太多变革,这一点与不断革新的西方审美理论有很大区别。

相应地,中国古代的科学技术发展也更多地关注实用性而非理论。这样说起来似乎有些矛盾,既然中国人如此追求物外的意象,又为何在科学技术方面只着眼于物呢?这还要从老子的自然观说起。“人法地,地法天,天法道,道法自然”为中国人的自然观奠定了人与自然共生的理念,战胜自然与征服自然从来不是中国人发展的主题,作为一个重农的古国,顺应天时才是生存之道。因此,中国古代科学技术——甚至有些学者认为古代中国只有技术的产生与发展,只是为了解决眼前的、暂时性的生产问题,由于这种观念的主导,技术甚至不需要发展成一个连贯而完整的体系。但正是这种“万物并作,吾以观复”、人融于自然(在艺术中则是绘画或诗歌等作品)进行审美的观点可以给西方现代科学的物理学之美指一条出路。

尽管混沌学带着不确定性与复杂性闯入了现代物理学,尽管传统的秩序似乎被打破了,但是我们应该反思,传统的物理学之美的观点给世界强加了太多人类自己的思维定式——从和谐、归一的简单性思想到形而上学的机械决定论,我们用我们的理性给自然套上了桎梏,如今自然在我们面前展现它本来的样子越多,我们就越受到这种思维模式的困扰。这样的思维模式甚至造成了爱因斯坦在其后半生中与哥本哈根学派的不断的论战,因为他无法接受哥本哈根学派对量子力学非决定论的解释。

只有当我们跳出这种画地为牢的思维定式,将“观复”的目光投向整个物理学界、甚至是自然界,放下我们僵硬的、带有“求简单图省事”意味的功利性思想,去探求物理学最根本的基础——自然现象,去接纳每一种被自然界创造出来的奇迹,我们才可能在最大程度上接近物理学美定义的答案。

量子力学的重要性范文第7篇

本文介绍了材料类专业大学物理教学现状,分析了目前教学中的不足,提出了大学物理除了培养学生基本自然科学素养外,还应为专业课程奠定物理基础,并针对性提出了优化大学物理课程内容和教学方法的建议,旨在提高材料类专业大学物理的教学质量。

关键词:

大学物理;材料类专业;教学改革

1引言

物理学研究的是物质的基本结构、基本运动形式、相互作用及相互转化,它的基本理论是各个自然学科工程技术的基础,广泛的应用于生产、生活实际。大学物理课程则是以物理学的基本原理和基础应用为内容的高等学校理工科各专业学生一门重要的必修基础课,该课程是养成学生科学素养的重要组成部分,对培养学生树立科学的世界观,增强学生分析问题、解决问题的能力,以及探索精神和创新意识的培养等方面具有重要作用。同时,各理工类专业领域中都会涉及到物理学的基本原理、基本结论和基本方法,因而大学物理课程能为学生在后续的专业课程学习以及将来工作中解决生产技术问题,进行技术改造和技术创新奠定重要的基础,是合格的理工科毕业生、科技工作者和工程技术人员所必备的知识。对于不同专业,所需的物理知识侧重点是不同的,如电子类专业侧重于电磁学,化工类专业侧重于热学,机械类专业侧重于力学等。要充分发挥大学物理课程的作用,就应当根据各专业特点,合理安排大学物理内容,在教学过程中结合学生专业的需求有重点、有选择地进行物理教学。我们以材料类专业为基础,探讨分专业大学物理教学的教学模式。

2大学物理教学现状

2.1专业针对性不足

大学物理作为自然科学的基础,除了培养学生科学素养外,也应该起着连接基础理论知识与实际应用技术的桥梁作用。然而目前很多高校各理工专业都采用相同或类似的教材和大纲。这种安排虽照顾到了物理学各个基本组成部分,但是内容庞大,容易让学生产生学习的畏惧感,同时也不能体现出各专业的特点以及对物理知识要求的侧重点的差异,容易让学生学无所用的感觉,从而影响学习的积极性,仅仅是应付了事。

2.2教学设计不合理

传统的大学物理教学,更多的偏重于理论知识教学,实践教学(包括课堂演示实验)偏少,容易造成理论和实践的脱节教学中有很多的专业术语和复杂繁琐的理论推导,需要学生很好的掌握高等数学知识。然而随着目前高校的扩招,很大部分学生的数学基础薄弱,学习中一旦理解不了,容易出现畏难和厌学情绪,从而影响学习效果。

2.3学时少,内容多

随着高校扩招,办学规模扩大以及专业技术的不断发展,高校的教学计划也在不断的调整,大学物理教学内容也一再压缩。根据教育部高等学校物理基础课程指导委员会颁布了《非物理类理工学科大学物理课程教学基本要求》[1],大学物理建议学时不少于126学时,但实际上目前各院校材料类专业大学物理课程学时普遍少于此建议。大学物理课程内容多,难度大,学时的压缩增大了教师教学难度,也导致学生难以在短时间内掌握如此多的知识。如何在短时间内教给学生足够的知识,对大学物理教学来说是一个不小的挑战[2]。

2.4教学手段单一

目前大学物理教学更多的是采用教师用多媒体讲授,学生被动接受的方式。这种以教师为中心的教学方式减少了学生和老师的互动交流,导致了学生的学习的主动性下降,课堂注意力不集中。如何运用形式多样的教学方法,提升学生的积极性,也是大学物理教学改革的方向。

3材料类专业大学物理的分专业教学改革

基于以上大学物理在教学中所遇到的问题和困难,笔者在本校材料类专业中进行了大学物理分专业教学的改革尝试。所谓分专业教学,即在满足培养学生基本物理科学素养的基础上,根据各专业的特点,合理制定不同的教学计划,弱化与专业关系不大的物理知识,加深与专业关系密切的部分教学,加强与专业相关的物理前沿科技介绍,为专业课程学习奠定良好的物理基础。通过改革明确学生学习的目的,提高学习兴趣。

3.1教学内容的调整

根据材料类专业课程特点,综合考虑学生的数学基础和专业培养方案,本着科学素养培养+材料专业物理基础的原则,结合材料学科发展趋势,对大学物理知识进行重组,形成材料类大学物理教学体系。

3.1.1热学

热性能是材料学研究的重要方面,如材料热膨胀、热传导等。目前的大学物理教材中只以理想气体为对象介绍热力学定律和分子动理论,对于固体和液体甚少提及。为此,笔者在讲授热力学定律时,同时介绍热力学定律对固体、液体的简单应用,介绍熵、焓的概念,并结合具体材料介绍相变概念。在介绍分子动理论时,以气体为研究对象,得出气体速率分布,并引出玻尔兹曼统计,简要介绍统计物理在材料学中的应用。

3.1.2光学

传统大学物理中光学部分主要讲解波动光学,包括光的干涉、衍射、光栅和光的偏振,着重在讲光程差计算、条纹特点、光强变化等,涉及到多个实验装置和大量公式,学生极易混淆,学习效果不好。因此我们弱化干涉,衍射条纹计算,减少实验装置,重点在相干叠加的物理思想。适当增加材料的光学性质介绍,如法拉第效应、光弹性效应等,增加光谱分析在材料检测中的应用。

3.1.3力学

力学是整个物理学的基础,材料的力学性能也是材料学研究的重要方向,而当前大学物理教学主要在质点运动学、动力学、机械振动和机械波。为与材料专业相适应,我们引入了弹性体力学和流体力学部分基础知识,让学生更多了解材料的力学性能及其研究方法。质点力学是力学的基础,讲授时我们特别强调物理研究的思想、物理概念和方法,如理想物理模型、矢量叠加原理、微元法等,培养学生科学的研究方法。

3.1.4电磁学

整个电磁学知识体系庞杂,学习难度大。其中静电场、稳恒磁场和电磁感应,是整个电磁学的基本,讲授时我们主要强调物理思想、概念和方法。导体和电介质、磁介质是描述材料的电磁性质的基础和基本方法,与材料专业密切相关,为此我们做了重点学习,让学生了解材料电磁性质的描述和研究方法。

3.1.5近现代物理

近现代物理主要包括相对论和量子物理。其中相对论与材料专业关系不大,因此,仅作简介,让学生了解基本的时空观概念。量子物理是研究微观粒子运动规律,而任何材料总是由基本粒子构成的,是材料研究的基础,然而量子物理知识复杂且难以理解,要求数学知识也较高,故仅介绍量子力学基本原理和原子物理的初步知识。

3.2教学方式改革

大多数大学教学中采用多媒体讲授式教学模式,即教师在讲台上讲,学生在下面听[3,4]。这种模式教学课堂传输知识量大,知识点和公式都直接投影在屏幕上,可以省去教师书写节省时间,但教学过程中过于依赖多媒体而忽略了板书,板书书写可以突出关键性的知识难点,学生也可以跟上老师的思维从而理解重要的知识点。因此在教学实践中,采用“多媒体+板书”的教学方式是有效的方式。物理作为一门实验学科,所有理论都需要通过实验验证,因此在ppt课件中,适当引入相关的动画和视频资料,可以起到事半功倍的效果,比教师枯燥的讲授要生动、深刻得多,既丰富了教学内容又开阔了学生视野。在教学过程中,启发式教学比满堂灌更能提起学生兴趣,教师要从现象引入,引导和启发学生进行积极思考,逐渐解开难题,教会学生用科学的思维方法解决问题。教学是个双向的过程,一定要加强师生间的互动,才能达到好的教学效果,教师要适时的提出问题,让学生思考回答。

4结语

总之,大学物理作为理工类专业的基础课,自有其重要性,我们需要重视大学物理的教学,既要培养学生自然科学的素养,又要架好和专业课程之间的桥梁。实践证明,考虑到材料类专业自身特点,本文中提到的教学改革方法能有效提高学生学习兴趣和物理素养,奠定专业学习必要的物理基础。然而,大学物理课程改革是一个复杂的系统过程,我们需要坚持不懈的进行研究和探索,完善教学体系,充分利用课堂时间,达到更好的教学效果。

作者:白浪 单位:攀枝花学院材料工程学院

参考文献:

[1]教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工科大学物理课程教学基本要求[J].物理与工程,2006,16(5),1~8.

[2]程南璞.材料类专业中数理方法课程的改革与实践[J].西南师范大学学报(自然科学版),2011,36(2):202-205.

量子力学的重要性范文第8篇

【关键词】 热力学;统计物理;教学方法

一、引言

热力学与统计物理是理论物理的五大分支之一,具有与其它四个分支(经典力学、电磁学、相对论、量子力学)同等重要的科学与工程地位。热力学与统计物理课程是本科教学中物理学及相关专业的一门重要基础理论课程,它以大量微观粒子组成的宏观物质系统为研究对象,基于热力学理论和统计物理理论,揭示热运动规律以及与热运动有关的物性及宏观物质系统的演化。许多工程科学都是由热力学所衍生的或与其密切关联,例如传热学、流体力学、材料科学等,该课程也是学习量子力学、固体物理的基础。热力学的应用范围很广,主要包括:引擎、涡轮机、压缩机、发电机、推进器、燃烧系统、冷冻空调系统、能源替代系统、生命支援系统及人工器官等。

通过热力学与统计物理课程的教学,可以培养学生的形象思维和逻辑思维能力,提高学生的物理修养,使学生深入认识热力学与统计物理理论,能从热力学和统计物理学角度阐述热运动的规律及热运动对物质宏观性质的影响,能基于热力学和统计物理学理论解决实际热力学问题。热力学理论和统计物理学理论的统一性的教学,可使学生树立物质世界是分层次的、宏观现象与微观本质紧密联系、量的积累引起质的变化等物理学基本观点。然而该门课程抽象性强,教学难度很大,因此教学过程中必须有针对性的采用科学的教学方法以保证良好的教学效果。

二、重点突出物理思想和物理方法教学

科学思想和方法是物理科学的重要内容。美国著名物理学家费恩曼曾经说过:对学习物理的人来说,重要的不是如何正规严格地解方程,而是能猜出它们的解并理解物理的意义。清华大学著名物理学家叶企孙教授也曾强调指出: 物理教学不仅要给学生以知识,更要给学生科学思想和方法。可见物理思想和物理方法在物理教学中的重要性。物理知识的认识和发展是依赖于物理思想的发展和建立于科学的物理方法的基础之上的。物理知识的传授是“授人以鱼”,物理思想和物理方法的传授则是“授人以渔”。仅仅传授物理知识容易使学生对掌握的结论确信无疑,这将限制学生的创造性和个性发展。而物理思想和物理方法的传授不仅是为学生提供必要的知识储备外,也是为他们提供能力储备。

在热力学统计物理课程的教学中,除了物理思想和物理方法自身具有的重要地位之外,授课学时少和授课内容多的矛盾、化繁为简提高教学效果的要求也需要将物理思想和物理方法的传授放在一个重要位置。把握该课程的物理思想和基本方法,对授课内容和知识结构进行优化和调整,是解决授课学时少和授课内容多的矛盾的根本方法。热力学统计物理课程对学生数学基础要求也较高,涉及到大量繁复的公式数学推导和变换,导致学生在学习该课程的过程中很容易将注意力停留在物理公式的数学形式上而忽略了其中的物理意义、物理思想和物理方法,最终结果是导致学生思维混乱、满头雾水。因此,在热力学统计物理课程中应该尽量简化物理公式的数学推导和数学变换方面的教学,而将教学的重点放在物理公式的物理意义、物理思想和物理方法方面,帮助学生从物理角度对授课内容进行深入理解。

三、排除学生心理障碍

热力学与统计物理课程的特点是比较抽象,学生理解困难和难以建立相应的物理图像。较大的学习阻力会影响学生学习该课程的兴趣和爱好,导致学生存在接受热力学与统计物理的物理思想和相关理论的心理障碍。上述在把握课程的物理思想和基本方法的基础上对授课知识结构进行优化调整和将授课内容化繁为简是排除学生心理障碍的一个有效方法,此外好的课题引入对于排除心理障碍从而激发学生学习兴趣也会起到十分重要的作用。如教学实践证明,课程绪论由热力学发展史引入,从“热”本质的争论到焦耳、克劳修斯、开尔文、能斯脱、麦克斯韦、玻尔兹曼、吉布斯等科学家的丰功伟绩进行逐步阐述,可以有效激发学生学习统计物理的兴趣和增强学生的学习信心。恰当地运用热力学统计物理发展史能够提高学生的创新思维水平,提高学生整合信息、发现问题的能力。[1]同时也有利于激发学生的自我意识[2]和有助于学生理解物理知识,有助于学生体验物理学的批判精神和形成整体性的物理知识观。[3]再如在统计理论部分的课题引入时,重点突出物理思想,突出宏观系统由大量微观粒子组成的特点,使学生真正清楚统计物理学的研究对象及方法,理解统计物理与热力学的不同之处和统一之处,也可以有效消除学生学习统计物理的形成心理障碍。总之,通过好的课题引入,激发学生的学习兴趣和调动学生的学习积极性,消除学生的畏难情绪,对排除学生学习热力学统计物理的心理障碍不无裨益,这也是保证学生在热力学统计物理课程学习过程中始终保持学习主动性的关键。

四、详细阐述热力学与统计物理两种方法的关系

热力学方法与统计物理方法是热力学与统计物理研究大量微观粒子组成的宏观物质系统的热现象的两种基本方法,两种方法的有机结合是热力学统计物理理论的一个基本特征,应帮助学生很好地把握该基本特征。热力学的基本任务是研究热运动的基本规律,是研究热现象的宏观理论,它不涉及物质的微观结构,而是从能量转化的观点出发,依据在大量实践中总结出来的几条基本宏观定律,运用严密的逻辑推理而形成的一整套完整的热现象理论。统计物理学的基本任务是揭示热现象的本质,是研究热运动的微观理论,它从物质的微观结构出发,依据微观粒子所遵循的力学规律,再用概率统计的方法求出系统的宏观性质及其变化规律。热力学理论的发展先于统计物理学的发展,其起源可追溯至十七世纪末开始的长期而激励的“热”本质争论,到19世纪中页在焦耳测定热功当量的工作基础上热力学第一定律得以建立了“热质学”,奠定了热力学的发展基础,并在克劳修斯、开尔文、能斯脱等人的进一步努力下建立了热力学第二定律和第三定律,使热力学理论更臻完善。热力学能解决宏观热现象的一些问题,但仍未能对热现象的本质作出解释。在热力学发展的同时,分子运动论也开始发展起来。克劳修斯从分子运动论的观点出发导出波意耳-马略特定律。麦克斯韦应用统计概念研究分子的运动,得到了分子运动的速度分布定律。玻尔兹曼给出了热力学第二定律的统计解释。最后吉布斯发展了麦克斯韦和玻尔兹曼的理论,建立了系综统计法。至此统计物理学形成了完整的理论。可见热力学理论和统计物理理论的发展虽有先后之分,但是发展过程却紧密联系,对应的两种研究方法各有优缺点又有机结合,二者的区别和联系如下表所示:

基础 方法 优点 不足

热力学方法 由大量现象总结归纳的热力学基本定律 数学演绎、逻辑推理 高度的普适性、可靠性 无法解释涨落现象、无法揭示热现象本质

基础 方法 优点 不足

统计物理方法 物质微观结构、宏观量与微观量的关系、等概率原理 概率统计方法 可求具体物质的热性质、解释涨落、揭示热现象本质 近似性

可见,热力学方法和统计物理方法共同来自于人们对宏观热现象的明确认识和微观热运动特征的准确把握,二者相辅相成,互为补充,是一个有机统一体,缺一不可。课程教学过程中,应在详细阐述热力学与统计物理学的概念定义、发展历史的基础上讲授二者的有机统一关系,使学生对两种方法有一个整体的认识,准确把握课程的基本特征,这有利于学生理解热力学统计物理的物理思想和建立相应的物理图像。

五、帮助学生建立课程理论框架

学生在学习热力学与统计物理的过程中,难以理解相关的物理思想、定理定律和无法建立清晰的物理图像,很大程度上是由于没有很好地把握课程的知识要点和理论主线。热力学与统计物理课程有机结合思维方式截然不同的热力学和统计物理两种方法,分别从宏观和微观两个层面对物质系统的热运动规律进行研究,同时数学推导和变换繁复,因此学生在学习的过程很难捕捉到课程的知识要点和提炼出课程的理论主线,这就要求教师有意识的帮助学生把握课程的整体理论框架。

汪志诚的《热力学·统计物理》教材为例,[4]可以建立如下课程基本理论框架:课程分为热力学和统计物理两个部分。热力学部分包括热力学基本定律部分(核心)、均匀热力学系统的热力学公式、热力学基本定律和热力学公式的应用三部分,前两部分为热力学的基础理论,第三部分包括基础理论在均匀单元系、均匀多元系以及非均匀系中的应用。统计物理部分包括平衡态统计理论、涨落理论和非平衡态理论,平衡态统计理论为核心部分,又包括最概然统计理论和系综理论。在授课学时日渐缩减的情况下,可将最概然统计理论作为本科教学中统计物理部分的讲授主体。该部分可以分为系统微观构成的描述和基本统计规律、基本统计规律在不同微观系统中的应用两部分,后者包括了基本统计规律在玻尔兹曼系统、波色系统和费米系统中的应用。这样的一个简明的整体理论框架的建立,有助于学生对相关定理定律的融会贯通和对课程的物理思想和物理方法的整体理解,从而帮助学生建立完整的热力学统计物理图像,达到该课程的最终教学目的。

六、结论

热力学统计物理是本科物理学及相关专业的一门重要基础理论课程,具有抽象且数学知识要求高的特点,教学难度很大。在该课程的教学过程中通过重点突出物理思想和物理方法教学、排除学生心理障碍、详细阐述热力学与统计物理两种方法的关系、帮助学生建立课程理论框架等科学的教学方法的应用,可以有效提高教学质量,帮助学生深入理解相关的物理思想和掌握相关的物理方法,建立完整的热力学统计物理图像。

【参考文献】

[1] 周诗文.运用物理学史培养学生的创新思维[J].物理教学探讨,2005.9.15-16.

[2] 陈运保.物理学史对于培养学生自我意识的重要作用[J].物理教学探讨,2005.2.28-29.

[3] 赵长林,赵汝木.物理学史的课程价值[J].物理教学, 2005.2.32-35.

[4] 汪志诚.热力学·统计物理[M].北京:高等教育出版社,2003.