首页 > 文章中心 > 无机化工分析

无机化工分析

开篇:润墨网以专业的文秘视角,为您筛选了八篇无机化工分析范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

无机化工分析范文第1篇

就其中的催化科学与工程而言,已经成为当今国际上最活跃的科技领域之一。据统计,与催化有关的产值约占国民生产总值的25%;催化剂是目前更新换代最快、经济产出比最大的技术产品之一。尤其是近年来,材料物理、表面科学、计算机模拟技术、绿色化学、生物化学和纳米技术的进步给催化科学与工程的发展带来新的活力,使之成为解决资源、环境、生命和材料等领域中科技问题的支柱科学技术。

培养目标:使毕业生适应国家经济与科技发展的需求,成为具备宽厚的理论基础知识,通晓化工生产技术的专业原理、专业技能与研究方法,能够从事过程工业领域的产品研制与开发、装置设计、生产过程的控制以及企业经营管理等方面工作的高素质科技人才。

主干学科:有机化学、物理化学、化工原理、化学反应工程、化工机械、精细有机合成原理等。

主要课程:无机化学、分析化学、大学物理、有机化学、物理化学、化工原理、化学反应工程和一门必选的专业方向课程。 另外辅修化工经济技术分析、电工电子等。

主要专业实验:有机化学实验、无机化学实验、化工热力学、化工传递过程、化学反应工程、化工过程系统工程、工业催化和应用化学等。

主要实践性教学环节:包括化学与化工基础实验、认识实习、生产实习、计算机应用及上机实践、课程设计、毕业设计(论文)(计算机应用要求较高)等。

专业发展方向:化学工程、化学工艺、精细化工。

1.华东理工大学 2.天津大学 3.北京化工大学 4.南京工业大学 5.大连理工大学

6.浙江大学 7.中国石油大学 8.华南理工大学 9.太原理工大学 10.四川大学

11.郑州大学 12.湖南大学 13.哈尔滨工业大学 14.西安交通大学 15.上海交通大学

16.江南大学 17.中南大学 18.南京理工大学 19.中国矿业大学 20.湘潭大学

大连理工大学化工系创办于1949年,1952年高等学校院系调整时,一批著名化学家汇集大工,形成了具有雄厚实力的化工学科。改革开放后,化工各学科发展很快,师资队伍和招生规模不断扩大,1984年发展为化工学院,学院设有化学、化学工程、生物工程、材料化工、化学工艺、工业催化、精细化工、高分子材料和化工机械等9个系,24个教研室。现有本科生2410人,硕士生494人,博士生241人,博士后科研人员7人。教职工370人,其中中国工程院院士1人,双聘院士3人,“长江学者奖励计划”特聘教授2人,博士生导师37人,教授53人,副教授80人,高级工程师17人。

化工学院现有化学工程与技术一级学科博士学位授予权,覆盖了其全部五个二级学科――化学工程、化学工艺、应用化学、工业催化和生物化工,并设有化学工程与技术博士后科研流动站。此外还有高分子材料、无机非金属材料及化工过程机械博士点和3个理科化学硕士点。生物化工、应用化学、环境学科设有“长江学者奖励计划”特聘教授岗位。学院拥有应用化学国家重点学科,化学工程、工业催化和生物化工三个辽宁省重点学科,精细化工国家重点实验室,分析中心及15个研究所,拥有400兆核磁共振,气/液质谱、飞行时间质谱、X射线衍射仪等大型分析仪器40余台,成为我国培养化工高层次人才和科学研究的基地。

化工学院作为大连理工大学的重要学院,50年来为国家培养了2万名毕业生,其中许多人成为国家各部委和省市领导,中科院院士,国家有突出贡献的专家以及大专院校、科研院所和厂矿企业的厂长、经理、总工及业务骨干,为适应社会需求培养了复合型、外向型高技术人才。

化工学院广泛开展国际学术交流和技术合作,已经与日本、韩国、美国、加拿大、澳大利亚、德国、奥地利、英国等国家的大学、研究机构或公司建立科技合作和学术交流。

化工学院办学宗旨是以人才为本、创新为先,办学思路是以贡献求支持,以改革促发展。重视面向社会经济建设的重大关键技术的基础研究和应用基础研究,每年都承担一批国家、省市级科学基金和“973”“863”及“九五”重点攻关项目,同时与企业建立产、学、研三结合紧密型协作关系,解决技术难题及高新技术和新产品的开发工作,化工学院每年科学研究经费达3000万元以上,近两年科技成果显著,获国家科技进步奖二等奖一项,省部级科技进步奖一等奖三项、二等奖三项。

问题1:化学工程与工艺专业的学生应掌握怎样的知识和能力?

1.掌握化学工程、化学工艺、应用化学等学科的基本理论、基本知识;

2.掌握化工装置工艺与设备设计方法,掌握化工过程模拟优化方法;

3.具有对新产品、新工艺、新技术和新设备进行研究、开发和设计的初步能力;

4.熟悉国家对于化工生产、设计、研究与开发、环境保护等方面的方针、政策和法规;

5.了解化学工程学的理论前沿,了解新工艺、新技术与新设备的发展动态;

6.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。

问题2:化学工程与工艺专业的学生就业方向?

本专业毕业生知识面宽,可到工业部门从事化工类产品的设计、施工、生产管理、技术开发、应用研究以及贸易等方面的工作,也可到科研、商贸、行政等部门从事与化学工程相关的工作。

也可在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面的工作。

还可以到化学工厂、大学、政府社团、保健服务、中学、医院、工业实验室、图书馆、医药公司、私人企业、实验研究所等从事相关的工作。

问题3:化学工程与工艺专业方向的不同有差异么?

化学工艺包括能源化工、材料化工、有机化工、环境化工、高分子化工、无机化工等众多领域,覆盖面广。它不仅涵盖了传统的基础领域,同时与材料、能源、生物、医药、环境等学科渗透融合,不断地培植出新的生长点。它既是一个历史悠久、曾作出重大贡献的学科,又是一个新世纪不可缺少的充满了生机与活力的学科。

化学工程是以化学工业及相关生产过程中所进行的化学、物理过程为研究对象,探究其所用设备的设计原理与操作方法以及最终实现过程优化所应遵循的共性规律。本专业方向学生主要学习化工流体流动与传热、化工传质与分离过程、化工热力学、化学反应工程、化工传递过程基础、化工数学、化工分离过程、化工工艺学、化工过程分析与合成、化工设计等课程。为拓宽专业面,增加适应性,还开设生化基础、石油炼制工程、环境化工、化工机械基础、ChemCAD等课程。

问题4:与化学工程与工艺专业相近的专业是什么?

制药工程(主要是化学制药)。

问题5:化学工程与工艺专业中的催化科学与工程具体是什么样的学科?

它是催化化学、材料物理及化学工程之间的交叉学科,具有理工结合的特点。

培养德、智、体全面发展的具有开拓能力的高级工程技术人才,业务培养目标为:培养具有催化科学技术基础和掌握化学反应工程理论,具备扎实的材料科学理论和技术知识,熟悉现代化学物理研究方法和技能,了解现代科技现状与发展前景,能胜任化工、能源、材料、医药、食品、环保等领域中相关的新工艺、新材料、新产品的研究、开发、设计和工业化的复合高等工程技术人才。

无机化工分析范文第2篇

关键词 化工专业 培养目标 课程设置 就业

中图分类号:G642 文献标识码:A

Chemical Engineering of China Three Gorges University

Materials and Chemical Engineering College

ZHANG Zhengguang, LI Deying

(College of Chemistry and Life Sciences, China Three Gorges University, Yichang, Hubei 443002)

Abstract This paper discussed from three aspects of training target, material and Chemical Engineering College of China Three Gorges University chemical professional courses and introduction and the graduates employment, clear learning objective to play a certain role for Chemical Engineering Freshmen to adapt to the new school environment.

Key words chemical engineering; training objectives; curriculum; employment

三峡大学材料与化工学院2014级新生马上就要入学了,新生可能在思考诸多问题。我们谈三个方面的问题,供新生参考。(1)通过四年大学学习后同学们将成为什么样的人?(2)化工专业开设那些课程?(3)同学们毕业后就业前景怎样?

首先谈谈通过四年大学学习后同学们将成为什么样的人。

总而言之,对同学们的培养目标是成为厚基础、宽口径、高素质、具有创新精神和实践能力的高级化工工程师。工程师指具有从事工程系统操作、设计、管理,评估能力的人员。按职称(资格)高低,分为:研究员级高级工程师(正高级)、教授级高级工程师(正高级)、高级工程师(副高级)、工程师(中级),助理工程师(初级)。一般来讲,要把同学们培养成为具有创新意识,具备系统、扎实的化工专业基础理论知识和基本技能,宽广的专业面知识,具有一定的化工新产品、新工艺、新设备、新技术的研发能力和较强的工程设计能力,一定的市场认知和开拓能力,良好的外语及信息获取能力,能够胜任化工、石油、能源、环保、医药、食品及劳动安全等部门的工程、技术开发、生产管理和科学研究的应用型高级工程技术人才。

与培养目标相应,需要开设哪些化工专业课程呢?下面对它们作简略介绍。

“体育”课程的作用是促进同学们身心发展,增强体质,并对同学们进行道德品质的教育,使同学们能很好地完成学习任务。

“军事理论”课程以国防教育为主线,通过军事课教学,使大学生掌握基本军事理论与军事技能,增强国防观念和国家安全意识,强化爱国主义、集体主义观念,加强组织纪律性,促进大学生综合素质的提高。

“军事训练”是借助军事化训练,培养同学们克服困难的能力,培养坚强的毅力、良好的沟通和协作能力、百折不挠、打不烂拖不垮的铁血精神,对待生活持正确态度,全面提升个人综合素质。

“大学生心理健康教育”是提高大学生的心理素质,提高大学生的自我调节和自我成长能力,并有助于同学们社会能力、方法能力的形成。

“形势与政策”是促进同学们用基本观点、立场和方法,深入了解国情民情、准确把握社会发展动向,提高认识问题、分析问题、解决问题的能力。

“大学英语”和“专业英语”(内容涉及无机化学、有机化学、分析化学、物理化学、材料化学、环境化学、环境工程等。)是对中学英语的深化,有助于国际交流与合作。

“基本原理”是科学体系的基本理论、基本范畴,是其立场、观点和方法的理论表达,是科学的世界观和科学的方法论。对于同学们的学习和生活及将来的工作都具有指导意义。

“思想和中国特色社会主义理论体系概论”讲述中国化的历史进程和理论成果、中国化理论成果的精髓、理论、社会主义改造理论、社会主义的本质和根本任务、社会主义初级阶段理论等等。

“思想道德修养与法律基础”是使同学们了解大学生活的特点,树立新的学习理念;引导学生正确认识当代大学生的历史使命,树立正确的成才目标;使大学生理解社会主义荣辱观的科学内涵和实践社会主义荣辱观的重要意义;理解和践行“富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善”社会主义核心价值观;培养学生独立学习和生活的能力,努力塑造良好的自我形象。

“中国近现代史纲要”主要讲述近、现代时期中国人民反对外国侵略斗争,探索国家出路,改革浪潮中的大,中国革命的新道路,中华民族的努力奋斗,改革开放与现代化建设等内容。使同学们不忘国耻,坚持四项基本原则,坚持一个中心,两个基本点,构筑中华民族复兴梦。

“大学生就业指导”包括大学生就业的政策指导、技术指导、法律指导、创业指导、就业生涯规划指导、就业岗前指导等内容,为同学们将来就业指明方向。

“创业基础”为同学们指明创业之路,为解决在创业过程中遇到的问题提供思路和方法,为同学们将来自主创业奠定一定的理论基础。

“大学计算机基础”以微型计算机为基础,主要介绍计算机基础知识、Windows XP、Word 2003、Excel 2003、PowerPoint 2003、Office 2010、网络基础、Photoshop、Flash、FrontPage 2003和Access 2003等,同时还概要介绍了Windows 7和DOS等内容。主要训练同学们在计算机应用中非程序设计部分的操作能力,培养同学们的计算机文化素养。

“计算机语言C”广泛应用于基础软件、桌面系统、网络通信、音频视频、游戏娱乐等诸多领域,是世界上使用最广泛的编程语言之一。随着互联网技术的发展,C/C++技术在3G网络通信(移动网络、互联网、Zigbee等专用网络)、多媒体处理、智能识别等领域得到了进一步的推动和发展。

“高等数学”、“大学物理”、“无机化学”及“有机化学”都是同学们在中学已经涉及的课程,其研究对象不变,但是,内容却大大拓宽和加深了,研究手段也发生了质的变化。

“物理化学”是一门从物理学角度分析物质系统化学行为的原理、规律和方法的学科,可谓近代化学的原理根基。

“能源化工”是对一次能源和二次能源的加工和有效利用。一次能源指从自然界获得可直接应用的热能或动力,通常包括煤、石油、天然气等化石燃料及水能、热能等。二次能源指从一次能源经过各种化工过程制得的使用价值更高的燃料,例如,由石油炼制得到的汽油、柴油、重油等。本课程讲述通过改进化工生产工艺,可以减少能耗,降低生产成本,提高经济效益。

“高分子物理化学”是以高分子链为中心内容的研究领域。它包括天然的和合成的高聚物在聚合过程中所生成的高分子链的分子量分布,链结构的序列分布,支化、交联、降解和其他化学反应过程的链结构理论分析,分子链的构象统计,稀溶液性质,溶液理论等内容。

“现代化工概论”使同学们学习和了解现代化工概貌及其工程与技术基础知识,化工各领域的基础知识、典型生产过程及发展的方向等,同时结合新世纪化工面临的挑战阐述了传统化工向绿色化、精细化、高科技化的现代化工的发展趋势。

“化工分离工程”讲述化工生产过程中,原料或中间产物或粗产品等混合物的分离,利用被分离组分间的物理性质或化学性质的差异,采用机械分离工程方法或传质分离工程方法将混合物分离开来。

“化工传递过程”着重阐述动量、热量和质量的传递实质和规律,以及传递过程中强度量分布和传递速率。

“化工过程模拟”主要介绍化工过程模拟的基本原理和应用,重点讲述主要化工单元过程的计算。

“仪器分析”是以物质的物理和物理化学的性质为基础建立起来的一种分析方法。利用比较特殊的仪器,采用几十种分析方法,对物质进行定性分析、定量分析和形态分析。同学们将学习多种分析方法的原理、操作及应用于化工生产中的许多物理量的测量。

“化工过程设计及开发“是研究如何进行化工产品开发。化工产品开发是新的化工产品或新的化工工艺经过实验室研究、放大试验到工业化生产的全过程。课程涉及合成、工艺、工程、设备、控制、经济及环保等多种学科知识,是从学习化工专业知识到应用知识的桥梁。通过学习,同学们可以了解新的化工产品开发的过程和开发的方法。

“化工热力学”是热力学化学工程领域的一门学科,是以热力学第一定律及第二定律出发,研究化工过程中各种能量的相互转化和有效利用以及研究变化过程达到平衡的理论极限、条件或状态,是化工过程开发、设计和生产的理论依据和有力的工具。

“化工系统工程“是对化工生产过程中的某个系统,谋求该系统的整体优化,即合理确定和控制系统各个组成部分输入、输出状态,使得反映系统效益的某种定量函数达到最大值或最小值。这种体现系统整体目标的函数称为目标函数。例如进行某个化工装置的最优设计时,通常选用投资费用和操作费用作为目标函数,以寻求总费用最小的设计方案。

“化学反应工程”是以工业反应过程为主要研究对象,以反应技术的开发、反应过程的优化和反应器设计为主要目的的一门新兴工程学科。

无机化工分析范文第3篇

未来的5~10年,北部湾经济区工业将重点发展石油化工、造纸、造纸、冶金、轻工等产业。据人事部门统计,2015年北部湾经济区石化产业人才总量约为24000~26000人。其需求方向主要有:化学工程、石油化工专业的石油仓储、运输管理人才;具有化学工程、化学机械、高分子化工等专业背景的石油冶炼工程人才。到2010年,北部湾经济区林浆纸产业人才总量约为2500人;到2015年约为3900人。化学工程以及具有化学工程等专业背景有具备企业管理、市场营销能力的复合型人才尤为紧缺。冶金行业也需要专业人才51500人。由此可见,未来北部湾经济发展对化工人才的需求是非常庞大的。

2区域产业知识技能要求

通过调研总结发现,区域行业对化学化工类人才技能需求如下:掌握化学工程与工艺专业的基本理论、基本知识和基本实验技能,具备理论知识较扎实、专业知识面较宽、实践能力强、人文素质高等综合素养,能在无机化工、有机化工、精细化工、煤化工及石油化工等化工领域为经济发展服务的应用型人才。毕业生可在石油炼制、石油化工、冶金、能源、轻工、生化、材料、环保等领域从事工业生产、生产技术改进、技术开发、工程设计等工作。下面就结合各行业代表性的企业进行知识技能需求的分析。

2.1能源运输行业

中燃燃气发展公司是最大的城市燃气公司,钦州学院化学化工学院培养的化学工程与工艺专业学生可以满足该公司很多岗位的工作需求,为了更好的使我们培养的石油和天然气相关的本科人才满足岗位需求,双方达成共识,将在新的人才培养体系中开设燃气运输、天然气加工等相关的选修课课程,加强学生对天然气储运加工基础知识的学习。广西天盛港务有限公司在钦州港共投资建设9个码头泊位,其中已建成油汽专用码头1个(5万吨级)、煤炭专用码头3个(10万吨级、7万吨级、2000吨级各1个),散货码头5个(10万吨级1个、1万吨级4个);自备铁路已经开通。该公司对于高层次、复合技术型的本地化员工是非常急需的。对方建议在未来培养化学工程与工艺专业人才过程中,可以进一步拓宽学生的视野,增加适当的选修课,加强学生对港务中油气和煤炭应用知识的学习。

2.2新材料行业

广西新合力冶金有限公司从事高炉锰铁、镍铬铁合金、不锈钢及不锈钢型材等冶金产品的生产加工的人才非常紧缺,该公司将具备年产100万吨不锈钢生产线,预计年产值将达到200亿元,上缴税收10亿元,提供3000多个就业岗位,极大的带动地区物流、进出口贸易、服务等相关行业迅猛发展。该单位建议应该加强学生对生产工艺流程和安全注意事项的认识。此外,对广西明利磷化工有限公司调研也得出了类似的结论,该单位同样要求对磷产品的生产工艺流程有了深刻的认识。对各个生产车间、废水处理池及产品分析等相关基础知识要牢固掌握。化工企业是高危行业,需要学生听从工程技术人员安排,因此,培养学生扎实的基础知识和严格律己的学习工作习惯同等重要。广西红墙新材料有限公司除了要求学生掌握基本的化学化工知识外,还对学生的涂料相关的理论知识和高分子专业基础知识提出了更高层次的要求。

2.3分析检测行业

钦州市环境保护与监测中心与化学化工学院对人才培养模式达成了共识:我们应该抓住区域经济迅速腾飞和地方院校转型发展建设应用技术型大学的双重机遇,进一步加强校地、校企合作,打造特色实践平台和实训场所,为我校向应用技术型大学转型提供坚实的实践教学条件,推动自身的转型发展,提高我校应用型人才培养质量和服务区域经济社会发展能力。结合该公司对化学化工类人才的需求,以后的教学活动中将着重培养包括监测点样品的采集、样品的保存与运送、样品实验室处理和分析流程、分析结果的数据处理、记录与上报等环境监测的实践能力。

2.4粮油造纸行业

中粮油脂(钦州)有限公司位于钦州港经济技术开发区,总投资30亿元,占地面积348亩。主要生产“福临门”牌小包装食用油,“福掌柜”、“福之泉”、“可味”等中包装烹饪调和油及“四海”牌豆粕等。该单位希望以后在人才培养、实习、课程设置等方面进行进一步优化,保证学生理论知识的学习更加系统,同时可以增加实习的系统性,保障学生实习过程学习到较系统的实践技能。广西金桂浆纸业有限公司建议可以充分利用高等院校的人力与智力资源以及该公司先进的生产条件来搭建学生实训平台,联合培养学生的自主学习能力和实践动手能力,对于构建新型的校企合作实训模式具有很好的指导意义。

3培养体系改革模式探讨

结合北部湾地区化学化工类产业对人才的知识技能需求调研总结和钦州学院现在的化学化工类人才培养模式,以培养服务地方的应用型化学化工类人才为目标,拟在理论课程设置、实验课程内容修订、实践课程的设计、选修课的开设等方面进行如下对教学改革探索。

3.1理论课程

旧方案基础理论知识太多,工科课程体系理科化,尤其是基础化学知识占得学分和学时比例太高,可以压缩优化理论课时的结构和比例;化学工程与工艺专业课程体系需进一步完善,如化工过程分析与合成、化工设计、化工分离工程等课程的设置需进一步优化。

3.2实验课程

学生的实验课时和学分比例太低,学生的实验动手能力得不到有效锻炼,对于培养应用型人才,除了有机、无机、分析、物化等基础实验外,还需要进一步锻炼提高学生的自主学习能力和探索能力,可以开设与地方产业结合密切的创新性实验,锻炼学生自主探索的实验技能,使学生的实践技能确实能够按照应用型人才培养的标准得到全面的提升。

3.3实践课程

学生缺少基本的电子电工技术应用能力,作为工科学生这些能力是必备的,可以增加相关的实践课时;学生对区域化工产业普遍没有形成科学的认识,可以结合实习见习等实践教学活动,使学生对化工生产岗位的工作性质、工作岗位的安全操作意识、产业发展特点、自我发展的定位形成深层次的理解;此外,学生在化工文献检索、生产实训、生产工艺流程等方面知识均比较欠缺,应该进一步加强文献检索实践能力的培养,加强实训平台的建设以提升学生的实际生产从业技能。

3.4选修课程

污水处理、涂料、新材料等领域相关诸多材料都是聚合物材料,与此相关的要加强学生高分子相关知识的学习;北部湾经济区对石油和天然气相关的化学工程与工艺本科人才非常急缺,应开设石油和天然气相关的选修课课程,拓展学生的基础理论知识;水利设计、热力学、材料力学及受力分析等方面知识在将来化工产业中的应用较多,应该增加或补充相关的课程;此外,与广西特色的农产品资源相关的拓展知识太少,可以增加天然产物加工等相关的选修课程,拓宽学生视野,方便将来在更大的产业领域灵活就业。

4展望

无机化工分析范文第4篇

关键词 化工反应工程实验;教学改革;实验技能

中图分类号:G642.423 文献标识码:B 文章编号:1671-489X(2012)12-0117-03

Reform and Practice in Teaching Chemical Reaction Engineering Experiment//Yang Yaping1, Chen Ruijie1, Lu Chun’e2

Abstract By means of the course status analysis, this article describes specific practices of reform on equipment development and improvement, teaching content, teaching methods, assessment methods of Chemical Reaction Engineering experiment in Southeast University Chengxian College. Practice shows that the reform will help improve the skills in organic synthesis experiments and overall quality of students, ensure the improvement of teaching quality.

Key words chemical reaction engineering experiment; teaching reform; skills in experiment

Author’s address

1 Department of Chemical and Pharmaceutical Engineering of Southeast University, Chengxian College,

Nanjing, China 210088

2 School of Chemistry and Chemical Engineering of Southeast University, Nanjing, China 211189

化学反应工程是化学工程的一个分支,简称反应工程,于20世纪50年代才开始逐渐形成。化学反应工程课程是一门综合性、工程性和理论性都很强的课程,既有工程问题的共性特点,又有工艺过程的个性特征。本课程要求学生有较为扎实的物理化学、化工原理、化工热力学、工程数学和计算机基础。化学反应工程课程教学内容覆盖基本理论、实验教学两个教学环节,与化学反应工程理论课程相配套的实验课程化工反应工程实验,是一门化学工程与工艺专业高年级化工类专业实验的必修课[1-3]。本实验课程根据化学工业的生产特点,以动力学为基础,通过定量计算、实验技能和设计能力的训练,培养学生牢固的工程观点,使学生对化工生产中常用的反应器有一个深层次的了解。通过该课程的学习,培养了学生运用基础理论分析解决各种实际工程问题的能力,为化工行业培养具有科研、设计和生产实践等方面需要的专业人才。

1 化工反应工程实验课程的现状与分析

东南大学成贤学院是一所以培养应用型人才为目标的独立学院,化工与制药工程系自2007年建系以来,化工反应工程实验一直作为化学工程与工艺专业高年级学生的必修课,是有机化学、无机化学、物理化学和化工原理四大化学课程的一个延伸与拓展。目前,化工与制药工程系化工反应工程实验引进6套实验装置,主要开设了与设备相对应的6个实验,分别是乙苯脱氢制苯乙烯、甲苯氧化制苯甲酸、变压吸附制富氧、非稳态导热系数的测定、单多釜提留时间分布及萃取精馏实验。所有的实验设备和仪器全部采购于某高校,每台实验设备对应一个固定的实验内容,受仪器设备台数条件的限制,同时设备中存在部分设计的局限性,使得反应工程实验始终停留在原有的实验教学模式和教学内容上,在实验大纲和内容上基本沿用了该高校的教学大纲和教学管理模式,没有任何突破和改进。

考虑到学校人才培养模式和定位与该高校有较大的差异,化工与制药工程系专业设置和学生生源质量等诸多方面与该高校也有相当大的差异,如果完全照搬该高校实验课程的设备和教学内容,就会缺乏该系化学反应工程实验自己的课程特色,缺乏实验内容的创新性,在人才培养上就会显得定位不明确,不能完全体现学院自己的办学特色。

2 优化和扩展实验内容

考虑到以上因素,结合目前化工反应工程在化工行业的发展要求,针对原有实验教学内容上的缺点和不足,化工与制药工程系先后进行一系列的教学改革和实践,主要从以下几个方面进行优化和扩展。

2.1 开发和改进实验设备

目前,化工行业发展迅猛,尤其是新工艺新设备更新换代迅速,原有的很多化工操作单元已经不能完全适应化工行业的发展需求。例如,化工产品的分离提纯是化工行业最普遍操作单元,主要包括减压蒸馏、萃取精馏、加压精馏和加盐精馏等。而该系化学反应工程实验中只有一套精馏萃取装置,而在减压精馏、加压精馏、加盐精馏等提纯分离方面,学生只是停留在课堂理论的基础上,缺乏对这些化工分离操作的实践认知和操作过程训练。

为了适应这一化工行业的发展需求,学院特别针对化工反应工程实验进行了教学改革,方案中专门对化工反应工程实验的装置进行了设计和改造,在院大学生实践创新活动中,组织专门的教师和学生进行实验装置的设计与改造。学生在此次创新活动中,对化工原理、化工热力学、机械制图等方面的知识进行了系统的巩固和综合提高。经过一年的努力,利用实验室现有的场地,自行设计了精馏实验装置和气液反应实验装置等两套设备装置,设计的装置在材质和仪表控制上都做了改进,改变了以往玻璃材质耐压和耐高温性能差、仪表和输液泵不够精确的特点。新设计的精馏实验装置能够实现萃取精馏、加压精馏、加盐精馏等多种分离提纯操作,新设计的气液反应实验装置能够对很多典型的气液反应实验进行操作。

另外,还改进了化工反应工程实验现有设备中的一些设计缺陷和不足。如在甲苯氧化实验中冷凝效果不佳,于是增加二级空气冷凝管使冷却效果大大改善;在乙苯脱氢制苯乙烯实验中,原料必须先校正流量配比后方可输入反应釜中,但由于反应位置与校正位置高度相差较大,导致原料进料配比与校正进料配比相差,于是通过改变输液泵类型、液位槽位置等手段,使得反应配比更加准确,使反应收到很好的效果。

2.2 丰富实验教学大纲的内容

为了丰富和扩展化工反应过程实验教学大纲的内容,提高教学质量,不仅利用现有的设备开发出了新的实验内容,提高了现有设备的利用率,同时利用自行设计的实验装置,增加了新的实验内容。如新增了化工产品分离提纯实验和气液分离实验的内容,主要包括减压精馏、加压精馏、加盐精馏、气液反应等实验操作内容,如丙醛脱水实验属于加压精馏实验,对二异丙苯氧化反应实验属于气液反应实验。另外,利用现有的设备开发出更多的实验内容。例如,利用乙苯脱氢的实验装置,增加了化工反应过程中典型的流化床反应器的操作内容。通过增设这些化工反应过程中典型的操作单元实验内容,丰富了化工反应工程教学大纲[4],使化工反应工程实验操作过程和方法紧跟化工行业发展的脚步,体现了学院对应用型人才培养的特点。

2.3 建立化工反应工程实验工作站和仿真实验平台

为了模拟和优化化学反应工程实验的实验条件、工艺参数,同时克服现有实验设备数量的局限性,对现有的几个化工反应工程实验建立了的工作站和仿真实验平台。通过工作站处理软件对实验数据的现场采集,可以快速地进行数据处理和分析,及时有效直观地对实验结果进行评价,同时减少人为因素处理数据的误差和繁琐,提高了实验教学效率[5]。另外,通过建立仿真实验平台,可以模拟不同条件下化工反应的控制过程,特别是一些受设备条件限制(如高温高压条件)的实验过程,对实验操作过程具有一定的理论依据和指导意义。

2.4 实验内容中增加产物表征操作

化学反应工程实验中,在数据分析与处理中有的设备配备有专门的数据处理软件,直接对实验数据进行分析处理,学生实际动手操作的机会就相对较少。为了改变这种状况,在实验内容中加强实验反应过程的监测、实验结果表征方面的实验内容。如利用气相色谱仪监测反应过程中反应液的含量来判断反应进程,通过热导检测器来分析精馏萃取液中水分的含量来确定最佳工艺条件,利用碘量法测定过氧化物的含量,等等。学生不仅在整个实验过程中操作技能得到锻炼和提高,同时对数据的处理分析、产物的表征、谱图的解析等方面都得到了学习和提高。

3 加强过程管理,改进实验教学方法

实验过程管理是实验教学内容的重要组成部分,是保障实验教学质量的重要环节。化学反应工程实验属于大型设备实验,是一门操作少而理论性相对较强的实验教学,加强过程管理,形成化工反应工程实验教学的学科特色,提高实验教学质量和水平十分重要。

3.1 加强实验过程控制

化工反应工程实验学时数相对较长,学生等待和空闲的时间较多。为了充分利用实验过程中的等待时间,使实验学时数更加饱满,实验过程中加强巡视,强调实验过程中实验现象的观察、数据的采集整理和分析。在整个实验过程中,学生的实验操作能力、数据分析、谱图解析、结果的分析与讨论等各方面的能力都得到全面的锻炼和提高。

3.2 合理分配循环实验时间

化学反应工程实验由于受到实验特点和台件数的限制,目前大都采用循环方式安排实验,这就存在多个学生操作同一台仪器设备的情况,使得有些学生得不到操作和锻炼的机会。为了改善这种状况,采用分组细化的方法,即同一台仪器操作过程中,按照实验学生数量来改变工艺条件参数进行分组实验,尽可能地让每个学生都有动手操作的机会。同时,由于工艺条件参数的不一样,使得学生实验操作过程、实验数据处理及结论也不完全一致。这样既让更多的学生得到了训练和提高,也改善了大量实验数据重复,同组间学生实验报告抄袭雷同的现象。

3.3 树立牢固工程观念,培养工程分析能力

化工生产过程错综复杂,为了让学生更好地掌握化工反应实验过程理论知识和实践水平,透过现象看本质。在实验教学过程中,教师应从分析工程因素的本质及反应特征入手,突出强调过程速率及其变化规律、传递规律及其对化学反应的影响。如通过实验中工艺条件及参数的变化来分析实验结果的影响,让学生通过实验来分析化工反应过程的基本规律,引导学生掌握化工反应工程研究的基本方法,使学生树立牢固的工程观念,培养学生采用工程分析方法来分析和解决工程实际问题的能力。

4 改革实验考核方法,综合评定学生成绩

综合评定学生的实验成绩是考察实验教学效果的一个重要途径,化工反应工程实验以往主要从预习报告和实验报告等方面进行考评。由于化工反应工程实验主要是以工业反应过程为主要研究对象,研究过程速率及其变化规律、传递规律及其对化学反应的影响,因此,考虑到化工反应工程实验课程的特殊性,在学生成绩评定中,应适当增加学生实验操作技能、实验数据处理、实验结果分析与讨论等方面的评分比例,同时对学生的出勤、预习报告、实验报告完成情况、实验态度及卫生等划分不同的权重进行考评,多方面综合评定学生的实验成绩,而不再把实验结果的好坏作为衡量实验成绩的唯一标准。即便学生的实验结果不理想,但在实验报告中能做好实验数据的处理、实验结果的分析与讨论,从而找到失败的原因,就可以获得较好的实验成绩。通过这些考核制度的改革,培养了学生实事求是的科学态度,同时,学生的实验技能、数据处理和分析能力等综合能力都得到很大的提高。

5 结束语

虽然实施化学反应工程实验教学改革与实践时间不长,但已经收到了较好的成效。例如,化工与制药工程系在金陵石化、扬子石化认识实习和下场实习过程中,学生表现出比较强的动手操作能力和工程实践能力;在毕业设计阶段,学生表现出较强的操作技能、独立工作能力和综合实验能力;另外,有相当一部分学生在扬子总控工和高级工的培训中顺利通过考试,取得了总控工和高级工的资格证书。然而也清醒地看到,实验教学改革与实践是一个持续的过程,

化工与制药工程系应顺应化工行业变化的形势和发展要求,不断深化教学改革,充分发挥学生的主体作用,不断优化和完善教学模式和管理水平,突出专业内涵建设,不断提高教学水平,加强实验室建设,着力提高实验教学水平。尤其在化学反应工程实验中增设创新性、开放性实验内容,还有待进一步的探索和研究。

参考文献

[1]王承学,胡永琪,郭锴.化学反应工程[M].北京:化学工业出版社出版,2008.

[2]张雅明,谷和平,丁健.化学工程与工艺实验[M].南京:南京大学出版,2006.

[3]房鼎业,乐清华,李福清.化学工程与工艺专业实验[M].北京:化学工业出版社出版,2000.

无机化工分析范文第5篇

关键词:赣江;沉积物;重金属;形态

中图分类号:X131.2 文献标志码:A 文章编号:0439-8114(2013)20-4932-05

Analysis of Heavy Metals in Surface Sediments at City Sections of Middle and Lower Reaches of Ganjiang River

JI Yong1,2,ZHANG Jie1,2,3,FAN Hou-bao1,GONG Xiao-wen1,HUANG Xue-ping1,2

(1.College of Hydrodynamic and Ecology Engineering, Nanchang Institute of Technology, Nanchang 330099, China;2.Key Lab of Lake Ecology and Bio-resource Utilization of Poyang Lake, Ministry of Education, Nanchang University, Nanchang 330029, China;

3.College of Environmental Sciences and Engineering, Hohai University, Nanjing 210098, China)

Abstract: BCR three stage sequential extraction procedure was applied to examine the speciation and concentrations of heavy metals (Cu, Zn, Pb, Cd, Cr and As) in sediments of middle and lower reaches of Ganjiang River to determine the bioavailability of these heavy metals. The relationship between TOC and speciation of heavy metals in the sediments was explored. Results showed that total content of extractable heavy metals in surface sediment was as follows: midstream>downstream>lower-middle stream>section of small towns. The major speciation of six heavy metals were exchangeable fraction, oxidizable fraction and residual fraction. The percentage of extractable fraction in total content was higher than 50%. The six heavy metals had a high potential for secondary release. TOC was similar to the extractable fractions of Cu and Cr in sediment and there were significantly positive correlations between the extractable fractions of Cu and Cr.

Key words: Ganjiang River; sediment; heavy metals; speciation

进入水体的重金属大部分通过水体中悬浮物的吸附作用发生迁移和沉降,蓄积在沉积物中[1]。当水环境物理、化学或生物等因素发生变化时,重金属又可能再次释放,重新进入水体[2]。重金属毒性较大,很难被生物降解,易在生物链中富集和扩大[3],随着重金属污染综合防治“十二五”国家规划的批准实施,重金属的危害已经引起广泛的关注。

赣江为鄱阳湖流域第一大支流,是江西的“母亲河”,年径流量占鄱阳湖总量的45%以上。赣江自南向北流经赣州、吉安、宜春、南昌等区市,主河道全长800多km,流域面积占全省国土总面积的54%[4]。赣江上游赣南矿产资源(如稀土、钨矿等)丰富,矿产资源的大量采掘与冶炼以及沿江城镇化的快速发展,携带大量重金属废水排入赣江,赣江流域水环境污染日益严重,赣江沉积物中重金属污染已经成为影响鄱阳湖流域生态安全的主要问题之一[5,6]。当前,围绕鄱阳湖重金属研究主要集中在湖区[7]、德兴铜矿区域[8]与五河入湖尾闾区域[9],有关赣江流域重金属分布特征研究较少。由于赣江中下游分布众多城市,水体中重金属分布受人为影响显著,同时赣江也担负着城市生活饮用水水源地的重任,因此研究赣江中下游城市断面河底表层沉积物分布特征对于表征当地水环境人为干扰程度及其环境归趋性更具有典型代表性,相比于河道其他断面沉积物更具有特殊性。

本研究选择赣江中下游10个城市断面为调查对象,利用欧洲共同体参考物机构(European Community Bureau of Reference,BCR)逐步提取法研究重金属元素在表层沉积物中的赋存形态,探讨沉积物中总有机碳(TOC)与重金属不同形态之间的关系,以期为合理预防和治理赣江重金属污染提供科学依据。

1 材料与方法

1.1 样品采集

2010年12月枯水期,沿赣江干流从中游至下游共设置了10个采样点,采样点均采用全球定位系统(GPS,海王星300E)定位,沿赣江干流从下游至中游共设定了10个采样点,依次为外洲(S1,115.839°E,28.636°N)、丰城(S2,115.779°E,28.201°N)、樟树(S3,115.534°E,28.068°N)、新干(S4,115.365°E,27.750°N)、峡江(S5,115.132°E,27.519°N)、吉水(S6,115.105°E,27.349°N)、吉安(S7,115.004°E,27.296°N)、泰和(S8,114.476°E,26.474°N)、万安(S9,114.782°E,26.457°N)与赣州(S10,114.942°E,25.878°N),具体采样点见图1。

1.2 样品处理

采出的样品除去与采样器接触的少量样品,将剩余沉积物样品装入干净的聚乙烯袋中,排出袋中空气,密封后迅速保存至-4 ℃的保温箱中保存。实验室内剔除样品中的残根、贝壳等杂物,在阴凉处风干,用四分法获得样品,置于陶瓷研钵中研磨并过100目(0.15 mm)筛,保存干燥自封袋中,备用。

1.3 样品分析

1.3.1 重金属总量 准确称取过筛干燥样品1 g置于100 mL锥形玻璃瓶中。加水湿润后,用混酸在可调电炉板加热消解,加酸消解依次顺序分别为:10 mL混酸(3 mL硝酸+7 mL盐酸)、5 mL硝酸、5 mL硝酸消解近干后,待降至室温后加1 mL硝酸用超纯水准确定容至50 mL待测。样品检测采用等离子发射光谱质谱仪(Aglient Elan 9000,美国)分析,分析成分包括:Cu、Zn 、Pb、Cd、Cr 和As。

1.3.2 重金属形态与TOC分析 具体方法参见文献[10,11];沉积物TOC分析测定采用TOC测定仪(Apollo 9000,美国)。

1.4 数据分析

图形信息采集用MapInfo Professional 7.0软件处理,化学数据及生物数据采用SPSS 11.5(美国)及Excel 2003等软件进行统计分析处理。

2 结果与讨论

2.1 表层沉积物重金属总量

由图2可以看出,赣江中下游Cu、Zn、Pb、Cr、As的污染规律较明显,S1、S3和S10三个监测点的重金属浓度较其他监测点大;Cd的污染规律稍有不同,S10的浓度水平明显高于其他9个监测点。重金属总量除Pb最大值出现在樟树外,其余重金属最大值均出现在赣州,这与赣州有色金属分布丰富、采矿企业分布较多有关。重金属含量较高的还有人口密度较高、工业分布较多的樟树与外洲。除赣州外,其余各监测点的重金属Cu、Zn、Pb、Cr、As的污染较轻,都能达到国家土壤环境质量二级标准(GB15618-1995)。整个赣江中下游Cd的污染严重,赣州Cd的浓度为110.3 mg/kg,超标严重;其余9个监测点Cd的浓度为0.55~5.89 mg/kg,达到或超过国家土壤环境质量二级标准(GB15618-1995),最高超标近10倍。相关性分析显示,剔除樟树监测断面Pb后,6种重金属的可提取态总量之间具有良好的相关性(r=0.721~0.947),其中相关性较高的是Cd-As(0.947),Cu-Zn(0.912)和As-Zn(0.911),该结果显示赣江中下游该6种重金属的污染源性质较为相似。樟树监测点断面重金属Pb的含量明显高于其他监测点,这可能与樟树盐化工业产业化、氯碱化工、无机化工、精细化工分布密集有关。

2.2 表层沉积物重金属形态分布特征及生态风险评价

赣江的表层沉积物就像污泥一样, 由多种微生物形成的菌胶团以及所吸附的有机物和无机物组成的集合体。可交换态金属能够吸附在黏土、腐殖质以及其他成分上, 易于迁移转化及被植物吸收。B1态的重金属为可交换态,对pH的变化敏感,当pH下降时会释放出来;B2态是铁锰氧化态,对土壤的氧化还原电位变化敏感,当Eh下降时有可能会被释放出来;B3态指有机络合态金属,以金属离子为中心离子,以有机质活性基团为配位体的结合或硫离子与重金属生成难溶于水的物质[12],且其对植物的有效性非常复杂,有利有弊;B4为重金属总量减去可提取态总量,通常认为这部分结合在矿物晶体中,属于残渣态,在自然条件下不易释放,对生物的毒性和生物有效性影响很小。

将各种重金属的B1、B2和B3态含量相加,得到各种重金属的可提取态总量。Cu、Zn、Pb、Cd、Cr 和As 6种重金属的可提取态比例平均值分别为64.82%、67.54%、70.35%、90.59%、71.93%和71.36%,具有较高的二次释放潜力。图2中各重金属的可提取态总量在赣江中下游均有明显的浓度梯度分布,浓度分布基本符合中游(赣州)>下游(外洲与樟树)>中下游(吉安、吉水与峡江)>小城镇断面(丰城、新干与泰和)。

就B1态而言,Pb、Cr、As占总量百分比最低,在3%~13%之间,Cu和Zn在29%~34%之间,Cd最大,为50%。由于在中性条件下水溶态和可交换态形式的金属可释放出来,最容易对环境造成二次污染,因此在中性与酸性条件下,除Cd的生物有效性较大外,其余5种重金属相对较小。生物有效性较大的重金属Cd在赣州监测断面含量显著高于其他城市断面,其次是中游的万安与中下游的吉安、吉水,说明赣江中游受Cd污染的生态风险明显大于赣江的下游。由于赣江中下游水体pH平均为7.55,呈中性至弱碱性,在正常环境条件并不利于碳酸盐结合态金属的释放,但在我国已成为全球第三大酸雨区的大背景下,不排除酸雨导致河水pH降低引起碳酸盐结合态金属释放的可能性。

此次研究的6种重金属中,Cd的B2态最低,平均值为24%,其余5种金属B2态比例在25%~59%之间,其中As、Cr和Pb三种金属B2态含量都在50%以上,这与已有报道As、Cr和Pb在土壤和沉积物中与Fe-Mn氧化物相结合具有高稳定常数的结论较为吻合[10-11,13],Cu、Pb与Cd三种重金属的B1态与B2态之和占总数的60%以上。尽管B2态不易在水体中释放,但当水体中氧化还原电位降低时,或水体严重缺氧时,这种结合形态的重金属键被还原,可能造成对水体的二次污染。

对B3重金属态而言,Pb的B3态比例最低,平均值为1.23%;As和Zn则相对较高,为11.90%~13.47%,Cd最高,为15.95%。由于B3态在强氧化条件下才可以分解,Cd和As需要在强氧化条件下才可能释放,赣江沉积物在正常的中度还原至弱氧化环境下,这部分金属不易释放。6种重金属中,Zn在B1、B2与B3三态中比例较为匀一,这与文献报道结果相同[10]。本研究的6种重金属的有机物及硫化物结合态含量在赣江中游(赣州、万安)与中下游(吉安、吉水)明显高于其他区域,这几年监测点靠近中型城市赣州与吉安市区,且各类企业、特别是有色金属加工企业分布密集,入湖河流带入的大量生活废水和工业废水,含硫量比其他河段要高,沉积物中的重金属易与硫及有机物结合,导致这一区域沉积物中重金属的有机物及硫化物结合态含量明显高于其他区域。

可见, 无论从赣江底泥重金属的总量分析,还是形态分析,出于安全考虑,赣江底泥均不能作为农作物的肥料资源加以利用。但可在脱水干化后, 用于城市绿化施肥。

2.3 沉积物TOC与沉积物中不同形态重金属含量之间的关系

总有机碳(TOC)的含量与重金属在水环境中的行为存在密切关系,有研究表明城市河口沉积物中的重金属污染程度与沉积物的TOC含量呈显著正相关[12,14]。土壤溶液中的Cu、Zn、Cd和Pb等重金属浓度的动态变化与TOC呈显著线性正相关[14]。但沉积物的TOC与沉积物中不同形态重金属之间的关系少见报道。将赣江沉积物中不同形态重金属的含量与沉积物中的TOC含量进行相关分析,得到以下三个矩阵(表1)。从第一个矩阵中可以发现,B1态的Cu、Pb与TOC呈显著相关,且B1态的Cu与Zn、Pb、Cd、As之间也呈显著正相关。从第二个矩阵中可以发现B2态的Cr与TOC呈显著正相关,且与Cu、Zn、Cd、As之间也呈显著正相关。从第三个矩阵中可以发现B3态的Zn、Cr和TOC呈显著正相关,且B3态的Zn与Cu、Cd、Cr、As之间也呈显著正相关。

B1、B2与B3三种可提取态相加,将可提取态总量与沉积物中TOC含量进行相关性分析,结果表明,6种重金属与TOC均呈正相关,其中Cu、Cr与TOC呈显著正相关,且重金属Cu、Zn、Cd、Cr、As均有良好的相关性。结果表明赣江中下游该6种重金属的污染源性质较为相似,主要来源于工业废水[15]。

3 结论

1)各重金属的可提取态总量在赣江中下游均有明显的浓度梯度分布,浓度分布基本符合中游(赣州)>下游(外洲和樟树)>中下游(吉安、吉水和峡江)>小城镇断面(丰城、新干和泰和)。

2)赣江中下游城市断面除Cd外,其余5种重金属的生物有效性比较小,生物有效性较大的重金属Cd在赣州监测断面含量显著高于其他城市断面,其次是中游的万安与中下游的吉安、吉水。总体而言,赣江中游生态风险大于赣江的下游。

3)相关性分析表明,TOC与可交换态重金属、铁锰氧化态重金属、有机络合态重金属及可提取态重金属含量呈正相关;可提取态的Cu、Cr与TOC也具有正相关性。

参考文献:

[1] BING H J, WU Y H, SUN Z B, et al. Historical trends of heavy metal contamination and their sources in lacustrine sediment from Xijiu Lake, Taihu Lake Catchment,China[J]. Journal of Environmental Sciences,2011,23(10):1671-1678.

[2] ZHANG L P, YE X, FENG H, et al. Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China[J]. Marine Pollution Bulletin,2007,54(7):974-982.

[3] GRUIZ K, MUR?魣NYI A, MOLN?魣R M, et al. Risk assessment of heavy metal contamination in Danube sediments from Hungary[J]. Water Science and Technology,1998,37(6-7):273-281.

[4] 鄱阳湖研究编委会.鄱阳湖研究[M].上海:上海科学技术出版社,1988.

[5] LUO M B, LI J Q, CAO W P, et al. Study of heavy metal speciation in branch sediments of Poyang Lake[J]. Journal of Environmental Sciences,2008,20(2):161-166.

[6] YUAN G L, LIU C, CHEN L, et al. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China?[J]. Journal of Hazardous Materials,2011,185(1):336-345.

[7] ,李 鸣,夏 颖.鄱阳湖表层沉积物重金属污染特征及潜在生态风险评价[J].江西师范大学学报(自然科学版),2011, 35(4):427-730.

[8] 万金保,间伟伟,谢 婷.鄱阳湖流域乐安河重金属污染水平[J].湖泊科学,2007,19(4):421-427.

[9] 李 鸣,吴结春,张小林,等.鄱阳湖五河入湖口重金属污染和分析评价[J].南昌大学学报(理科版),2008,32(5):483-497.

[10] 王 海,王春霞,王子健.太湖表层沉积物中重金属的形态分析[J].环境化学,2002,21(5):430-435.

[11] 黄光明,周康民,汤志云.土壤和沉积物中重金属形态分析[J].土壤,2009,41(2):201-205.

[12] 卢少勇,焦 伟,金相灿,等.滇池内湖滨带沉积物中重金属形态分析[J].中国环境科学,2010,30(4):487-492.

[13] 朱 萍,李晓晨,马海涛,等.污泥中重金属形态分布与可浸出性的相关性研究[J].河海大学学报(自然科学版),2007,35(2):121-124.