首页 > 文章中心 > 量子力学基础原理

量子力学基础原理

开篇:润墨网以专业的文秘视角,为您筛选了八篇量子力学基础原理范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

量子力学基础原理范文第1篇

现如今,我国大部分理工科以及师范院校都设置了物理学专业,非物理专业的也都把大学物理课当作一门必修课来开设。但许多人都说物理难学,那么,如何才能学好大学物理课程?本文从以下几个方面加以论述:

一、掌握足够的数学工具

想学好物理学,扎实的数学功底是必须的。高等数学、复变函数、数理方程和线性代数,这四门数学课都是相当基础的课程,对于学好物理的重要性不必多说。但仅仅满足于教材的内容是不够的,想学物理的人应当学一些更高深的课程。

高等数学由于教学时间所限,对很多“古典分析”中的问题没有涉及。建议大家看看北京大学张筑生写的《数学分析新讲》,内容充实。配套的还有北京大学的《数学分析习题集》,里面的题数量、质量俱佳,可以花一年左右的时间好好研读。

复变函数课程应着重于它的应用,这当中有许多定理在数学分析中有对应,学习起来并不困难。此时,建议去学复变函数中“古典分析”之外的理论,作为进一步学习的基础。

关于线性代数,在学习中可以参看王萼芳和丁石孙的《高等代数》。这是清华高等代数课程的教材,以古典的方法讲授了“古典代数”的全部内容,习题也很丰富,仔细学下来很有好处。

数学物理方程,可看希尔伯特和柯朗的《数学物理方法》。这套书写得很精粹,很全面。对于掌握了“古典分析”和“古典代数”的同学,可借此来复习已经学到的几乎全部内容,更重要的是这本书中的许多内容已经涉及了现代数学的内容。

二、各个物理分支课程的学习

学物理应当从普通物理学入手,通过普通物理,可以感受到什么是物理,从而真正入门。力学可以选物理系的教材,那套绿色封皮的《力学与热学》的上册。热学选择《力学与热学》的下册,这套书浅显易懂,内容全面,是初学物理的好书。同时,北京师范大学出版的漆安慎、杜婵英编著的《力学》也可作为学习参考。

至于四大力学,虽然是物理的一个核心,但对于初学物理的人,可以说是高深莫测,很难在四年之内学完它们,就算勉强学完了也不会精通。对于物理学学士而言,能精通经典力学和电动力学之一已经很不容易了。经典力学可以选朗道的《经典力学》,从朗道对拉氏量的讨论中可以发现,理论物理完全不是我们以前所认识的理论物理。电动力学选择郭硕鸿的《电动力学》就可以了,电动力学学好了,再去学习电子工程类的电磁场理论就不会感到困难;经典力学学好了,学习机械类的振动理论会很轻松,这些内容对于一个本科生已经足够了。

如果打算继续学习物理,那么就得学习物理学中最困难的量子力学和统计力学了。量子力学实际上是一种量子理论,它所包含的内容极广,从本科三年级学生学的一维无限深势阱,到超弦可以说都是量子理论。量子力学大致分两个层次——非相对论的量子力学以及量子场论和量子规范场论。对于前者,狄拉克在1937年写过著名的《量子力学的原理》。这本书会告诉你,量子力学不仅仅是薛定锷方程,而是一组原理。从原理出发,而不是从具体问题出发。但是狄拉克的书练习太少,学习者不妨参考曾谨言的《量子力学Ⅰ》《量子力学Ⅱ》和《量子力学习题集》,多做些习题,打打基础。但是,我们所学的量子力学,从数学角度讲是“形式的”和“未经证明的”,并不可以与经典力学和电动力学相提并论,但是有一本

《Quantum Physics》对此进行了详细的讨论。书里面的内容是量子力学的数学基础。搞理论物理的人应当学一学。

量子力学基础原理范文第2篇

关键词: 基矢;希尔伯特空间;波函数;态叠加原理;表象;表象变换

中图分类号:O413 文献标识码:A 文章编号:1671-7597(2011)1210017-01

1 表象的引入并给出表象定义

1.1 表象的引入

一般文献中常用到坐标表象,动量表象,能量表象,粒子数表象等词,实际上涉及到态的表象,力学量的表象,应注意所用的表象的意义。

量子力学与经典力学在描述物理体系的方法上截然不同,其根本原因在于微观体系的运动规律具有不确定性和统计规律,德布罗意的波粒二象性学说引导人们找到了描述微观体系状态的恰当方法,根据统计诠释,波函数作为一个复合函数本身并没有物理意义,如果知道了波函数,粒子处于空间某点的几率,力学量的平均值均可求得,因此说波函数完全描述粒子体系的运动状态,量子力学的另一种基本假设满足态叠加原理:

(1)

是体系的可能态, 为发现体系处于相应的本征态的概率满足:

此式的物理意义是量子体系的一般状态是所有本征态的线性叠加。

某一力学量的本征函数系所构成的希尔伯特空间就构成了这一力学量的表象,在量子力学中研究不同问题需要采用相应的表象,就如同经典物理学中适当选取坐标系研究具体问题一样,表象变换就是Hilert空间中的“坐标变换”,是量子力学中一个最基本问题。

1.2 表象的定义

关于表象的定义有许多种,比如用能量就是能量表象,用动量就是动量表象,这种说法比较通俗易懂。

假设体系的状态在坐标表象中用波函数 描写,而知道动量的本征函数组成完全系,由量子力学展开公式得 ,设 是归一化波函数,则由归一化条件很容易证明 ,

是在 所描写的状态中,测量粒子位置,所得结果在 范围内的几率;而 是在同一状态中,测量粒子动量,所得结果在

范围的几率,由上可见,当 已知, 就完全确定;反之,

已知, 就完全确定,所以, 描写的是同一状态

是这个状态在坐标表象下的波函数,而 是同一状态在动量表象的波函数。

2 关于表象及其变换的理解

在经典物理中,不同坐标系之间可以互相变换,例如,直角坐标系(x,y,z)和球坐标系之间的变换关系:

;而量子力学中不同表象间也可以进行相互变换,如某一力学量的表象可以表示一个n行1列矩阵,而力学量在某一具体表象下对应于某个矩阵,这是一个厄米矩阵,如某一力学量在一自身表象下是由该力学量本值所构成的对角矩阵,力学量在不同表象下的矩阵形式是不同的。

2.1 从几何坐标的角度来理解表象及其变换

我们知道量子态可以在各种表象中表示,只需将该态波函数用该表象的本征函数系展开,在量子力学中,把状态 看成一个态矢量,选择一个特定的Q表象,就相当于选取一个特定的坐标系,在量子力学中, 的本征函数有无限多,称态矢量所在的空间是无限维的希尔伯特空间,我们知道在矢量中,一个矢量在不同坐标系中的展开可以相互转换,而量子力学则借助么正矩阵来实现不同表象间的变换。

量在两个基底下坐标间的关系X=MY。

2.2 从物理的角度来理解表象及其变换

在经典力学中,描述一个物体力学性质的物理量,无非是它的位移、速度、加速度、动量和能量等,我们常用坐标来表示质点的位置,为方便起见,设物体在一维空间中运动,某时刻位于x处,由于经典力学遵循牛顿运动定律,这是一种精确的因果关系,即只要给定宇宙中每个粒子的初始速度,它在以后所有时刻的行为,就都由牛顿运动定律确定,所以,若已知 ,只要通过微分 和 ,就可以得到其它精确的物理量,当然,如果已知速度 ,加速度 ,动量 和动能 等,实际上,经典力学通过微分积分这样的关系,实现了物理量之间的相互转化。

而量子理论与经典理论暗示的物质本性之间有着本质的差别,尤其是微观粒子的波粒二象性,使得量子理论中完全决定论不再适用,因此,在量子力学中,物理体系的表示法是抽象化的,表象就是表示物理体系状态的函数,并且这个函数用什么物理量来表示的问题,同时在量子力学中,各物理量之间也存在着一定的关系,使得我们也可以用其它的物理量来表示体系的状态函数这就是表象变换,量子理论的不完全确定性,使得量子态并不像经典力学那样具有确定物理量,如动量、坐标等,而只能给出力学量的几率分布。

3 总结

量子力学之所以难理解,一方面是由于它的描述方法的特殊,导致许多结论与我们的经验常识严重抵触,另一方面就在于表象及表象变换的抽象,波函数的叠加原理是表象及表象变换的基础,要正确理解表象就要求我们深入理解波函数及波函数的叠加原理,选择一种表象,就相当于选择了一组基矢,由于微观粒子具有波粒二象性,物理量的可测量值只作为一种潜在的可能性而存在,这使得经典理论的完全决定性不再适用,而只能采用一种抽象的表示法表象来表述物理体系的行为,并通过么正变换来实现不同表象间的变换。

参考文献:

[1]周世勋,量子力学教程[M].北京:高等教育出版社,1979.

[2]刘连涛,理论物理简明教程[J].上海:华中师范大学大学出版社,1979.

[3]玻姆,量子理论[M].北京:商务印书馆,1982.

[4]宋鹤山,量子力学[M].北京:大连理工出版社,2004.

[5]曾谨言,量子力学(第四版)[M].北京:科学出版社,2007.

量子力学基础原理范文第3篇

关键词 量子力学 教学改革 创新能力 研究性教学

中图分类号:G643.0 文献标识码:A DOI:10.16400/ki.kjdks.2015.07.017

Graduate Education Course Advanced Quantum Mechanics Teaching Reform

HU Ping, PENG Zhihua, GUO Ping, HU Jiwen

(College of Mathematics and Science, University of South China, Hengyang, Hu'nan 451001)

Abstract Postgraduate both the learning process to deepen the knowledge of the process is scientific ability, knowledge of scientific basis. From Graduate Teaching Mode existing problems, discusses the necessity of quantum mechanics graduate students in higher education, research teaching model introduced in the teaching process, improve the quality of teaching so that students master the basic principles of quantum mechanics, based on general ability, innovation ability has been greatly improved.

Key words Quantum Mechanics; teaching reform; innovative ability; research teaching

自上个世纪80年初期恢复研究生教育,我国的研究生教育进入了蓬勃发展的时期。①随着我国高等教育的发展,研究生教育规模的也迅速扩大,研究生教育质量已成为一个全社会关注的焦点问题。我国研究生的素质关系到国家的未来发展,研究生教育是为国家培养现代化建设、发展科技培养高水平、高层次人才;研究生教育是我国站上世界知识经济高点的重要支持;同时也是高校实现由教学型向研究型转变的重要基础。研究生教育不同于本科生教育,研究生教育不仅包含课程教学,同时包含了社会实践、学位论文等诸多环节。②然而作为科研能力、自主创新能力发展的基础――课程教学不仅要传授知识,更重要的是要指导研究生思考,是提高研究生培养质量的根本。

研究生教学质量是整个研究生教育的一个重要部分,如何合理利用现有教学资源条件,使得研究生教学质量能够稳步提高,则成为研究生管理的首要解决问题之一。自上个世纪80年代以来,高等教育改革逐渐兴起,其主要目标就是培养创新型人才,教育界越来越多地关注教学方法创新研究。首先,研究性教学,是一种能有效引导学生主动探究、培养学生创新能力的教学方式,引起全世界各地的教育及其相关部门的关注。目前,教育部实施研究生科研创新项目研究计划, 现在全国已有100多所大学参加这项计划。其次,在过去的几十年中,国内外在总结以前高等教育成果与不足的基础上,以培养创新型人才为教育主要目标,对原有的传统高等教育模式进行了改革。

自从20世纪50年代美国施瓦布教授首先提出学生的学习过程和科学家的研究过程是一致的以来,研究性学习引起了人们的广泛关注,提出了各种相关的理论。③④⑤ 然而,现在国内的高校课堂教学大部分都是基于传统教学模式:教师教学――课堂讲授为主的教学模式。而研究性学习,则主要是以研究问题为基础、由学生主动提出问题、并设计解决方案、解决问题,并在这一过程中获得知识、培养相应的能力,基于此中方式来展开教学与研究的教学模式在国内现有的教学理念与教学资源条件下,应用并不广泛。尤其是在相对较为抽象难懂的理工类课程如量子力学课程教学中应用更是甚少。⑥研究生教育主要是培养学生的科研能力与素养,首先要在“研究”的培养上下功夫,而研究生课程教学正好提供了这一平台。在本文中主要以高等量子力学课程教学为主要研究内容,探讨如何进行课堂教学改革。

自1978年国内恢复研究生招生制度以来,高等量子力学就被列为物理系各专业研究生必修的学位课程之一,同时高等量子力学也是报考博士研究生的考试科目之一,在原来本科阶段“量子力学”的基础上进行深化和拓展,主要是提供学生在后学研究工作中要用的一些知识和方法。量子理论已经成为解决物理学、生命科学、信息科学和材料科学等理论问题的关键。

量子力学作为一门微观物理课程,与经典物理学相比,有一个很明显的差异:其中很多理论很难与日常生活和经验对应,涉及的理论、概念非常抽象,同时涉及非常多的数学知识,如(线性代数、Hilbert 空间、群论、数学物理方法和复变函数等),内容繁多,知识结构广泛,使得学生理解起来有非常大的困难,同时容易诱使学生陷入复杂繁琐的计算,而失去对量子力学学习的兴趣。目前,从我校物理系硕士研究生的实际情况来看,学生的量子力学知识水平参差不齐,有的学生以前没有学习过量子力学,有的学生学量子力学学时非常短,同时每个研究方向对量子力学的需求也不尽相同。 因此,量子力学成为教师公认难教的课程、学生公认难学的课程。 高等量子力学的教学效果将直接影响学生以后的科学研究创新能力与论文水平。为了培养研究生日后的科研能力,我们主要从教学内容和教学方法上进行了改革探讨。

在教学内容上,结合本校教学时限(48学时)和本校学生的特点、学生的研究方向,主要目标是将量子力学的知识应用到其它领域,避免冗长的理论计算,激发学生的创新热情。重点学习量子力学的形式理论、微扰理论、对称性和守恒定律、量子散射理论等。

在教学方法上,根据学生的知识基础和教学内容的特点,改变传统的教学方式,采用学生为主的教学方式。传统的教学方式主要是以教师讲授为主的灌输式、填充式,由于量子力学本身的特点,这些教学方法对量子力学的教学实效非常有限。一方面,一个主角的表演使得本身比较枯燥的量子力学课堂毫无生气,学生面对复杂繁琐的数学推导,思维跟不上教师的节奏,学生的学习热情下降。另一方面,学生本身的角色没有改变,自主学习、自主思考没有可锻炼的平台。教师考虑到自然科学的特点,一定要从知识的传承角度出发,这样教师要去贯彻启发式的教学方式。学生学一门课,学的是前人从实践中总结出来的间接知识。一个好的教师,应当引导学生设身处地去思考,自己是否也能根据一定的实验现象,通过分析和推理去得出前人已认识到的规律?自然科学中任何一个新的概念和原理,总是在旧概念和原理与新的实验现象的矛盾中诞生的。⑦作为教师,要充分利用新旧理论的矛盾提出问题,让学生思考问题,并设计一套完成的解决方案。在量子力学的课堂教学中,笔者结合实际情况,主要采取的是学生讲授为主、教师辅导的方式。尽管学生对量子力学知识的理解有限,但是一方面可以促使学生在课前预习;另一方面学生为了准备一堂课,要查阅相关资料,这样就可以极大地提高学生查找资料的能力,拓展学生知识面。作为教师,从学生讲授中也可以得到一些启发,诸如学生对一个问题理解的切入点与教师理解的不同,从而教师可以调整日后的课堂教学,使得课堂教学的内容从抽象化为通俗。

将科学研究融入到课堂教学,也是实现课堂教学改革的有效方式之一。研究生不仅要学习知识,更要的是做科学研究,寓教于研同样可以提高教学效果。在课题教学中,针对一个主题,在讲授基本知识的同时,更多的引入与之相关的前沿知识,并要求学生设计相关的问题,展开调查研究,以论文、学术报告的方式提交研究成果。通过此种方式,研究生的科学研究能力得到锻炼,创新思维能力得到培养,符合我们培养创新型人才的目标。

本文结合本校研究生的实际情况以及量子力学学科特色,我们主要从从教学内容、教学方法两方面探讨高等量子力学课程的教学改革。随着我国高等教育的发展,研究生课程教学改革还有待进一步地深化,这样才能提升我国研究生教育的整体水平,为祖国的发展培养更多的人才,日益增强国家的综合国力。

本文得到南华大学教学改革研究课题,2014XJG49;南华大学研究生教学改革研究项目 资助

注释

① 周萍.量子力学研究性教学[J]. 中国科教创新导, 2011(17): 89-90

② 高芬.美国高校研究生教学中的“教”与“学”――以美国马萨诸塞大学阿默斯特分校教育学院为例[J].学位与研究生教育,2011(3):73-77.

③ 沈元华.设计性、研究性物理实验介绍[J].物理实验,2004(2):33-37.

④ 顾沛.把握研究性教学、推进课堂教学方法改革[J].中国高等教育研究,2009, (7) :3 1-33 .

⑤ 陈兴文,白日霞,李敏.开展研究性教学培养大学生创新能力[J].黑龙江教育:高教研究与评估,2009(1):123-125.

量子力学基础原理范文第4篇

[关键词] 地方院校;量子力学;精品课程建设

[中图分类号] G642.3 [文献标识码] A [文章编号] 1005-4634(2014)01-0057-04

0 引言

我国本科高校按隶属对象不同,分为部委属和省属两大类别,省属高校又分为省属国家“211”重点高校、省部共建高校、地方性直属高校三类,本文“地方院校”指省属高校中的地方性直属本科高校,这些院校大多采取省市共建、以市为主的管理体制,多数建校时间短或由专科升格。

随着我国高等教育大众化进程的不断深入,生源质量降低,教学资源日趋紧张,高等院校的教学压力逐渐加大,引发了社会对高等教育质量的担忧。2003年4月《教育部关于启动高等学校教学质量与教学改革工程精品课程建设工作的通知》(教高[2003]1号),引起了全国范围内建设国家、省、校三级精品课程的热潮。量子力学精品课程也同其他课程一样,经历了精品课程建设的热潮,截至2013年9月,共有四校建成国家精品课程,分别是兰州大学(2004年)、复旦大学(2004年)、清华大学(2007年)、北京大学(2008年);两校建成湖北省精品课程,分别是华中师范大学(2003年)和湖北大学(2003年);两校建成湖北省地方院校校级精品课程,分别是黄冈师范学院(2007年)、湖北师范学院(2011年)。可见,量子力学国家精品课程全部由985重点大学建设,湖北省精品课程也由211重点大学和省属重点大学建设,地方院校只有两校建成校级精品课程,只占湖北省27所地方院校的7.4%,大多数地方院校并未开展量子力学精品课程建设,这与量子力学课程的重要地位极不相称。量子力学是近代物理学的两大支柱之一,也是现代工业技术的重要理论基础,其教学质量的重要性不言而喻,但量子力学又是一门高度抽象的理论物理课程,远离日常经验,教与学都有一定的难度。地方院校由于师资力量薄弱,学术资源匮乏,生源素质不理想,教学与科研脱节,导致这些院校的量子力学精品课程大多处于有心无力、举步维艰的状态。

地方院校占我国高校总数的90%左右,担负着服务地方社会经济建设、培养千百万专门人才的重任。地方院校是我国高等教育金字塔的塔基,塔基不稳,必然影响我国高等教育的健康发展,因此研究地方院校量子力学精品课程建设,提高人才培养质量是迫在眉睫的重要问题,令人惋惜的是这方面的研究成果太少,难以指导地方院校量子力学精品课程的建设。

1 地方院校视角下量子力学精品课程建设 的内涵

精品课程的评价标准是“五个一流”,即一流教师队伍、一流教学内容、一流教学方法、一流教材、一流教学管理。精品课程建设研究大多围绕“五个一流”展开,但精品课程建设应该是分层次的,不同类型的高校应有不同的标准。每个学校都是在自己的层次上、自己的类型上来办出最高水平的课程,各个学校是不一样的,精品课定位不一样,寻找精品课群体也不一样[1]。地方高校应从自己的办学定位、培养规格和生源情况来考虑量子力学精品课程建设,基于地方院校视角来理解“五个一流”,扬长避短,不盲目攀比,也不妄自菲薄。

1.1 一流教师队伍

地方院校普遍存在教师整体水平不高的问题,教师的学历、职称、学术水平和重点大学相比有较大差距,教学任务重,技术应用能力不强。重点大学承担培养拔尖人才的任务,必然要求教师具有较高的学术水平和科研能力,地方院校承担培养千百万专门人才,即应用型技能型人才的任务,对教师的学术水平要求不是太高,但要求教师具有较强的技术应用能力。地方院校教师不宜与重点大学的教师比学术水平,但要关注学科前沿,尽快掌握与本学科相关的最新技术,提高重点大学教师并不擅长的技术应用能力,体现地方院校“双师”型师资的鲜明特色。

地方院校量子力学精品课程的一流教师队伍,就是要建设一支与应用型人才培养相适应的,具有一定的学术水平、较高的教学水平、较强的技术应用能力的“双师型”教师队伍。

1.2 一流教学内容

应用型人才培养的定位,决定了量子力学精品课程的教学内容有别于重点大学,教学内容的核心是量子力学的基本理论、基本知识、基本技能,不求教学内容的高度完整性,适当降低内容的深度和应用数学解题的难度,保持教学内容的前沿性和时代性,满足学生了解学科发展前沿及其技术应用的强烈愿望。前沿知识不仅可以开阔学生的眼界,而且能够潜移默化地影响学生未来的发展。

地方院校量子力学精品课程的一流教学内容可以理解为,量子力学基本理论、基本知识、基本技能等学科有效知识与专业发展密切相关的前沿知识及其技术应用的有机整合。有效知识,就是今后能对在该领域继续学习、继续研究、开辟新的领域、学习新的知识发挥作用的、最关键、最基础性的东西[1]。

1.3 一流教学方法

重点大学普遍重视讨论式、研究式教学方法,基于量子力学学科特点和地方院校学生水平,讨论式和研究式的教学方法要慎重使用,如果准备不充分,极有可能出现学生讨论时言之无物和研究时无从着手的难堪局面,反而挫伤学生的学习积极性。采用讨论式和研究式教学方法,一要内容难度适宜,二要前期准备充分,三要教师循循善诱。量子力学内容高度抽象,学生自学困难较大,因此对教学方法和手段的要求较高。无论选择什么样的教学方法,采用什么样的教学手段,都是为了学生能够更好地理解和掌握知识,都要适合学生的实际认知水平,不能为了讨论而讨论,为了研究而研究,应以实际教学效果来评价教学方法的优劣。

地方院校量子力学精品课程的一流教学方法,即以启发式讲授为主,结合课程内容适当采取讨论式和研究式教学,传统教学手段与多媒体技术手段有机结合,集多种方法与手段于一体的教学方法体系。

1.4 一流教材

量子力学教材的选用,国内一般主要选用曾谨言版(重点大学)和周世勋版(地方院校),另有苏汝铿版、张永德版、钱伯初版、关洪版等多种教材,也有多种国外优秀教材。鉴于量子力学的某些基本问题至今仍有争议,甚至国内权威教材中的部分内容仍受质疑,地方院校不宜盲目自编教材,避免对某些问题的不当阐述误导学生,宜选用国内经典的简明教材,辅以优秀教材作为参考书,以满足不同学生的学习要求,通过立体化、一体化教材建设,补充量子力学的最新进展和实际应用,更好地为地方院校培养应用型人才服务。

地方院校量子力学精品课程的一流教材,即在选用国内经典简明教材的基础上,选择国内外优秀教材作参考书,着力打造包括电子教案、PPT、习题答案、试题库、仿真实验、网络课堂等资源在内的立体化、一体化教材。

1.5 一流教学管理

精品课程需要通过科学的管理为其提供制度保证。科学的教学管理和规范的管理机制,是精品课程的重要条件。精品课程的教学管理既包括对课堂教学的组织、实践教学的安排、学习成绩的评定等教学环节的管理,还包括师资队伍的配备、课程建设过程的管理、教学保证条件的建设等[2]。

地方院校作为教学型大学,科研上处于劣势,教学管理上更应加强,应将一流教学管理作为量子力学精品课程的重要特色来建设。

地方院校量子力学精品课程的一流教学管理,即建立健全与应用型人才培养目标相适应的教学管理制度,包括编、备、教、辅、改、考各教学环节的管理制度,以及经费投入、师资配备、用人机制和激励机制、课程评价等教学质量保障制度,认真落实各项教学管理制度并切实做好教学质量监控,保证课程建设的可持续发展。

2 地方院校视角下量子力学精品课程建设 的对策

2.1 建设一支与应用型人才培养适应的师资队伍

地方院校培养应用型人才的定位,客观上要求教师应具有教师和工程师(或技能师)的双重身份。量子力学精品课程的师资队伍建设,除引进高层次人才、抓好现有教师的转型提升、开展与课程相关的教研和科研等常规措施之外,尤其要重视师资队伍的技术水平和能力的培养,通过产学研用结合切实提高教师的技术操作能力、应用能力和转化能力。加强学校与科研机构、企业的合作,聘请经验丰富的科研人员和工程师作为兼职教师,提高教师队伍整体的科研水平和技术实力。

2.2 精选课程有效知识构建学科基础,实现理论 与应用、基础与前沿的完美结合

夯实基础、关注前沿、了解应用、激发兴趣是一流教学内容的必然要求。在教学内容的选择和安排上,要注意与知识的实际应用相联系,找准最佳结合点,融入学科前沿的理论知识和学科发展的最新成果。

量子力学的有效知识包括量子力学的发展历史、量子力学的五大公设、定态问题求解、表象变换理论、微扰理论、电子自旋等,有效知识构成课程的核心知识;学科前沿知识、量子力学在现代科技和其它学科中的应用等内容构成课程的补充知识;散射等相对困难的内容构成课程的知识。核心知识具有相对稳定性,要求熟练掌握;补充知识具有时代性,要求学生了解而不求掌握;知识具有可选性,建议有能力的学生选学。核心知识和补充知识属于第一层次的教学内容,面向全体学生;知识属第二层次的教学内容,面向部分学生。教学内容的分类既有利于实现教学的层次化,又有利于实现理论与应用、基础与前沿的有机结合。

2.3 构建教学理念先进、与学生水平相适应的教 学方法体系

以教师为主导,以学生为主体。变单一教学方式为多样化教学方式构成的有机体系,变以教为主为以学为主或学教并重,变传统课堂教学为传统课堂教学和网络课堂教学相结合。基于量子力学的抽象性,讲授仍是主要的教学方法,但应注重启发学生积极思考,采取课内、课外、网络等多种形式增强师生互动,结合适当的内容开展讨论和研究。

可以组织学生讨论如量子力学相关实验的解释、量子力学基本原理的各种理解、一维定态问题的求解方法等;也可讨论量子力学的某些新进展和新的技术应用,要求学生就“量子纠缠”、“EPR佯谬”、“量子计算机原理”等内容展开调研,撰写文献综述报告,将讨论和初步的研究结合起来,培养学生从事科学研究的基本素质;也可建议能力较强的学生对“密度矩阵表示量子态”、“路径积分量子化”、“自由粒子的狄拉克方程”等较新的内容进行一些初级的理论探讨,通过写小论文的方式总结研究结果等。

讨论和探究的关键在于培养学生的参与意识、问题意识和批判意识,不奢望毕其功于一役,长期坚持一定会有收获。

2.4 选择适宜的教材和教学参考书,建设立体化、 一体化教材

选择周世勋版《量子力学教程》作为教材,因为它比较简明,适合初学者和地方院校生源的实际水平;选择曾谨言版《量子力学教程》作为主要参考书,因为它是全国大多数高校指定的考研参考用书,要照顾部分考研学生的需要;还可选择其他国内外优秀教材作为参考书,以兼收并蓄、博采众长。

教材是教学内容的载体,一流教材必然要展现一流教学内容。立体化、一体化教材不是简单的教材和教参搬家,应将学科最新的研究成果、成功的教改经验和教师自己的教科研成果及时地反映出来。一流教材除电子教案、PPT、全程教学录像、习题解答、试题库、网络互动答疑、在线测试等内容外,还要自编学习辅导用书,内容大致可包括学习内容辅导、考研辅导、阅读材料三大部分。学习内容辅导应梳理各章知识点及联系、重点难点的学习经验,补充典型习题;考研辅导可提供各类院校近年来的量子力学考研试卷,分析考试内容涵盖的知识点和相关的考核要求;阅读材料可介绍量子力学的最新进展、与量子力学有关的各交叉学科、量子力学的发展历史以及逸闻趣事等。

2.5 抓紧抓实全方位全过程的教学管理

精品课程建设是一个综合系统工程,只有扎扎实实、认认真真、持之以恒地努力工作,才能把事情做好[3]。一流教学管理是精品课程建设的重要方面,建章立制是基础,教学各环节的过程管理是纵线,教学保障条件建设管理是横线,教学质量监控、反馈和改进是保障。教学管理不必标新立异,抓紧、抓实、抓细、抓出成效,就是教学管理的最大特色。

教学各环节的管理制度中,重点要改变学业成绩评价标准,变结果评价为过程评价,正确把握考试导向,降低期末考试比重,加大平时考核比重,将考勤、作业、提问、小论文、课程设计纳入平时考核。

教学质量保障制度的建设和落实要抓好以下几个方面:学校要加大对精品课程建设的经费投入;选择学术水平较高、教学效果得到师生公认的优秀教师担任课程负责人,组建由课程负责人负总责、主讲教师分工与合作的教学队伍;对参与精品课程建设的教师,在评优评先、晋升职称等方面优先考虑;抓实教学过程的质量监控,完善同行评教、学生评教、毕业生评教和评教意见的及时反馈及改进制度;抓住一切校内外的交流机会,博采众长,不断更新充实网上资源,确保精品课程建设的可持续发展。

3 地方院校视角下量子力学精品课程建设 的初步成果

2011年起,荆楚理工学院应用物理学专业开设量子力学课程。三年来,量子力学教学团队坚持以建设校级精品课程为目标,始终追求精品境界,目前量子力学精品课程的基本资料已准备就绪,拟申报校级精品课程,并计划在校级精品课程基础上,力争申报省级及以上精品课程,最终转型升级成为精品资源共享课。

教学团队坚持教学和科研相结合,重视研究解决教学过程中存在的突出问题,以教科研水平的提高带动教学水平的提高。三年共主持完成湖北省教育科学“十一五”规划课题“理工类本科生物理学习障碍归因及对策研究”一项,此课题于2013年5月被湖北省教科规划办批准结题,鉴定结论为:课题研究整体设计规范,研究路线科学,课题组成员分工合理,研究成果丰富且有实效;正主持湖北省教育科学“十二五”规划课题一项:“地方院校应用物理学专业人才培养模式研究”。在学术研究方面,教学团队围绕量子纠缠态、量子点、反应微分截面等方向进行了比较深入地研究,取得了一些成果,近几年在国外英文期刊和国际学术会议上发表了6篇英文学术论文,其中4篇被EI收录,2篇被INSPECT收录,并在原子与分子物理学报、重庆大学学报、量子光学学报等中文核心期刊上发表了8篇学术论文。

科学研究提高了教师的学术水平,加深了对量子力学课程内容的深刻理解,促进了教学的深入浅出,实现了理论与应用、基础与前沿的有机结合,量子力学课程教学质量逐年稳步提高:三年来师生评教均分都在95分以上,教学效果得到师生认可;学生学习量子力学的积极性明显提高,学业成绩的统计结果表明,大部分学生较好地掌握了量子力学的基本理论、基本知识和基本技能,并对量子力学知识的有关应用和学科发展前沿产生了浓厚兴趣,越来越多的学生开始选择以量子力学的有关研究作为毕业论文选题,其中2009级两名学生的毕业论文荣获学校优秀毕业论文;不少学生考研时量子力学科目也取得了135分以上的较好成绩。荆楚理工学院量子力学精品课程建设取得的初步成效,从理论和实践两方面证明了建设具有地方院校特色的量子力学精品课程是可行的。

4 结束语

精品课程不应千课一面,不同类型的院校应该有不同类型的精品课程,量子力学精品课程建设也不应该成为重点大学的专利,地方院校完全可以根据自己的培养目标、培养规格、生源状况,正确地理解“一流教师队伍、一流教学内容、一流教学方法、一流教材、一流教学管理”,建设具有应用型人才培养特色的量子力学精品课程,在精品课程建设上实现与重点大学的错位发展。

参考文献

[1]袁德宁.精品课建设及课程支撑理念的转变[J].清华大学教育研究,2004,25(3):53-57.

量子力学基础原理范文第5篇

关键词:量子力学;现代物理;地方应用型高校

笔者于1997年毕业于衡阳师范高等专科学校物理教育专业,那时用的是专科学校自编的量子力学教材,内容较简化,学习起来较吃力;2005年进入湖南师大读研后,又学习了高等量子力学,许多东西似懂非懂;2016年开始向本科生讲授量子力学课程,也只有在这时候,才懂得了困惑自己多年的一些问题。从这个历程中,可见学好量子力学这门课程是多么难。

一、教学指导思想

正因为这门课程很难学,所以不能期望太高,何况在生源较差的地方应用型高校。与此同时,教师要以人才市场需求和学术发展为双重依据,保持学科体系的完整性,把量子力学教好。对于若干个学生中的精英,要使其受到完整的课程体系训练,培养物理学科的领头雁;而对于其他学生,则通过教学方式和考核方式的多样性,让其顺利通过这些理论性较强的课程考核,培养物理文化的传播者。

笔者采用的教学方式以传统讲授法为主,PPT用得很少。因为这门课程必须经过数学演算和推导,才能对量子世界有所理解。不要求学生步步推导,但教师至少要去一步一步地算,给学生留下深刻的印象,让学生知道,做学问是老老实实地工作。每章结束后,设置一个小测试,题目来自上课时讲的一些重点概念、符号、规律以及一些简单的公式推导。这样可以保证学生能从书本里查找答案,掌握基本知识。

二、正确看待学生的学习状况

学生的学习状况也如所预料的一样,认真听的只有几个有考研意愿的人,其他人几乎是以玩手机来消磨时间。小测试的时候,总有十多人先不做,坐等别人的答案。笔者认为,教育不能指望人人都会成为精英,能成为“欲栽大树柱长天”的人只需几个即可。同一个专业里,也需要各种层次的人才,如理论计算、实验操作、知识传播、人际协调,等等。量子力学教师需要关注学生的听课状态,以人人能学会为原则(教育机会均等),随时调整自己的教学策略;同时也要牢记自己的使命,把量子力学的灵魂传播到位,把它的科学精神传播到位。

三、量子力学的魂与精神

量子力学的魂是:微观粒子的运动状态是不确定的,只能用概率波去描述;微观粒子的运动能量不是连续的,而是离散的;测量微观粒子的力学量时得不到确定值,只能得到系列的可能值及其出现的概率,但它们的统计值是确定的,即得到的宏观量;量子力学里的微观粒子不一定是电子质子等实物粒子,还可能是经过一次量子化和二次量子化后的某种运动单元,如电磁场光子、谐振子粒子。量子力学的精神是:科学研究是一件严肃的事情,必需老老实实地演算和推导,来不得半点投机取巧。

四、教学心得体会

1.量子力学的研究对象。量子力学是研究微观粒子的运动,但是课本开始介绍的黑体辐射却是能观察到的宏观现象,这该怎样理解?一是将空窖里的辐射场当成大量微观粒子组成的系统,它们服从Bose-Einstein分布l=ωl/(eβεl-1),只是它们不是有原子分子结构的实物粒子罢了。二是认为这些粒子的能量是量子化的εl=ω,不再是宏观的连续能量了。这样一来,物体的辐射就是发射和吸收微观粒子的过程了。

2.二次量子化。把辐射场处理成能量量子化的大量微观粒子,把原点附近做振动的原子或分子处理成能量量子化的线性谐振子等就是一次量子化。最简单的二次量子化就是体现在对线性谐振子的处理上。线性谐振子的能级是分立的,En=ω(n+1/2),τΦ谋菊魈为Ψn。由于相邻能级上的本征态具有递推关系,即由Ψn可以推出Ψn-1或Ψn+1这时又把态Ψn看成是由n个粒子组成的系统,每个粒子具有能量E=ω,这样一来,递推关系里的算符就可以看成产生算符和湮灭算符了。

3.不确定性。这点和统计力学有某种相似性。统计力学并不知道微观粒子确定的运动状态,所以只好假定每种微观运动状态出现的概率相等,即等概率原理。这样一来,就可以理解测量微观粒子的力学量时,得不出确定值的原因,只能得出一系列的可能值以及这些可能值出现的概率。同样,描述粒子的运动状态也只能用概率波来描述了。

量子力学基础原理范文第6篇

经典物理的产生一般认为从文艺复兴时期开始,前期经过许多科学家,特别是伽利略、笛卡尔、惠更斯等先贤的努力,建立起力学的实验基础。牛顿总结前人的成果,确立了经典力学的基本理论体系,麦克斯韦、玻尔兹曼等确立了经典统计力学和电磁场理论。经典物理经过几百年的不断发展和完善,形成了自然科学中唯一有完整的理论、思想、数学推理和研究方法体系的学科。牛顿力学和麦克斯韦电动力学号称经典物理的两大支柱,牛顿和麦克斯韦在物理学界的位置,可以相比于中医学的先圣张仲景。

现代物理从20世纪初始兴起,由爱因斯坦、玻尔为代表的众多科学家的杰出工作,创立了相对论和量子力学,开创了物理学的新局面。以相对论和量子力学标志的、研究微观、高速物理现象的新的理论和方法体系,统称现代物理学。现代物理学在原子、分子、固体、原子核、天体力学和宇宙学、等离子体、激光技术、基本粒子、半导体、超导的研究中得到了广泛的应用。

有人称相对论和量子力学的创立是“物理学上的一次革命”。更多的局外人则认为现代物理是一种全新的理论,完全推翻和取代了经典物理学,经典物理已经完成了自己的历史使命,现代社会已经不再需要她。这其实是一种误解。如果我们从历史和现实的的角度重新审视事实,就会发现,经典物理没有被抛弃,她不仅是现代物理产生的温床、理论与方法的启示、研究的工具,更是现代社会的顶梁柱,仍在现今众多高科技领域中发挥着不可替代的作用。下面,我从以下三个方面讨论现代物理与经典物理的关系,从而说明重视经典是物理发展的需要,是现代科学、社会发展的需要。

1 现代是经典恰当的扩展

爱因斯坦在创立狭义相对论时,提出了两个基本假定:相对性原理和光速不变原理[1]。首先我们注意到,爱因斯坦的相对性原理与伽利略相对性原理惊人地相似,比较一下就可以看到:

伽利略相对本文由收集整理性原理(由伽利略等人经过反复多次的实验检验而提出):一个相对于惯性参照系做匀速直线运动的系统,其内部所发生的一切力学过程,都不受系统运动的影响,或一切惯性系统都是等价的。

爱因斯坦假定,不仅力学过程,所有的物理过程都不受系统运动的影响,即:

物理学的基本规律在相互作匀速运动的一切参照系中都是相同的;或:一切惯性系统都是等价的。

从中我们不仅看出,爱因斯坦对伽利略的相对原理有着非常深刻的、超出常人的理解,已经达到了熟能生巧的地步,自然会有如此随手拈来、为我所用的“上工”境界;也看出创造经典的先贤们的超前意识和睿智之魅力所在。

再看光速不变原理,只要对经典电磁理论稍有了解的人都会发现,麦克斯韦的电磁理论完全可以给出明确的关于光速不变的预言。这是因为,只要从著名的麦克斯韦方程组出发,利用简单的数学推演,可以毫不困难地导出电磁场波动方程,不仅预言了电磁波的存在,还给出了电磁波在真空中的传播速度。用c表示电磁波在真空中的速度,c的大小是:

c=■≈3.0×10■米秒

其中μ■为真空磁导率,ε■为真空介电常数,由于μ■和ε■数值的大小固定,与参照系的选择无关,换句话说,与系统的运动状态无关,这正是光速(光属于电磁波)不变原理。

爱因斯坦在创立狭义相对论时,对当时著名的、能够证明光速不变的迈克耳孙光干涉实验并不知晓,他能参考的资料只有经典电动力学,麦克斯韦方程组和电磁场波动方程表达的深刻内涵才是他提出光速不变假设的根据。

2 现代是对经典的包容而非否定

无论是相对论和量子力学,都无法否定经典物理,也没有否定经典的企图。相反,所有的新理论都试图找到和经典的联系,如果找不到应有的联系,这样的新理论有可能破产。所以,相对论和量子力学实际都包含了经典。这与所有的后世中医大家,在发表自己的新见解时,都要证明自己的观点与《内经》、《伤寒论》有内在联系如出一辙。

相对性原理最著名的数学表示即洛仑兹变换,具体表述如下:设两个相对有匀速运动,速度为v参照系统,它们沿v方向各自建立的直角的坐标系分别为x,y,z,t和x’,y’,x’,z’,t’,若初始时,两坐标原点重合,两坐标系由以下变换公式[1]联系:

x′=■ y′=y z′=z t′=■

式中 c 是前面提到的光速,具体数值为30万公里每秒。我们通常能见到的物体运动速度,如汽车、火车、飞机,能达到1公里每秒的速度并不多见,宇宙飞船的速度,也最多达到10几公里每秒,即使将来提高100倍,与光速相比仍显得微不足道。而上式表明,当系统的相对速度v远远达不到光速的时候,(日常中大量事实正是如此)上面的公式就变成伽利略变换:

x′=x-vt y′=y z′=z t′=t

说明洛仑兹变换与经典的伽利略变换并没有矛盾,前者包含了后者,后者用更加广泛。

再看量子力学,量子力学的基本原理是测不准关系[2]。其典型的表述是:粒子的位置和动量不能同时确定。它们在某一方向上不确定量的乘积大于或等于h/2。即

δx?誗δpx≥■, h=6.62×10-32焦耳秒

可以看出,h是一个很小的量,小到什么程度呢?小数点后面有34个0!是6的百亿亿亿亿分之一。一般气体分子够小

转贴于

的了,如氧气分子质量为10-23的数量级,常温下速度大约为102的数量级,则动量为10-21的数量级,和h相比大了10万亿倍,完全可以不考虑测不准关系的影响。所以,当我们研究的对象系统中物理量的数量级远远大于普朗克常数时,不确定度数值相对来讲,必然微不足道,量子力学很自然地回归到经典力学。也可以说,测不准关系包容了经典力学,后者应用更为广泛。

3 现代对经典的接收和继承

现代物理不是空中楼阁,它是采用经典的材料和艺术,一砖一瓦构建的绝美珍品。在现代物理学中,经典的概念、定义、研究方法无处不在,发挥着主导的、关键的作用。在相对论力学中,我们可以看到力、加速度和动量以及它们的矢量形式,能量、拉格朗日量、哈密顿量等在经典中熟知的力学量。这些力学量全部统一到了满足洛仑兹协变的四维形式中去。至于经典电磁理论中所有规律,由于自然地满足相对性协变,几乎很少更改地进入相对论,成为相对论的重要的组成部分。

在量子力学中,同样采用了经典力学的所有量,只是为了描述测不准关系、描述系统的状态需要,力学量在不同的表象中可以有不同的形式,可以是标量、矢量、张量算符。如在坐标表象中,动量具有梯度矢量的算符形式,哈密顿量则包含了拉普拉斯算符。量子力学的创立者之一海森堡更是心有灵犀,他把测不准关系表示成为力学量的对易关系[2]:

q■p■δ■■i■

这很容易想到经典力学中的泊松括号

q■p■δ■■

量子力学基础原理范文第7篇

[关键词]网络支付信息安全量子计算量子密码

目前电子商务日益普及,电子货币、电子支票、信用卡等综合网络支付手段已经得到普遍使用。在网络支付中,隐私信息需要防止被窃取或盗用。同时,订货和付款等信息被竞争对手获悉或篡改还可能丧失商机等。因此在网络支付中信息均有加密要求。

一、量子计算

随着计算机的飞速发展,破译数学密码的难度也在降低。若能对任意极大整数快速做质数分解,就可破解目前普遍采用的RSA密码系统。但是以传统已知最快的方法对整数做质数分解,其复杂度是此整数位数的指数函数。正是如此巨额的计算复杂度保障了密码系统的安全。

不过随着量子计算机的出现,计算达到超高速水平。其潜在计算速度远远高于传统的电子计算机,如一台具有5000个左右量子位(qubit)的量子计算机可以在30秒内解决传统超级计算机需要100亿年才能解决的问题。量子位可代表了一个0或1,也可代表二者的结合,或是0和1之间的一种状态。根据量子力学的基本原理,一个量子可同时有两种状态,即一个量子可同时表示0和1。因此采用L个量子可一次同时对2L个数据进行处理,从而一步完成海量计算。

这种对计算问题的描述方法大大降低了计算复杂性,因此建立在这种能力上的量子计算机的运算能力是传统计算机所无法相比的。例如一台只有几千量子比特的相对较小量子计算机就能破译现存用来保证网上银行和信用卡交易信息安全的所有公用密钥密码系统。因此,量子计算机会对现在的密码系统造成极大威胁。不过,量子力学同时也提供了一个检测信息交换是否安全的办法,即量子密码技术。

二、量子密码技术的原理

从数学上讲只要掌握了恰当的方法任何密码都可破译。此外,由于密码在被窃听、破解时不会留下任何痕迹,用户无法察觉,就会继续使用同地址、密码来存储传输重要信息,从而造成更大损失。然而量子理论将会完全改变这一切。

自上世纪90年代以来科学家开始了量子密码的研究。因为采用量子密码技术加密的数据不可破译,一旦有人非法获取这些信息,使用者就会立即知道并采取措施。无论多么聪明的窃听者在破译密码时都会留下痕迹。更惊叹的是量子密码甚至能在被窃听的同时自动改变。毫无疑问这是一种真正安全、不可窃听破译的密码。

以往密码学的理论基础是数学,而量子密码学的理论基础是量子力学,利用物理学原理来保护信息。其原理是“海森堡测不准原理”中所包含的一个特性,即当有人对量子系统进行偷窥时,同时也会破坏这个系统。在量子物理学中有一个“海森堡测不准原理”,如果人们开始准确了解到基本粒子动量的变化,那么也就开始丧失对该粒子位置变化的认识。所以如果使用光去观察基本粒子,照亮粒子的光(即便仅一个光子)的行为都会使之改变路线,从而无法发现该粒子的实际位置。从这个原理也可知,对光子来讲只有对光子实施干扰才能“看见”光子。因此对输运光子线路的窃听会破坏原通讯线路之间的相互关系,通讯会被中断,这实际上就是一种不同于传统需要加密解密的加密技术。在传统加密交换中两个通讯对象必须事先拥有共同信息——密钥,包含需要加密、解密的算法数据信息。而先于信息传输的密钥交换正是传统加密协议的弱点。另外,还有“单量子不可复制定理”。它是上述原理的推论,指在不知道量子状态的情况下复制单个量子是不可能的,因为要复制单个量子就必须先做测量,而测量必然会改变量子状态。根据这两个原理,即使量子密码不幸被电脑黑客获取,也会因测量过程中对量子状态的改变使得黑客只能得到一些毫无意义的数据。

量子密码就是利用量子状态作为信息加密、解密的密钥,其原理就是被爱因斯坦称为“神秘远距离活动”的量子纠缠。它是一种量子力学现象,指不论两个粒子间距离有多远,一个粒子的变化都会影响另一个粒子。因此当使用一个特殊晶体将一个光子割裂成一对纠缠的光子后,即使相距遥远它们也是相互联结的。只要测量出其中一个被纠缠光子的属性,就容易推断出其他光子的属性。而且由这些光子产生的密码只有通过特定发送器、吸收器才能阅读。同时由于这些光子间的“神秘远距离活动”独一无二,只要有人要非法破译这些密码,就会不可避免地扰乱光子的性质。而且异动的光子会像警铃一样显示出入侵者的踪迹,再高明的黑客对这种加密技术也将一筹莫展。

三、量子密码技术在网络支付中的发展与应用

由于量子密码技术具有极好的市场前景和科学价值,故成为近年来国际学术界的一个前沿研究热点,欧洲、北美和日本都进行了大量的研究。在一些前沿领域量子密码技术非常被看好,许多针对性的应用实验正在进行。例如美国的BBN多种技术公司正在试验将量子密码引进因特网,并抓紧研究名为“开关”的设施,使用户可在因特网的大量加密量子流中接收属于自己的密码信息。应用在电子商务中,这种设施就可以确保在进行网络支付时用户密码等各重要信息的安全。

2007年3月国际上首个量子密码通信网络由我国科学家郭光灿在北京测试运行成功。这是迄今为止国际公开报道的惟一无中转、可同时任意互通的量子密码通信网络,标志着量子保密通信技术从点对点方式向网络化迈出了关键一步。2007年4月日本的研究小组利用商业光纤线路成功完成了量子密码传输的验证实验,据悉此研究小组还计划在2010年将这种量子密码传输技术投入使用,为金融机构和政府机关提供服务。

随着量子密码技术的发展,在不久的将来它将在网络支付的信息保护方面得到广泛应用,例如获取安全密钥、对数据加密、信息隐藏、信息身份认证等。相信未来量子密码技术将在确保电子支付安全中发挥至关重要的作用。

参考文献:

[1]王阿川宋辞等:一种更加安全的密码技术——量子密码[J].中国安全科学学报,2007,17(1):107~110

量子力学基础原理范文第8篇

量子通信是利用量子力学基本原理进行信息传递的一种新型通信方式。理论上,量子通信可实现无条件安全的链路数据传输,被认为是保障未来通信安全最重要的技术手段。

量子是微观物理世界中的基本单位,一个最最小的单元。量子理论主要包括量子测不准原理和量子纠缠。

早在 1927 年,德国科学家海森堡就提出了量子测不准原理。在现代科学认知中,几乎任何已知事物都是可测的,但量子是个例外。以制造硬币为例,制造硬币的基本前提是测定模板、再行复制。但在量子世界,这枚“硬币”是不确定的,你根本没法测量它,量子一旦被测量,还来不及被复制,它就不是原来那个量子了。

如果将这一原理应用在通信技术上,就是天然的保密通信手段。

在通信中,对方的话通过座机、手机等有线、无线终端,远距离传送到你的耳朵里。如果他人要窃听你们的对话,必须完成这个对话的复制过程。如果这段通话被加密,那么必须先复制到密码,再解密为正常通话。

可以说,一旦通信中的信息和密码用量子来承载,就是不可复制的。

我们把想要保密传输的信息加载到一个个不可能被准确观测和复制的量子上,只要有人在途中打算窃听信息,一“碰”,它的状态就改变了,窃听者拿到的只会是一堆毫无用处的信息。

量子通信另一个核心内容是隐形传输,是利用光子等基本粒子的量子纠缠原理来实现保密通信的。在量子力学里,两个粒子在经过短暂时间彼此耦合之后,单独搅扰其中任意一个粒子,会不可避免地影响到另外一个粒子的性质,尽管两个粒子之间可能相隔很长一段距离,这种关联现象被称为量子纠缠。

在量子通信系统中,信息的发送方和接收方共享两个存在纠缠关联的光子。当发送方将信息赋予一个光子时,接收方的纠缠光子就会几乎同时发生一致的变化,瞬间完成信息的传输,从根本上杜绝了被窃听、被截获的可能。

量子通信在军事、国防、金融等信息安全领域有着重大的潜在应用价值和发展前景,还可用于涉及秘密数据、票据的电信、证券、保险、银行、工商等领域和部门。