首页 > 文章中心 > 人工智能教学设计

人工智能教学设计

开篇:润墨网以专业的文秘视角,为您筛选了八篇人工智能教学设计范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

人工智能教学设计范文第1篇

1 引言

近年来,任务驱动教学法越来越受到信息技术教师的青睐。教育部于2003年的《普通中学信息技术课程标准》在实施建议中指出:“‘任务驱动’教学强调让学生在密切联系学习、生活和社会实际的有意义的‘任务’情境中,通过完成任务来学习知识、获得技能、形成能力、内化伦理。因此要正确认识任务驱动中‘任务’的特定含义,使用中要坚持科学、适度、适当的原则,避免滥用和泛化;要注意任务的情境性、有意义性、可操作性;任务的大小要适当、要求应具体,各任务之间还要互相联系,形成循序渐进的梯度,组成一个任务链,以便学生踏着任务的阶梯去建构知识。”然而在教学实践中如何设计出恰如其分的任务,如何在任务驱动中更好地落实三维目标,是要解决的问题。

“用智能工具处理信息”是湛江市第二中学许淼淼老师执教的一堂示范课,该课在2010年第六届广东省信息技术优质课评比活动(高中组)中获得一等奖。本课例以“忆上海世博,探智能奥秘”为主线,进行任务设计,是一堂“任务驱动”教学法的典型课例。

2 任务驱动教学的设计

2.1 教学内容分析

教师必须以课标为依据,对教学内容进行认真细致的分析,在充分分析教学内容的基础上,确定一个单元或一个部分要求学生掌握的知识点。“用智能工具处理信息”是粤教版必修1《信息技术基础》第四章“信息的加工与表达(下)”第二节的内容。课标要求学生通过部分智能信息处理工具软件的使用,体验其工作过程,了解其实际应用价值,提高对信息智能处理内容的学习兴趣,从而为选修“人工智能初步”指引方向。对于本节内容,应以体验为主,最后在体验的基础上进行认知和理解。

2.2 学生学习特征分析

本课教学对象是高中一年级的学生,这个阶段的学生已经具有一定的逻辑思维能力和学习的自觉性,但还需要教师及时、合理、周详地引导。通过前面阶段的信息技术课的学习,他们已初步掌握一定的操作技能,能够根据任务的需求,利用工具软件处理信息。但是他们在自主思考方面还不主动、合作与探究的意识和技能等方面还比较欠缺。

鉴于本节课内容的前沿性和新颖性,教师完全可以放手让学生自己去实践,让学生动手动脑,培养他们自主探索、勇于实践的能力。通过合作交流,激发学生学习的兴趣,提高学习效率。

2.3 确定教学目标

教学目标是指导教学过程设计与教学效果评价的依据。根据教学内容与学生学习特征,确定当前教学内容所要达到的目标水平,这是进行教学设计的首要环节。“用智能工具处理信息”中的教学目标如下:

1)知识与技能目标:①了解信息智能处理的方式;②感受信息智能处理的基本工作过程;③初步了信息解智能处理的工作原理;④体验信息智能工具的应用价值。

2)过程与方法目标:①掌握简单智能信息处理工具的使用方法;②通过完成任务,体验人工智能的独特魅力;③掌握分析问题、呈现观点和交流思想的方法。

3)情感、态度、价值观目标:①感受智能信息处理的魅力,形成对人工智能这一前沿技术的探索愿望;②体验人工智能技术的实际应用价值。

2.4 教学重点、难点

1)教学重点:体验信息智能处理工具的应用。

2)教学难点:理解模式识别和自然语言理解的工作原理。

2.5 任务设计说明

本课中,许老师以“忆上海世博,探智能奥秘”为主题,变人工智能由抽象到具体,任务探究活动贯穿整课堂,调动学生的学习热情,使学生能主动参与、积极探索,掌握技巧的同时培养各种能力。本课中任务的设定由探究任务、继续探究任务和拓展任务组成,层层递进,体现了分层任务的概念,并且环环相扣,设计巧妙。

2.6 教学设计流程图(图1)

3 任务驱动教学模式的实施过程

3.1 创设情境,引入课题

【情境设置】播放视频“世博会海宝博士与杨澜的对话”。

【教师引入】大家思考一下,海宝博士是真人么?他是如何跟主持人交流的呢?

【学生讨论】海宝博士不是真人,而是机器人,它植入芯片,有语音识别系统,是一台高级的电脑……

【教师引申】我们大家说的这些都是人工智能的范畴,今天我们就共同学习如何用智能工具处理信息。(课件展示课题“用智能工具处理信息”)。

【设计意图】通过智能机器人的演示,创设一种人工智能的神奇氛围,使学生对智能处理信息有一个全面的认识,还可营造课堂氛围和激发学生对智能技术的兴趣。

3.2 感知体验,启发探索

探究活动一:体验机器翻译的乐趣

【活动背景】对于英语水平不好的学生来说,翻译句子是件非常头疼的事情,现在出现了翻译软件,可以帮助人们进行翻译,但是它翻译得好不好呢?就让我们来体验一下。

【活动任务】将学生分成两组,分别打开Google在线翻译和雅虎在线翻译,分别将“城市,让生活更美好”译成英文再译成中文然后再译成英文。

【活动探究】是谁在给我们翻译?为什么两种翻译软件两次翻译的中文和英文会有这么大的不同?这些网站又是如何进行双向翻译的呢?

探究活动二:体验手写输入的乐趣

【活动背景】用键盘录入汉字对于同学们来讲已经不是什么难题,但对于电脑初学者,汉字录入是他们感到非常头痛的一件事情。手写板的出现令输入汉字不再是一般人使用计算机的关卡,语音输入更是手疾人士应用计算机时的必需。这里我们借助“微软拼音2003输入板”来体验手写板的神奇功能。

【活动任务】打开微软拼音2003手写输入板,在桌面上建立记事本文件,内容为“城市,让生活更美好”。

【任务探究】怎样书写汉字可以提高识别率?导致识别率不高的原因有哪些?

3.3 层层深入,探究新知

新知一:自然语言理解

回顾活动一:体验机器翻译的乐趣

【教师引申】很显然,几秒钟之内就给出翻译结果,不可能是人类,给我们翻译的应该是机器。那为什么一般的工具又不具备翻译功能呢?

【原理探讨】机器翻译智能工具,它属于人工智能领域中的自然语言理解,但计算机不是人类,不能理解字里行间的意思,翻译起来比较生硬,有时候翻译得荒谬可笑。

【得出结论】下面请大家结合自己的英语知识对“城市,让生活更美好”进行翻译,并根据自己翻译的过程推测出翻译软件的工作过程(如图2所示)。

【概念理解】自然语言理解主要是指研究如何使计算机能够理解和生成自然语言的技术。自然语言的理解过程可分为3个层次:语法分析、句法分析和语义分析。

【设计意图】通过活动一的开展,使学生感受自然语言理解技术应用的魅力和价值,激发学习兴趣。在已有体验的基础上提出概念,加深学生的理解。

新知二:模式识别技术

回顾活动二:体验手写输入的乐趣

【教师引申】在刚才的活动中,同学们体验了手写输入汉字的神奇效果,但是如果我们的书写不规范,或我们写的字字库里还没有,也是不能输入的。

【原理探讨】智能手写输入是人工智能技术的研究领域之一,它所采用的是模式识别技术。

【牛刀小试】接下来我们玩一个游戏“掌中写字”:两人一组,甲闭眼伸手,乙在其手心写字,甲猜字,然后互换角色进行。思考人脑是怎样猜字的?经历了怎样的过程?

【得出结论】根据人脑猜字的过程推断手写输入软件的工作流程,如图3所示。

【概念理解】模式识别是利用计算机对物体、图像、语音、字符等进行自动识别的技术。它的一般过程包括:样本采集、信息的数字化、预处理、数据特征的提取、与标准模式进行比较、分类识别等。

【设计意图】通过游戏时猜字过程的对比,加深学生对模式识别过程的理解。

3.4 总结提升,共享交流

【共享交流】请大家就自己所实践的活动过程及结果发表意见,并结合教材简单分析其工作流程及原理,了解人工智能的两个研究领域:模式识别和自然语言处理。

【总结提升】人工智能(AI,artificial intelligence)是研究、开发利用计算机来模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术学科。

【设计意图】通过学生共同讨论交流,进一步加深巩固本节课的知识。

3.5 课外延伸,展望未来

【课后探究】利用飞信与网络机器人“海宝博士”聊天,试图发现网络机器人的语言破绽。

【得出结论】机器不能完全代替人,我们不能完全依赖机器。在现实生活中,同学们应该学会举一反三,并懂得在适当的情况下选择合适的智能信息处理工具为自己的学习、生活和工作服务。

【展望未来】人工智能对我们的生活正起着越来越大的作用,它是人类智慧的结晶。作为一名中学生,我们还没有足够的知识和能力参与到人工智能的前沿研究当中,但我们可以利用学习到的初步知识,积极探索,多些创意,也许未来就有你想实现的更智能的处理工具,更好地为人类服务。(观看世博短片《2020年老王的一家》,畅想未来生活中的智能工具。)

【设计意图】在学生的心中埋下美好的种子,激励他们探究未来世界的勇气。

4 结束语

用智能工具处理信息这一课,许老师很好地发挥了“任务驱动”教学法的作用,注重学生的参与体验,活动设计环环相扣,启发学生自主探究并总结规律,体现了新课程以教师为主导、学生为主体的教育理念;通过设置几个活动,层层深入带领学生研究探讨,顺利实现预定的目标,同时也有效培养了学生自主学习的能力。

“任务驱动”教学法在信息技术教学中备受关注有其一定的道理,但怎样使其发挥更大作用,还需要在实践中继续探讨和研究。

参考文献

人工智能教学设计范文第2篇

自1956年人工智能概念在达特茅斯会议提出以来, 人工智能的发展超出了人们的想象:1997年, IBM超级电脑深蓝击败国际象棋世界冠军卡斯帕罗夫;2016年, 由Google旗下的深度学习公司Deep Mind开发的人工智能围棋程序Alpha Go战胜了世界围棋冠军李世石, 这件事轰动了全世界[1]。随后有关人工智能的热点应用不断推出, 比如无人驾驶、智能医生、语音与人脸识别等, 让我们认识到人工智能的应用已与生活息息相关。在教育领域, 人工智能应用也取得了重大突破, 比如2017年高考期间, 机器人艾达挑战高考数学, 10分钟就答完, 获得134分, 激发了教育领域对人工智能的巨大热情, 同时也引发了人们对教育的忧虑与反思[2]。2017年7月国务院印发了《新一代人工智能发展规划》, 提出人工智能产业竞争力在2030年要达到国际领先水平。目前世界主要发达国家先后从国家层面人工智能政策规划, 将人工智能作为国家经济发展、社会变革和国际竞争的新动力[1]。

1 人工智能定义和发展阶段

人工智能的英文是Artificial Intelligence, 简称AI, 人工智能的内容不断丰富和发展, 至今还没有统一的定义。比较权威的说法认为[3]:人工智能是关于人造物的智能行为, 主要包括知觉、推理、学习、交流和在复杂环境中的行为。人工智能的长期目标是发明出可以像人类一样或能更好地完成以上行为的机器, 短期目标是理解这种智能行为是否存在于机器、人类或其他动物中, 所以它包含了科学和工程双重目标。根据其功能强弱, 人工智能分为三类, 即弱人工智能、强人工智能还有超级人工智能。人工智能的发展大体上经历了三个阶段, 第一阶段是20世纪50~60年代, 提出人工智能的概念。主要以命题逻辑、谓词逻辑等知识表达和启发式搜索算法为代表;第二阶段是20世纪70~80年代, 提出了专家系统, 同时基于人工神经网络的算法研究发展迅猛, 伴随着半导体技术计算硬件能力的逐步提高, 人工智能逐渐开始突破;第三阶段是自20世纪末以来, 尤其是2006年开始进入了大数据和自主学习的认知智能时代。随着移动互联网的快速发展, 人工智能的应用场景也开始增多, 特别是深度学习算法在语音和视觉识别上实现了巨大的突破[4,5]。人工智能的技术体系主要分为四个方面, 即机器学习、自然语言处理、图像识别以及人机交互等。当今击败世界围棋冠军李世石的Alpha GO主要应用了机器学习中的深度学习算法。

2 人工智能应用状况与反思

2017年, 阿里的无人超市落地杭州, 进店、挑选商品、付款支付一气呵成, 消费者几乎在完全自主的状态下完成购物。与此类似, 昆山富士康公司裁员6万名工人, 全用机器人代替。京东、淘宝引入的智能机器人替代了原来的仓库管理、人工客服等岗位。因此有学者悲观地断言:在人工智能时代, 因为很多职业岗位或技能将被智能机器人所代替, 职业院校毕业生很有可能面临毕业就失业的窘境。笔者认为, 我们不应该重蹈历史上英国制定的限制汽车推广使用的《红旗法案》的悲剧。正是这个在今天看来毫无道理的, 但却持续了三十年的法案让德国和美国的汽车工业完全赶上来, 最终远超英国。人工智能应用必将淘汰或替代很多现有就业岗位, 但同时又会创造新的就业岗位, 这是一个伴随着产业智能升级的、长期的艰难过程, 对于职业教育来说, 这既是一个严峻的挑战, 也是一个难得的机遇。

3 人工智能时代职业教育的发展策略

为了更积极地适应人工智能时代, 除了国家层面的统筹规划、科学指导和政策、经费支持之外, 建议还要做好以下几个方面的发展规划。

3.1 解放思想, 更新理念与制度

中国工程院院士潘云鹤提出, 人工智能走向2.0阶段的真正原因是世界正从原来由人类社会与物理空间构成的二元空间, 向着由物理空间、人类社会与信息空间构成的新三元空间演变[6]。因此, 职业教育在教学和管理过程中应该加入人工智能等相关理念和技术, 同时其办学定位、人才培养方案、专业建设、课程内容、考核评价标准等方面都需要做出相应的改进。比如当前大多数职业院校非计算机类专业的课程安排中, 信息技术类课程课时偏少, 数据处理、编程类或人工智能课程几乎没有, 这样的安排不利于提升学生的信息素养, 必须做出相应的调整, 同时适当减少将来可被人工智能应用替代的技能课程的课时, 比如电算会计、环境监测等。

3.2 善用人工智能, 提升教学与管理

在人工智能背景下, 教师们现有的重复性工作和大量数据积淀的教学任务, 比如批改作业或阅卷或课堂考勤都可能被人工智能取代, 因此, 教师能腾出更多的时间, 更充分地关注学生的个性差异, 从而为学习者提供更精确的个性化学习服务, 教师也能够及时调整教学方法和手段, 优化教学评价方式, 补充教学资源, 减少备课重复性工作, 提升教学效率, 真正地做得因材施教, 同时学生们的学习方法和方式将不同程度地得到重构, 基于大数据的智能在线学习平台大量出现, 不同的学校、学科及专业课程不再封闭, 学习时时处处都可以进行, 碎片化与个性化学习将日益普遍。教师能完整地跟踪学生的整个学习过程, 比如学生上课是否睡觉、是否玩手机、是否在教室里与其他同学合作学习等, 都能够根据监测数据进行智能解析, 有利于更有效、更全面地对学生进行过程性评价。大部分课程考试将全部自动化, 考生资格审查利用人脸识别、监考与阅卷都由智能机器来完成。上述人工智能给教学带来的这些变化既需要网络硬件设施和相关软件系统来支撑, 更需要职业教育的教师们继续提升信息技能、深化和加强信息素养。

3.3 深化产教融合、优化实训筑牢就业

在人工智能时代, 职业院校应与相关行业统筹发展, 深化产教融合, 拓宽企业参与的途径, 深化引企入教改革, 支持引导企业深度参与职业院校的教育教学改革, 多种方式参与学校专业规划、教材开发、教学设计、课程设置、实习实训, 促进企业需求融入人才培养环节;鼓励以引企驻校、引校进企、校企一体等方式吸引优势企业与学校共建共享生产性实训基地;全面推行现代学徒制和企业新型学徒制, 推动学校就业与企业招工无缝衔接。比如职业教育将出现新师徒制, 行业领域的行家里手将通过互联网以VR或者AR技术言传身教的方式, 带领规模庞大的徒弟用碎片时间进行学习与实践。

3.4 完善终身学习的职业教育体系

随着人工智能应用的深入推广, 职业院校培养的技能型人才所掌握的技能如果不及时进行充电升级, 中低端的重复性强的工作将面临被智能机器人不同程度进行替代的危险。所以对于不少技能岗位, 守着一门技术吃一辈子老本的时代将一去不复返。因此, 职业教育要继续完善终身教育体系, 为职业教育学生的充电升级铺就一条纵深的通道。

3.5 人文教育为道, 智能教育为用

在人工智能的帮助下, 简单重复性的工作将被机器替代, 人们将从重复繁琐的事务中解脱出来, 转去从事更具有创造性、创新性或者更具有情感类的工作, 这些工作需要人与人之间的合作与沟通, 因此, 职业教育更需要注重学生思想道德水平、人文综合素质的培养, 这是做人之道, 在此基础之上激发学生们的学习主动性和创造力, 促进跨界思维的形成, 更好地掌握人工智能时代的相关职业岗位知识和相应的智能技能。著名理论物理学家霍金曾说:完全人工智能的研发可能意味着人类的末日。Tesla汽车和Space X公司创始人马斯克说:我们必须非常小心人工智能。如果必须预测我们面临的最大现实威胁, 恐怕就是人工智能了[7]。一群没有良好道德水平的, 但掌握了智能技术或设备的人们是危险的, 所以职业教育应该从学生入学起就开始, 不断提升学生的思想道德水平, 热爱社会、热爱生活、乐于助人、与人为善。只有这样, 人工智能应用才能更好地服务人们、造福社会。

4 结论

人工智能正在快速又深刻地改变我们的教学、生活和工作方式, 也对职业教育提出了严峻的挑战, 同时也是一个巨大的机遇。职业教育在面对人工智能时代的变革时, 须要从国家政策、理念与制度、教学管理、产教融合、终身学习等方面做好应对, 切实地把握人文教育之道对智能教育之用的统领原则, 培养能很好地掌控人工智能技术和应用的人才。

参考文献

[1]谢青松.人工智能时代职业教育的转型和发展[J].教育与职业, 2018 (8) :50-56.

[2]苏令.人工智能来了, 教育当未雨绸缪[EB/OL].[2018-05-15].

[3]Nils J.Nilsson.人工智能[M].郑扣根, 庄越挺, 译.北京:机械工业出版社, 2000.

[4]王璐菲.美国制定人工智能研发战略规划[J].防务视点, 2017 (3) :59-61.

[5]贺倩.人工智能技术在移动互联网发展中的应用[J].电信网技术, 2017 (2) :1-4.

人工智能教学设计范文第3篇

关键词:人工智能;音乐教育;智能乐器;大数据

1引言

随着人工智能技术的不断进步,重新塑造音乐使得音乐教育的学科素养培育、审美感知、艺术表现和文化理解变得更有支持和创意。探索应用人工智能技术推进音乐教学的改革与发展有具有十分重要的意义。本文通过研究与实践,引导学生学会用科学的方法培育计算思维创作音乐,用科学的意境欣赏音乐陶冶学生的音乐审美感,用科学的评价提升音乐课堂教学效率。通过这些措施,可以使学校音乐教育精准地开展因材施教差异化教学,彰显音乐教育的特色。

2人工智能与音乐

人工智能技术与音乐教育有机融合,丰富了课堂教学资源,拓展了智能乐器的功能,提升了音乐教育技术手段。它支持个性化学习,可以观察音乐课堂学习,分析音乐的旋律与节拍,有效评价教学效果,激发音乐教师运用人工智能技术创新音乐教学的热情,发挥教师在课堂教学中的主导作用。

2.1乐器的智能化

乐器是学习音乐的重要工具。乐器植入人工智能技术,形成了智能化乐器。它能够大量储存多种乐器的音乐数据。尤其是在音乐键盘中运用,功能的提升特别突出,应用于音乐教学中引发了多种形式的教学模式。例如,图1显示了融合多媒体计算机、主控系统、音乐课堂教学智能评价系统将多部电子钢琴连接起来的智能乐器实验室。通过语音室方式授课,可以实现多种乐器的分组教学。这在传统的音乐课堂上是无法完成的。

2.2智能化乐曲创作

智能乐器不仅能够储存乐器音色,而且还能用指令对各种音色播放进行控制,各种音色按照指令进行演奏。这种创作功能是以往其他乐器都无法比拟的[1]。例如,能唱出《月亮代表我的心》十七声部的合唱团,很好听,但很难。运用智能乐器按指令合成该十七声部音乐则轻而易举。2.2.1机器学习生成乐曲人工智能技术赋能智能乐器,使得机器学习的功能日趋进步。机器学习在音乐领域所做的事情,就是提取音乐作品的“数据”,输入给定模型学习音乐的“特征”,再对音乐数据进行分析和编排。例如,如果输入的是《梨园金曲》民族音乐,则机器就能学会民族音乐的曲调特征,生成掌握特征模型的民族音乐作品。2.2.2用软件生成乐谱使用MuseScore3forMac软件可以制作乐谱,在工具栏选择对应时值的音符输入音符。例如,在MuseScore3窗口输入如图2所示的“我和我的祖国”乐谱,再导出MP3文件进行播放。2.2.3代码生成乐曲用Python代码生成曲子,要借助音乐标准格式MIDI—乐器数字接口,运用Python-midi库编写程序,编译MIDI文件生成音乐。例如,生成一个简单乐谱的MIDI文件需要使用Python-midi,其中:Pattern对象表示乐谱;Track对象表示音轨,通常乐谱都有多条轨道组成,每种乐器是一个轨道;midi.NoteOnEvent表示每个音符的开端,在参数表中可以定义每个音符的音长和音高;midi.NoteOffEvent表示每个音符的结束。参考代码如下:importmidi#定义patternpattern=midi.Pattern()#定义轨道track=midi.Track()#添加轨道到patternpattern.append(track)#音符开始,并定义位置、音量、音高on=midi.NoteOnEvent(tick=0,velocity=50,pitch=midiG_3)track.append(on)#音符结束off=midi.NoteOffEvent(tick-100,pitch=midi.G_3)track.append(off)#轨道结束eot=midi.EndOfTrackEvent(tick=1)track.append(eot)#存储midi.write_midifile("example.mid",pattern)程序运行结果生成了如图3所示的简单音符:这样如图2的“我和我的祖国”乐谱,也可以通过Python代码生成MIDI文件。

3AI赋能音乐课堂

在AI赋能的音乐教育环境,促使音乐教学实践变革以及学生学习音乐方式。例如,图4所示的集音乐创作教学及教学评价于一体的“智能化音乐课堂教学评价系统”,在教学设计的优化、教学方法的高效、教学手段的更新、教学评价的智能、教学策略的调整方面都具有借鉴意义[2]。

3.1大数据学习

大数据云计算可以将所有音乐家们音乐数据存储在云中,运用人工智能技术为学生提供更多有价值的音乐数据。学生通过音乐云学习音乐知识,欣赏音乐魅力、体验音乐节奏、理解音乐韵律。它使得优质音乐教学资源跨越校园,开放延伸音乐教学,远程辐射共享资源。这样就扩展了学生的视野,音乐知识的来源无限扩大,整个音乐云皆有学生的学习教材。特别是大数据音乐云不仅可以推送给学生更多的即兴音乐和更多的音乐信息,还能指导音乐爱好者创作出雅正、健康的音乐作品。

3.2个性化学习

人工智能技术从音乐学习行为数据搜集、数据分析与运用、个性化学习评价多方位帮助学生定制个性化的学习成长路径。推送在线音乐教育资源,指导表演建议乐器学习技巧。搭建音乐教育虚拟课堂,匹配音乐教学资源,实现因材施教的个性化学习,支持一对一的教学辅导和群组式讨论。通过这些措施提高教学质量和效率。

3.3教学评价智能化

运用人工智能技术将多个音乐辅助教学设备连接的音乐创作教学系统,基于音乐课堂教学的学生学习特质分析与教学效果分析的音乐课堂教学管理系统,来实现音乐教学的全程智慧管理,使音乐学习更有效率。例如,在虚拟音乐课堂乐器教学可以变成一对多的自选教学模式,使课堂变得轻松、愉快。教师可以开启课堂教学观察模块,捕捉每位学生同步练习的音准、节奏、力度数据,分析判断将评价信息同步反馈,给出学习指导建议。3.3.1创作教学模块“智能化音乐课堂教学评价系统”中的音乐创作教学模块,集视、听、练和反馈评价为一体,适时演示教师教学作品和评价学生练习作品。例如,在进行《我和我的祖国》授课时导入电影片段,欣赏“我和我的祖国”音乐的表现形式、演唱形式以及歌曲风格,可以使学生更好地体验作品的创作意境,激发创作意识。使用MuseScore创作“我和我的祖国”三声部习作音乐,并能储存、刻录,编辑等二度创作。3.3.2课堂教学评价模块音乐课堂教学评价有着传统音乐教学评价无法比拟的灵活性、客观性和实用性。从大数据分析角度获取音乐课堂教与学相关数据,对学生的音乐基本素养与学习态度进行科学分析判断。例如,以创作《红河谷》中的和声与音乐作品风格内容的“编配伴奏音乐”教学过程为例。课前在“课堂教学评价模块”上安排学生根据作品风格完成伴奏的音乐;播放制作好的《红河谷》MIDI音乐(在第二和第六个小节缺失编配和弦);使学生感受、探讨大小三和弦的表现力,形成对大小三和弦的感知。然后要求学生试着用MuseScore为《红河谷》缺失的两小节选配和弦,以适合歌曲的伴奏风格。学生需要边哼唱歌曲边试着套用不同的伴奏风格,找到他们认为最恰当的和弦伴奏风格,说出理由并提交[3]。评价系统将学生提交的作业比照音乐要素进行评价。及时反馈学习评价的信息,并对学生的学习进程制定一个个性化的学习方案[4]。同时通过教学反馈深度优化决策模型,促进教师实时改进教学策略,提高教学效率和效果,提升教学质量。

4结语

人工智能技术在音乐教育领域中的广泛应用,为传统的音乐教育模式注入了活力,为音乐教师创新音乐教学理念开辟了新思路[5],为因材施教提供了新的适合学生学习的音乐教学模式。人工智能在音乐教育模式方面的探索,不仅给音乐教育教学的发展带来了物质技术层面的进步,还从音乐教学层面促进计算思维培育开辟新途径。这对音乐教育理念、教学手段、教学方式和方法以及拓展学生音乐视野、学习音乐、享受音乐、创造音乐等都带来深刻的变化和积极的影响。

参考文献

[1]邹孟雨.人工智能及其在音乐教育中的应用.北方音乐,2018(15):254-255

[2]郭文进.“互联网+教育”运行模式探究.决策与信息(下旬刊),2015(9):63

[3]段晓军.电脑音乐系统与中小学音乐教学实践.中国音乐教育,2006(6):26-28

[4]王迪.浅析娱乐教育中元学习能力的培养.河北广播电视大学学报,2007(1):79-80

人工智能教学设计范文第4篇

关键词:教育机器人;教育产业;应用

一、引言

近年来,人工智能技术在教育领域逐步扩大其落地应用场景,但大多数应用场景仍然很难真正渗透到教学的核心环节并对学生的学习效果起到关键性作用。由于可以在不同教学环节提供人性化交互方式及个性化智能辅导与教学,基于人工智能技术的教育机器人受到越来越多的重视和发展,因此有必要对教育机器人在教育产业发展中的应用进行研究。

二、教育机器人的简介

提起机器人,我们马上就会联想到科幻小说和电影中的机器人。近一个世纪以来,机器人在娱乐和虚构的世界中有着重要的地位,甚至“机器人”这个词本身就来自一部科幻作品—— 1920年,前捷克斯洛伐克作家卡雷尔·恰佩克的科幻小说中第一次出现“机器人(Robot)”这个词,它被用于指代人类创造的用来代替人工的物体。随着计算机网络、机械制造、人工智能等技术的不断发展,机器人已经从一个虚拟的名词发展成一项蓬勃的产业,并从工业领域向医疗救援、教育、娱乐、勘测、探险、救援等领域迅速扩展。

本文所论的机器人主要是指教育产业中的教育机器人。教育机器人主要由硬件平台和软件平台组成,硬件平台主要包含教育机器人的硬件规格以及提供硬件之间的通信,完成某些动作或者输入输出某些信号,它相当于机器人的手脚;软件平台主要包含教育机器人的各种输入信号的处理和开发,完成某种可预期的场景的实现及表述,它相当于机器人的大脑。教育机器人是面向教育领域专门研发的,以培养学生的分析能力、创造能力和实践能力为目标的机器人[1],它具有教学适用性、交互性、开放性、可扩展性等特点[2]。教育机器人的出现为机器人教育提供了载体。

三、教育机器人产业化发展的意义

当前,国外教育机器人的发展集中在青少年陪伴与辅助教学、特殊教育、机器人竞赛等领域,也更加注重实践性研究与课堂中的实际应用。相比于国外,国内教育机器人总体上还处于起步阶段,在理论与实践研究上都存在一定差距。但随着人工智能教育、STEM教育、创客教育等的兴起,国内对于教育机器人技术的研究及大规模实践应用在迅速增长,产学研相结合的模式也促进了该领域的市场化进程。因此,产业化发展具有一定意义。

1. 对教育创新的推进

教育机器人产业化有助于对教育创新的推进,包括创客教育、STEAM教育、素质教育、STS教育(科学、技术、社会)和教学改革。Chris? Rogers认为,教育机器人产业化教育能够将“Engineering”带进基础教育中,培养学生的STEM素养,推动基础教育改革[3]。

2. 对教学模式和策略的改进

对教学模式和策略的改进,包括教学目标、教学模型、教学策略、教学设计、课程开发等。王雪雁等认为,教学形式的多元体验是教育的重点,而将体验教学法融入机器人教育中进行研究,也在一定程度上促使其他科目在教学改革中形成较有前景的发展方向[4]。

3. 对学生综合素养的提升

对学生综合素养的提升,包括创新精神、实践能力、科学素养以及综合能力。D? Alimisis在调研了目前教育机器人领域现状的基础上,对当前教育机器人领域热点问题发表了自己的看法,他肯定了机器人在培养学生创造力和“? 21世纪技能”方面的重要作用[5]。

四、教育机器人在教育产业化进程中的遇到的难题

教育机器人除了让学习者获取机械、电子、信息、传感技术知识,还能培养技术应用、解决问题、动手能力、团队协作以及表达能力、批判思维能力。《国务院关于印发新一代人工智能发展规划的通知》鼓励全国有条件的高校、研究院开设人工智能专业,在中小学开设机器人相关的课程和竞赛。为此,教育机器人表现出了其无可比拟的教育价值及实用潜质,为培养多学科交叉融合、高素质、复合型的工程人才提供了一个理论教学、实训实践和资源共享的综合平台。

为了更好地促进高层次人才的培训与培养,一方面,我们要大力研究开发及生产高端合格的教育机器人产品,另一方面,我们要全面开展机器人教育宣传,但是还有一些难题亟待破解。

一是诸多教育机器人课题亟待破题。在经济全球化背景下,通过机器人教育促进创新型科技人才队伍壮大与建设是我国人才培养的新途径和新模式。为此,在技术传授的前提下,加快相关理论研究、学术探讨和培养模式研究,激发学生的兴趣,引导学生思考,加深对理论的引领、理解和人才培养研究,是教育机器人的主要研究问题。

二是服务于机器人教育的公共资源比较稀缺。与国外相比,无论是教学设备还是教学案例及教育在线资源,远远不能满足教学的需求。为此,实现中小学、大学课程及教学资源的开发,促进更多的教育教学资源共享,满足机器人教育需求是前提。

三是教师队伍的人数不多。纵观整个发展过程,无论是中小学还是大中专院校,机器人教师需求缺口较大。?一方面是培养出口师资力量薄弱,另一方面受薪资待遇的影响,?具有机器人操作技术和技能的人才就业口径比较宽,较少人愿意去当教师。为此,应加强教师队伍建设及师资长远规划,将崇尚教育、乐教和施教的人聚集过来。

五、破解教育机器人产业化难题的对策

1. 构筑机器人教育云平台

当前,教育机器人可以应用于教学的资源很少,因为每个厂家基于自己的水平开发资源平台,彼此不兼容,不同机器人安装不同的APP程序,资源设计者从单一的角度设计教学资源,没有考虑普众需求,制约了产品的应用推广。为此,开展机器人教育工程技术方面的研究,从教育机器人资源共享标准制定、服务技术策略及数字化资源服务设计与推送角度出发,立足自主知识品牌,促进规模及规范的产业化发展,充分考虑物联网、大数据及云服务技术,在共建共享技术上对教育机器人进行完善与功能提升。

2. 健全教育机器人法律体系

教育机器人在设计、开发、生产、销售和使用过程中,关乎国内外的道德准则、社会伦理、用户安全和权益诉求等诸多法律方面的问题。一是探究国际规则,深化法律规范,构建风险防控机制和预警监测体系,研判就业替代与社会伦理道德问题,促使教育机器人教育资源绿色健康、安全可靠可控、造福于民。二是研究机器人教育与教师职业岗位有机结合与协调发展问题,依托机器人智能技术发展,构建教育机器人的伦理学特性。

3. 加快行业标准完善

据了解,工业机器人标准相对成熟,但从教育机器人这个角度来说,无论外国品牌还是正在崛起的中国自主研发的品牌,都缺乏与之相适应的规范与标准约束。教育机器人是机器人产业细分领域的一大类产品,研究制定科学化、规范化的标准体系,才能促进教育机器人产业健康发展。所以,加快教育机器人相关标准的研究时不我待,同时需要尽快上升为国家标准,从而引领国际标准,倒逼产业,给产业发展提供方向,规范和促进产业发展。

4. 构建教育机器人产业联盟,提高教育产业转化度

为了更好地满足多样化的用户需求,坚持经济全球化大方向,发挥高校、科研院所、企业和行业组织的作用,健全高效灵活、优势互补的教育机器人产学研用协同创新体系,在教育机器人产品试制、功能完成、系列产品打造和产业链塑造等方面进行全方位一体化设计。以笔者所在中职学校为例,可以联合当地的高校、政府和其他企业单位建设产学研平台,丰富教学实践手段,提高教育机器人在教育产业中的转化度。

5. 强化产品开发,增强教师参与度和教学应用度

机器人教育产业链涉及硬件制造、平台开发、应用服务提供等几类厂商,但目前很多机器人公司只负责教育机器人硬件的开发、制造、组装及测试,提供简单的产品说明和操作手册,并不参与课程开发和教学设计。这样的产业模式显然不利于机器人教育发挥最大的作用。只有当教育机器人的制造商与学校教师共同参与课程开发和教学设计,设计开发出丰富的教学情境应用程序、服务与内容,才能使教育机器人真正满足教与学的需求。

总之,教育机器人的产业化应该结合当地经济社会和文化特点,真正有力有效服务于地方教育和经济文化。同时要注意在“互联网+”时代,恰当发挥政府宏观调控的杠杆优势,立足本国,面向国际,引导教育机器人产业进行科学布局,打造具有时代特色的教育机器人产业基地,形成中国特色产业集群。

[1] 黄荣怀,刘德建,徐晶晶,等 . 教育机器人的发展现状与趋势[J].现代教育技术,2017,27(01):13-20.

[2] 张剑平, . 机器人教育:现状、问题与推进策略[J].中国电化教育,2006(12):65-68.

[3] Rogers C,Portsmore M. Bringing Engineering to Elementary School[J].Journal of Stem Education Innovations & Research,2004(05).

人工智能教学设计范文第5篇

教育技术 职业教育 应用策略 技术实施

当前,现代教育技术应用水平已经成为学校建设工程中的关键因素。在教育部启动的职业教育质量建设工程中,示范性学校建设、教改试点专业建设、重点专业建设、精品课程建设、师资队伍建设、实验实训基地建设和教材建设都不同程度地涉及到现代教育技术的应用问题。现代教育技术已经成为深化教学改革的制高点和突破口,成为实施职业教育质量工程的核心技术。因此,加紧加快现代教育技术在职业教育中应用问题的研究,是时代的要求,是发展职业教育的呼唤,更是现代教育理念下深化教育教学改革的迫切需要。

现代教育技术在职业教育中的应用,要面对职业教育的特点、教学特色,实现职业教育培养目标,对教学的技术过程和资源进行创建、使用和管理,并且是符合道德规范的实践,把促进学习、提高绩效作为应用现代教育技术的目的。

一、现代教育技术在职业教育中应用的原则

应用现代教育技术使教学呈现教学数字化、网络化、智能化和多媒体化的特征,改善着教学环境、教学手段,促进着教学理念与方式的变革,并为先进的教育教学思想融入教学搭建平台。针对职业教育的特点,科学合理地应用现代教育技术,使教育教学实效最优化,必须明确三条应用原则。

1.坚持促进学习、提高绩效的目标原则

明确技术过程利于“主导――主体”的教学设计。通过现代教育的技术过程创建、管理和使用,实施“主导――主体”教学设计。“主导――主体”的教学设计是以“教”为主和以“学”为主这两种教学设计相结合的产物,它兼取两种教学设计的优点,又具有较强的灵活性,使学生成为知识、技能和态度的主动建构者,教师成为学习的促进者,引导、监控和评价学生的学习进程。教学设计时,要充分了解岗位能力形成过程和技术条件,通过情景设计、资源设计和认知工具设计创设自主学习、训练和研究的环境,促进学生的职业能力形成,很好地适应职业技术教育的实际。

2.坚持突出职业教育特点的原则

现代教育技术在各级各类院校也得到较为广泛的应用,已经成为教育教学中不可或缺的重要技术支持。社会性、职业性和实践性是职业教育三大特点。因此,现代教育技术的应用不仅是教学手段,而且是教学内容两者有机结合才能符合职业技术教育的要求。受各种因素和条件的影响,职业教育中实训受限,实践环境薄弱,教学知识和技术滞后于社会发展的现象较为突出,职业技能训练与当前职业岗位需求脱节,实验实训学时与技术能力培养需求脱节。这些矛盾在政府和校企合作不能得到解决的情况下,学校要依靠教育技术先行,利用现代教育技术实现“模拟”、“虚拟”实验实训,了解最新职业岗位需求和前沿技术,缓解职业院校教学中实训不足和技术滞后的突出矛盾,更好地实现培养目标,为职业教育创造先进、经济、便捷的教育环境,体现职业教育的社会性、职业性和实践性。

3.坚持服务性原则

将计算机、网络、多媒体、虚拟仿真和人工智能等现代教育技术应用于教育教学中,技术过程及资源的创建、使用和管理都应本着服务教学内容和服务学生的个体发展的原则。

二、现代教育技术在职业教育中应用的策略

现代教育技术在职业教育中应用策略问题,主要解决在职业教育中教育技术的技术性过程的创建、使用和管理,它隶属于一个较大的“教学开发”过程,关注的中心是追求用于教学开发的“系统方法”,即教学系统设计,也称教学设计。

教学设计是“运用系统方法,将学习理论与教学理论的原理转换成教学目标、教学内容、教学方法和教学策略、教学评价等环节进行具体计划、创设教与学的系统‘过程’或‘程序’,而创设教与学系统的根本目的是促进学习者的学习”。各类教学设计策略都包含学习者、目标、策略和评价四个基本因素。按理论基础和实施方法进行分类,教学设计分为以“教”为主的教学设计策略、以“学”为主的教学设计策略,以及在此基础上提出的“教师为‘主导――学生为主体’”教学设计策略,简称“主导――主体”教学设计。

三、现代教育技术在职业教育中实施的步骤

现代教育技术在职业教育中实施过程,要考虑职业教育的特点,遵照教育教学的规律,应用现代教育技术应用的对策。

1.职业岗位人才需求分析

职业教育以服务社会经济需要为宗旨,以就业为导向。社会职业岗位的需求以及岗位对人才规格的要求是职业院校专业设置、专业培养方案确立的依据,也是制订课程体系和教学计划以及进行教学实施和教学评价的依据。通过深入企业进行社会调研和通过网络进行网络调查掌握各行业的人才需求情况。

2.课程体系的确定与教学计划的制定

(1)确定专业课程体系

从职业岗位能力分析入手,建立以职业能力为核心的课程体系。上述来自于企业的人才岗位能力调查结果就是职业能力的具体体现,归纳起来,职业能力包括专业能力、方法能力和社会能力,这些能力的获得不可能离开现代教育教育技术的运用。

(2)制订教学计划

职业教育的特点决定了,制订教学计划时,要确定学科在专业课程体系的位置和对培养学生职业能力所起的作用,以突出实践教学为主线,结合院校现有现代教育技术资源状况,充分利用现代教育技术中的多媒体、网络教学、虚拟仿真实验和人工智能等技术,把教育资源的充分利用与学生技能培养综合考虑,达到现代教育技术与课程整合,以提高理论教学的效率,加大实践教学的比重,全面完成提高学生综合素质的教学计划。

3.现代教育技术应用的资源准备

职业院校现代教育技术的应用是教育教学改革的制高点。教育技术应用的资源准备包括人力资源的准备、环境资源的准备和信息资源的准备工作。

4.应用现代教育技术的教学设计

应用现代教育技术在职业教育中应用的对策,建立以学生为中心,教师为主导,能力为本位,突出实践教学的教学系统设计。

5.教学实施与教学评价

按照教学设计要求,逐步落实教学任务。形成性评价与总结性评价相结合,以理论考试与实际操作技能考核相结合。

参考文献:

[1]冯文成.甘肃中等职业学校教育技术应用现状调查与研究[D].西北师范大学硕士,2004.

[2]杨靖.中等职业教育教育技术的应用研究[D].福建师范大学硕士,2004.

人工智能教学设计范文第6篇

一、信息化教学的理论依据

人工智能、大数据、区块链、移动终端、物联网、大数据等新兴技术,促进“互联网+”融合,推动职业教育信息化发展,是适应教育现代化的必然趋势。越来越多的职业院校教师能够主动利用信息化技术及平台,探索教学方法。信息化环境下的教学与传统的教学方式相比,具有教学方法灵活、交流互动手段多样、教学资源丰富等优势。

二、教师信息化教学中存在的主要问题

从近几年信息化获奖作品的质量和参赛数量来看,高职院校对信息化给予极大的热情。大部分职业院校不惜重金打造比赛作品,从VR、AR等先进设备的引进和视频的拍摄等各个环节都耗费了大量的人力、物力,但是,学校管理者和教师没有真正认识到信息化教学对促进教学模式改革、教学理念更新的重要性。大部分教师在教学活动中还是简单地利用计算机、互联网、投影等,教学设计没有新意,没有创设情境,学生的主体地位没有得到充分的发挥,教师缺乏将信息技术与专业课程进行整合的能力。

三、信息化教学能力大赛对提升教师信息化能力的促进作用

(1)创新了教学模式。信息化教学环境依靠互联网、云计算、大数据、物联网、人工智能、虚拟仿真实训室、全息投影等技术来创设和营造情境,使授课、学习、评价等与教学流程相关的各个环节全部信息化,这样不仅为教师提供了优质的教学资源和灵活的教学模式,也为学生提供了多样化的学习途径与学习方式。

(2)创设教学环境。获奖作品越来越注重利用信息化教学创设教学情境,激发学生学习兴趣。比如《影视鉴赏》,在传统教学中,教师一般是通过播放影视作品,引导学生感知人物形象,分析人物形象,掌握人物形象的塑造手法。信息化教学改变了传统教学方式,教师主要采用任务教学法,借助蓝墨云班课,自主微课,使学生对电影中的人物形象有初步的认识,学生在头脑风暴区上传喜爱的电影人物图片、在讨论版推荐影片,教师汇总后针对性地挑选并制成数字电影库,为课堂练习做好准备。

(3)推动了教学资源的开发与建设。综览近几年获奖作品不难发现,大赛越来越重视教学资源的开发和建设。在线开放课程已成为职业院校必备的教学平台,为了在比赛中取得优异成绩,大部分职业院校从2016年开启了在线开放课程的建设历程。各省教育主管部门为了鼓励职业院校建设在线开放课程的积极性,开展了省级在线开放课程的评选,从政策、制度、评优等方面加大了在线开放课程的倾斜力度。

四、高职教师信息化教学能力提升的有效途径

(一)国家层面

1.以提质培优为契机,全方位提升高职教育信息化水平。“双高计划”和职业院校提质培优对职业院校提升信息化水平有明确指出,职业院校要加快智慧校园建设,适应“互联网+职业教育”需求,运用大数据、云计算、物联网、VR/AR、人工智能、5G网络、区块链等信息技术和教育理念的最新发展,构建信息技术支持下的教学空间、工作场所和虚拟场景及其相互融合的环境,促进学生自主、泛在、个性化学习。智慧教室、虚拟仿真实训室、虚拟工厂的不断完善,教学模式的改革,师生信息素养和信息化教学能力的提高,促进了信息技术与教育教学深度融合,提升了教师信息化水平。

2.不断完善信息化教学大赛制度,积极转化大赛成果并广泛共享。国家对提升职业院校教师信息化水平非常重视,在中国特色高水平院校的申报环节中,把信息化国赛获奖经历作为必备条件之一。国家应出台转化大赛成果的制度,推动比赛成果转化。

(二)学校层面

1.推进智慧数字教室建设。全面改善学校网络条件,升级校园网主干带宽,实现无线WI-FI6和5G通信网络全覆盖,完成IPv6规模化部署。按照新一代互联网发展趋势,加快学校信息化基础设施建设,建设集现代技术为一体的智能教室,建成全向交互、全面感知、高效协同的智慧校园。运用信息技术推进教育教学改革,实施线上线下教学融合发展计划,全学段推动“课堂革命”。

2.健全信息化教学考评制度。学校要高度重视信息化教学,完善学校信息化教学大赛机制,每年定期组织信息化教学比赛,积极打造优秀作品参加省级、国家级教学能力大赛,并对获奖教师在职称评定以及各种评优活动中倾斜。把学生信息化能力素养列入人才培养方案及日常学习计划中,提高学生利用网络信息技术和优质在线资源进行自主学习的能力。

(三)教师层面

人工智能教学设计范文第7篇

关于教育技术,在不同时期不同学科背景的学者有着不同的理解,其典型的定义来自于美国教育传播与技术协会(AssociationforEducationalCommunicationsandTechnology,简称AECT),包括:媒体—工具论(AECT’70)、手段—方法论(AECT’72)、理论—实践论(AECT’94)、绩效—创新论(AECT’05)等。虽然教育技术的内涵与外延均在不断变化,但是从各种定义可以看出:(1)教育技术支持和优化教学,最终促进学习者的学习;(2)教育技术围绕教学过程和教学资源展开理论研究和实践;(3)教育技术的基本要素包括方法、工具和技能[1]。因此,有一点是无可争议的:教育技术要研究“技术”在教育中的应用问题,即如何运用“技术”来支持和优化(教育)教学过程。这里的“技术”主要是指狭义的技术(物化的技术),尤其包括计算机与人工智能中的新技术。

从认识论的角度看,教学过程是教师的教与学生的学相结合的双边活动过程[2],包括“教师的教”、“学生的学”和“学与教的互动”等三个方面。从“技术”支持教学过程的角度来看,近一个世纪以来,人们或多或少存在这样一种取向:用“技术”来(部分地)“代替”教师进行教学。从20世纪20年代的教学机开始,到50年代美国教育心理学家斯金纳发明程序教学机器,教育界出现了一场场轰轰烈烈的改革运动[3]。尽管现在这股浪潮早已平息下去,但“教学机器”却大大影响了教育界,并成为CAI/CAL(计算机辅助教学/学习)的雏形。直到20世纪90年代中期以前,CAI/CAL软件开发一直被计算机界与教育技术界认为是“技术含量”较高的、比较“有水平”的一类研究工作。这对教育教学的改革与发展起到了积极的作用,丰富了人类知识的宝库。

但是,早在20世纪80年代中期,就有研究表明:一项技术(或者一种工具)应用于教学的效果取决于使用者如何使用,而不是技术本身。从学习理论的发展来看,也经历了行为主义、认知主义和人本主义等学习理论的发展,特别是由认知主义学习理论发展起来的建构主义学习理论,曾经在20世纪90年代风靡于全球。直到20世纪末,人们发现风靡于全球的e-Learning并不如想象的那样有效,人们开始反思学习理论与技术应用方式,试图用B-Learning来实行“回归”,即综合运用不同的学习理论、不同的技术和手段、以及不同的应用方式来实施“教学”。“混合学习”(BlendedLearning)就是面对面的课堂学习(FacetoFace)和在线学习(OnlineLearning,或E-Learning)两种方式的有机整合。混合学习的核心思想是根据不同问题、要求,采用不同的方式解决问题,在教学上就是要采用不同的媒体与信息传递方式进行学习,而且这种解决问题的方式要求付出的代价最小,取得的效益最大[4]。

学与教的观念在变,学与教的环境与方式也在变,教师从为课堂教学“备课”,到为学生“自学”而“备资源”,再到运用多种方式来实施“教学”,这虽然不是一种必然变化路径,但也是一种普遍发展趋势。随着教学理念的变化,教学的设计、教学(过程)互动的分析与教学评价方式变革的重要性日益凸显出来。显然,这对教师的要求越来越高,教师的“额外工作”也变得越来越繁杂。那么,能否利用新技术来(部分)支持教师的“额外工作”呢?更进一步说,新技术应用于教育教学能否(显著)提高其效果、效益或效率呢?

本文将介绍与此相关的四个关键技术:教学设计自动化技术、教学互动分析技术、教学自动测评技术与教育系统仿真技术。

前三种技术主要关注教育的微观层面,即教学的三个关键环节:“前期准备”(教学设计)、“教学实施”(互动过程)、“教学效果”(教学评价);后者关注教育的宏观层面:把教育看成一个复杂的巨系统进行研究,从数量与模型角度研究和发现一些普遍的规律。随着知识科学领域的兴起与知识工程等的进一步发展,这四项关键技术可望在未来不长的时间内,为广大教师与教育研究者提供支持和服务。

二、教学设计自动化技术

众所周知,教学设计是教育技术学最核心的内容之一,也是教育技术学区别于教育学领域中其它学科的最重要特征之一,教学设计理论的发展为教育技术学的发展奠定了坚实的基础。但是,教学设计仍然是少数教学设计专家的“专利”,在广大教师中普及应用仍然有一定的距离。究其原因,首先教学设计方法需要进一步完善和发展,包括教学设计的过程模式比较复杂、“通用”模式在各种教学情况下的不适应等;其次“设计”的工作量过于繁杂(如内容分析阶段的ABCD方法就是一项复杂的“机械”劳动),尤其是在新的知识观背景下,知识管理越来越重要。因此,若能让计算机帮助教师完成一些“机械劳动”,让教师把更多的精力关注于学与教的过程和行为,具有非常重要的理论意义和现实意义。

“教学设计自动化”(AutomatedInstructionalDesign或AutomatingInstructionalDesign,简称AID)是指有效利用计算机技术,为教学设计人员和其他教学产品开发人员在教学设计和教学产品开发过程中提供辅助、指导、咨询、帮助或决策的过程[5]。“教学设计自动化”更为贴切的提法应该是“计算机辅助的教学设计”(ComputerAidedInstructionalDesign,简称CAID)。

从1984年梅瑞尔首次提出“教学设计自动化”开始,教学设计自动化吸引了很多教育技术专家、心理学家、人工智能专家和计算机专家的参与[5],如:Tennyson、Spector等,并取得了相当多的成果。从1984年到90年代中期,教学设计自动化发展十分迅速,并产生了大量著作和产品原型,从90年代后期开始,教学设计自动化大多以别的面貌出现,其研究也越来越深入。

目前教学设计自动化的研究主要集中在5个方面[5][6][7][8][9]:(1)提供集成写作工具。如WebCT、WebCL等各大网络教学支撑平台都集成了写作工具,充分利用网络的优势,简化了过程。(2)提供教学设计专家系统。例如,梅瑞尔等人研究与开发的IDExpert就是基于规则的专家系统,它可以根据教学设计人员提供的信息,提出关于课程组织、内容结构、教学策略等方面的建议。(3)提供教学设计咨询服务。专家系统开辟了教学设计的新领域,但是却抑制了教学设计开发人员创造性的发挥,咨询系统更注重发挥教学设计人员的主观能动性。Duchastel提出的教学设计咨询系统原型IDAW-InstructionalDesignAdvancedWorkbench是一个基于计算机的基础开发平台,支持不限制设计者情况下的认知任务的教学设计。(4)提供教学设计的信息管理系统。如学习研究协会(InstituteforResearchonLearning)开发的IDE(InstructionalDesignEnvironment)系统。(5)提供电子绩效支持系统(EPSS)。如Paquetteetal(1994)在Duchastel的Workbench基础上推出的名为AGD的绩校支持系统,DesignersEdge(Chapman,1995)和tructionalDesignWare等。另外,教学设计自动化技术一个最直接的应用是为教师提供教学设计模板。WebQuest就是一个很好的例子,它提供了多套方便适用的教学设计模板,教学设计人员和教师只需填入相应的内容,就可生成WebQuest教学网站,大大降低了教学设计的难度。

教学设计自动化的更进一步发展要求它具备更高的“自动化”,这需要积极借助自然语言理解和信息检索领域的成果。例如,我们有理由要求教学设计自动化系统能够帮助我们抽取文章中的概念以及概念之间的关系,生成一定的可视化图表,如概念图、思维导图等,并在人工校对后,生成可用的演示文稿。达成这一目标的核心技术包括信息抽取领域的实体抽取技术和关系抽取技术。

三、教学互动分析技术

教学的互动本质说认为,师生之间的互动反映了教学过程的本质。教育心理学界很早就关注到:应从师生之间的互动行为入手解析教育教学现象,探讨互动与学生发展及学习效果之间的关系。比如对课堂情境中师生互动的特点及主要影响因素进行微观研究[11],研究的主要方法就是分析课堂情境中的师生互动行为。

教学互动分析技术是一种适合从微观上探索行为规律和性质,综合运用结构性观察、描述性观察、访谈、内容分析、话语分析、定量数据处理等多种方法的研究技术,通常用于互动过程规律、互动特征、教学结构的发现以及教与学现象的评估。

课堂师生互动行为研究以弗兰德互动分析技术(Flander’sInteractionAnalysisSystem,FIAS)为代表[12]。该分析技术大致由三个部分构成:(1)一套描述课堂师生互动行为(仅用于言语交互,不包括非言语交互)的编码系统;(2)一套关于观察和记录编码的规定标准;(3)一个用于显示数据,进行分析,实现研究目的的矩阵表格。弗兰德编码系统把课堂上的语言交互行为分为教师语言、学生语言和沉寂或混乱(无有效语言活动)三类共10种情况。按照弗兰德分析技术的规定,在课堂观察中,每3秒钟取样一次,对每个3秒钟的课堂语言活动都按编码系统规定的意义赋予一个编码码号,作为观察记录。这样,一堂课大约记录800—1000个编码,它们表达着课堂上按时间顺序发生的一系列事件,每个事件占有一个小的时间片断,这些事件先后接续,连接成一个时间序列,表现出课堂教学的结构、教学行为模式和教师的教学风格。对记录数据的显示和分析是通过分析矩阵来实现的。从弗兰德的课堂教学互动分析技术可以看出,教学互动分析强调结构化、定量化,有利于从大量微观的信息中挖掘意义。

在远程教育领域,由于教学互动的媒介环境发生了根本变化,以媒体为中介的交互成为远程环境下学与教再度整合的关键,因此教学互动的问题得到了更多研究者的关注。应用互动分析的相关技术,可以深入探讨不同技术环境的交互性、不同教师的教学策略如何影响学生的互动行为、社会性互动对远程学习的影响等系列研究问题,从而为远程环境下的学习支持服务提供更多的思路和方法。

源于社会建构主义理论对互动的重视,计算机支持协作学习(ComputerSupportedCollaborativeLearning,简称CSCL)强调学生与学生之间的互动,并认为互动是协同建构意义的形式,尤其注重言语所扮演的“社会情境角色”[13]。

目前在CSCL领域中,互动分析技术主要集中在探讨以下四个方面的问题:(1)成员个体和小组整体的知识结构变化;(2)小组内社交关系网络(SocialNetwork)的形成;(3)协同知识建构过程的互动结构;(4)互动过程中的情感水平和认知加工水平。这些问题的解决有助于智能交互支持系统的设计与开发,以保证高质量的意义协商、相互教导和小组协作。

目前教学互动分析技术主要是基于交互言语的分析,即会话分析(conversationanalysis或discourseanalysis)。许多与语言相关的理论成为互动分析的基础,其中尤以言语行为理论(SpeechActTheory)的作用最为显著。

虽然会话分析技术并不是一种新技术,但是应用现代信息技术辅助会话分析,并在以计算机为媒介的交互情境中应用会话分析,却是一类较新的研究领域。面对面的互动活动中,参与者的行为表现(包括身体姿势、语调、表情等)均可被录像保存供分析者作反复而细致的分析。以计算机为媒介的交互记录(包括文本信息、语音信息、与系统软件的交互行为序列)也可被保存。这些交互数据的分析可借助一些工具软件来实现,包括德国Altasti公司产品(支持文本、声音、视频格式的定性内容分析)、澳大利亚QSR公司产品NUD*IST、CATPAC(应用神经网络算法确定文本中词句的关联性)、Transana(方便标注视频录像信息,建立解释信息和视频信息的关联)、希腊的Agna(社交网络分析软件)等。

针对不同研究问题,编码后的交互信息的处理方法不一样,因此就出现了针对特定研究问题的互动分析工具。如:日本OsakaUniversity的AkikoInaba等人开发了专门支持CSCL中互动模式(比如认知学徒模式)辨识的分析工具;美国匹兹堡大学AmySoller等人利用结构化的句首自动识别聊天室内的互动文本,并利用互动模型的匹配来判断互动的有效性。

四、教学自动测评技术

计算机辅助评价(Computer-AssistedAssessment,简称CAA)是一个应用面比较普及的领域。教学自动测评是CAA的核心内容和研究前沿之一,其基本流程是:把问题和任务通过计算机终端传给学生,学生通过计算机输入设备将问题的答案输入给计算机,计算机自动或半自动判断答案并记录分数。CAA可在诊断性、形成性和总结性等三类评价中均可得到有效应用;既可以用于学生的自我评价,也可以用于教师对学生的评价[14]。CAA系统的构成主要包括三个方面:(1)题库与组卷;(2)测试环境与自动阅卷;(3)测评数据的统计分析:负责管理测评结果,按要求生成各种报表以及对题目进行分析。

目前,CAA应用研究主要集中在三个方面[15]:(1)客观测试:测试题的答案从预先定义好的有限个问题答案中选择或比较,计算机对考题答案的评分不需要任何的主观因素参与,客观测试主要用于评估知识覆盖型和事实记忆型为主的课程;(2)计算机自适应测试(CAT):指在具有一定规模的精选试题组成的题库支持下,按照一定的规则并根据被试的反应选取试题,直到满足停止条件为止;(3)基于Internet的远程考试与评价。客观测试和计算机化自适应测试的相关的理论、方法与技术已相当成熟,能比较好地解决了知识层面的评价问题。其热点及前沿课题主要有两方面:(1)主观题的测评问题及其自动化,例如,对自由文本答案的计算机测评的研究目前已经取得很大的进展;(2)技能性非客观题的测评。

五、教育系统仿真技术

建模与仿真,是继理论研究和实验研究之后的第三种认识和改造客观世界的方法,已经成为对人类社会发展进步具有重要影响的一门综合性技术学科[16]。仿真技术有各类不同的方向和分支,如虚拟仿真技术、全过程动态仿真技术、三维仿真技术、三维实体仿真技术、虚拟现实等。在人文社会领域,仿真技术同样有其用武之地,如生产系统、物流系统、港口工程、制造过程管理、物资供应等系统中已经开始应用仿真技术。经济、交通、地理信息等不同的行业领域也纷纷应用仿真技术来促进本领域的研究。

近年来,复杂系统、复杂自适应系统(ComplexAdaptiveSystem,CAS)成为系统建模与仿真理论研究的热点。仿真模型的正确性和可信度是建模与仿真科学发展的决定因素,目前学术界正试图发展出一套完整的校验、验证和确认(VerificationValidation&Accreditation,VV&A)技术理论体系。复杂系统可以定义为是具有多样性、不确定性的系统。复杂系统涉及到耗散结构、涨落、熵、灰箱、混沌、自组织、非平衡、非线性、开放、有序等许多概念,它们对研究复杂系统都具有很重要的意义。

教育系统是一个独特的复杂系统,具有开放性、松散结合性、非线性与非均衡性等特征。从微观层面上看,学校甚至是一个课堂也可视作复杂系统,另外,也存在多种维度和多种粒度上的教育复杂系统,比如,有人就讨论过信息技术与课程整合的复杂性[17]。从复杂系统视野对教育系统的研究目前才刚刚开始,也仅只停留在理论研究的层面上;而使用建模与仿真的方法进行探索的几乎还是空白。

运用复杂科学的管理熵与耗散结构理论,可以揭示复杂的教育组织结构演化以及管理决策临界点的内在矛盾运动和规律;运用建模与仿真的方法,可以指导教育组织系统的科学组织与决策,建立科学的教育组织结构,进行组织再造和提高教育组织效能[18]。

六、结语

目前是教育技术学科发展最快的时期。首先,除师范院校外,大批的理工类院校也开始开设教育技术的本科和硕士专业;其次,一大批来自不同学科背景的中青年学者在不同程度的加盟到教育技术学研究领域,从不同视角开展相关研究;第三,本领域的理论研究成果日益得到教育类学科与信息类学科同行的认同,实践领域在日益拓广,应用效果明显提高。

但是,教育技术作为一门应用叉学科,依然面临一系列挑战。首先,教育技术学科面临教育类学科与信息类学科的双重压力,需要有更多的研究成果得到两类学科同行们的认同;其次,教育技术学科的学者因为各自背景的差异,对于学科及相关理论的理解存在较大差异,还没有很好地形成“科学共同体”,尤其缺乏研究方法的相对一致性与共同理解;第三,近几年内新增了大量教育技术学本科专业,在全国本科生大面积扩招和激励的就业竞争压力下,加上毕业生质量的良莠不齐,其学术与专业声誉将受到极大的挑战。

人工智能教学设计范文第8篇

关键词:工业4.0;智能科学与技术;创新课程体系;中国制造2025

0引言

智能科学与技术专业是教育部根据“面向国家战略需求、面向世界科技前沿”的方针,为适应国家科学与技术发展的需要而设立的,专业代码080907T。智能科学与技术专业属于一个交叉学科,涵盖了电子信息技术、计算机硬件和软件、人工智能、自动控制等多项技术领域的应用。因此,如何交叉学科,立足于工业智能化的发展方向和《国家中长期科学和技术发展规划纲要(2006―2020年)》的要求,适应国家对高质量的智能技术人才的社会需求,研究与实践体现行业产业发展、技术进步和社会建设需求的智能科学与技术专业人才培养课程体系具有重大意义。

1创新课程体系的意义

德国率先提出的“工业4.0”概念其实就是将互联网技术与嵌入式系统技术、计算机技术、先进制造技术等相结合,形成虚拟与现实相融合的智能制造系统。人们可以在世界任何地方采用电脑或任何移动终端,在互联网上选择标准的或定制的货品订单,系统会采用人工智能、大数据、机器学习等技术在全球范围整合资源、信息、物品和人,以高质量、低成本、高效率生产制造出产品,快速交付给客户。

在制造领域,这种技术的渐进性进步可以被描述为工业化的第4阶段,即“工业4.0”,如图1所示。其中,第①阶段以1784年的英国蒸汽机为代表;第②阶段以1870年的电动机械发明与应用为代表;第③阶段以使用电子与IT技术的自动化时代为代表;第④阶段就是我们正在经历的智能制造时代。当前,中国工业机器人销量连续两年行业增速在50%以上,行业进入成长期。另外,中国工业机器人使用密度远低于主要发达国家,具有广阔的市场空间。智能装备的大发展对相关专业人才的需求呈爆发趋势,智能科学与技术专业毕业生今后的一个重要就业方向将是服务于产业界的机器人领域。

我们国家正在大力提倡的“中国制造2025”与德国提出的“工业4.0”有着异曲同工之妙,尽管两国的工业、社会发展阶段存在差异,但在智能制造领域、互联网领域发展水平基本同步。通过国家层面大力推广发展智能制造技术,以及在大学智能制造相关专业的课程改革,为我国的智能制造技术赶上甚至超过发达国家创造了千载难逢的机遇。

2智能科学与技术专业创新课程体系目标

如何充分利用民办学校的企业资源优势,办好智能科学与技术专业是本专业面临的重要挑战之一。本着教育先行、为产业服务的办学宗旨,根据行业中长期发展的需求,在保证专业知识体系完整性的前提下,结合“工业4.0”对专业人才知识、能力的需求,我们将专业定位侧重于智能传感与检测技术,智能机器人传动、驱动技术,智能机器人系统构建技术,嵌入式系统技术等。4年来的办学实践证明,我们的专业定位符合地区与行业发展需求,并具有一定的前瞻性。

基于以上专业定位,对智能科学与技术专业的人才培养课程体系进行深入的探索与实践,涉及专业一体化的理论与实践课程体系规划,机器人实践平台升级,专业课程的教学设计、教学方法、考核方式改革,教学资源、师资队伍、评估反馈机制建设等。通过有针对性地研究我们在专业教学中存在的问题,寻找解决问题的有效途径,探索出符合现代高等教育发展规律、适应“工业4.0”及“中国制造2025”对专业人才知识及能力要求的创新课程体系,为国家、社会输送高素质的应用型工程技术人才。

通过对智能科学与技术专业的面向“工业4.0”的创新课程体系的研究,在已运行4年的本专业课程体系的基础上建立完善的智能科学与技术专业创新课程体系;完成课程体系面向“工业4.0”的课程群知识结构设计、理论与实践一体化设计;总结课程教学手段和方法;完成高质量的教学资源建设;建立高水平的师资队伍。

3创新课程体系构建方案

专业人才培养遵循工程教育思想,以项目为导向设计专业课程培养体系,将项目设计和实施贯穿于大学4年的教学过程之中,让学生在校期间就有机会参与真实项目的开发与运作,获得实践经验和实际操作能力,实现企业真实项目实践与学校理论教学的无缝对接。设置面向“工业4.0”的创新课程群及项目群,对学生的知识、能力、素质进行全面培养,使学生得到全方位的锻炼。

3.1支撑培养目标实现的一体化课程体系

专业课程体系的构建思路以行业与社会需求为根本。在此基础上确定智能科学与技术专业人才的培养目标。以TOPCARES-CDIO教育理念为指导,定制科学先进的人才培养模式和过程,最终建立面向“工业4.0”的智能科学与技术专业创新课程体系。

引进与国际接轨的课程体系,制定全新的适应我国国情的教学计划,采用先进的教学理念与培养模式,初步构建以设计为中心,理论与实践高度融合的应用型本科课程体系。

理论课程体系方面具体表现在适当降低理论知识的难度,着重培养学生理论结合实际的能力。理论课程的整合要突出理论教学的应用性,构建基础理论平台课程群与专业模块化课程群相结合的理论教学体系,保证人才的基本规格和多样化、个性化发展,增强学生对社会的适应性。

实践课程体系方面,依据专业能力培养目标,以能力为本位,以项目为载体,以“学中做”和“做中学”为方法,统筹安排基础实践、专业实践、创新训练与实践、创业训练与实践、综合实训与实践、毕业设计(论文)与企业实习等各类实践教学环节,使实践学期教学内容逐级递进、逐步深化;将实践学期实训内容与理论学期的教学内容紧密衔接。系统化构建理论与实践相结合、课内与课外相结合、学校与企业相结合,贯穿于大学教育全程的一体化实践教学体系。本专业采用自顶而下的方式设计各级项目。一级项目(智能机器人综合设计项目)的设计直接针对专业的培养目标,实践学期的二级项目和基于专业课程的三级项目分别是一级项目培养能力的分解。

采用基于社会实际岗位的逆推法设计课程体系,如图2所示。按照人才职业需求确定专业培养目标,将专业培养目标抽象为若干个专业核心应用能力,再根据每个专业核心应用能力所需的知识、能力、素质结构划分不同的课程群。

设置课程群不仅要考虑智能科学与技术专业本身课程体系的科学性与递进关系,还要充分研究专业相关的重点行业、大型企业岗位特点,针对人才市场的人才需求和岗位需求,把行业、企业、岗位所需与“工业4.0”相关的新知识、新技术、新平台、新规范纳入课程,实现专业课程体系与区域经济及行业、企业的有效对接。目前,智能科学与技术专业现行的人才培养课程体系将专业定位侧重于智能传感与检测技术、智能机器人传动与驱动技术、智能机器人系统构建技术和嵌入式系统技术,包括智能系统的软/硬件设计与开发,以及智能技术在工业控制领域的应用等。虽然该体系与面向“工业4.0”相关技术有一定的匹配度,但还需进一步改革,拟融合“通信规约”“IoT”“工业现场总线”等知识模块构建“工业4.0”的CPS虚拟网络课程群,融合“工业机器人”“智能传感检测”等构建“工业4.0”的CPS实体物理课程群。实践课程体系的改革主要围绕KUKA工业机器人开设相关的课程实验、课程项目、实践学期项目及实训等。

智能科学与技术专业课程体系的构建分为基础课程、专业基础课程、专业岗位应用技能课程、专业方向和专业技能拓展课程4个阶段。注重岗位需求对课程设置的对应性,前两个阶段与传统大学基本一致,只是深度上浅显一些,后两个阶段面向人才市场的岗位需求,着重培养企业用得上的专业人才。

3.2科学的人才培养质量评价体系

大连东软信息学院智能科学与技术专业按照全面质量管理的理念,建立了全员参与、全过程监控、全方位评价的教学质量评价机制。做到了常项评价与专项评价相结合,形成性考核评价与终结性考核评价相结合,定性评价与定量评价相结合,采取管理学确认有效的5W1H(Why-What-Where-When-Who-How)和PDCA(Plan-Do-Check-Action)方法进行评价,可以有效地保证各环节教学质量的稳步提升与持续改善。

智能科学与技术专业教学质量评价包括TOPCARES-CDIO系列评估、教学质量评价以及教学过程评价3个部分。TOPCARES-CDIO系列评估主要评价专业、课程、项目、教材以及素质教育等环节落实工程教育理念的效果。教学质量评价主要包括教师教学质量评价,学生对课程的满意度调查、对重点课程的评价、对重点教材的评价等,由定量评价和定性评价组成。教学过程评价,主要从课程考核、实践学期以及毕业设计(论文)3个关键环节展开。

3.3高水平师资队伍建设

专业自成立以来就十分关注师资队伍的培养,不断强化专业师资队伍建设,持续关注专业带头人和骨干教师建设,加强“双师型”教师队伍的培养力度。通过开展内部培训、教学研讨、企业实践、学术研讨等全方位的培养措施,努力建设一支结构合理、素质优良、教研科研水平高、技术服务能力强的教学团队。在师资队伍建设过程中,实施“引聘训评”的双师型师资队伍建设发展方案。

3.4教学资源建设

根据课程体系改革方案,完善改革课程的教学大纲,积极开展专业课程教材、试题库、项目库、实验指导书、教学案例、课件等教学资源建设,升级机器人系列实验室。