首页 > 文章中心 > 超高层建筑结构设计

超高层建筑结构设计

开篇:润墨网以专业的文秘视角,为您筛选了八篇超高层建筑结构设计范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

超高层建筑结构设计范文第1篇

针对当前复杂高层与超高层建筑结构设计中存在的问题,阐述了建筑结构设计方案的选择,包括结构方案的选择和结构类型的选择,并分析了建筑结构设计要点,以期为复杂高层与超高层建筑的建设提供一定的理论依据。

关键词:

复杂高层建筑;超高层建筑;结构设计;结构类型

随着我国市场经济发展进程的不断加快,复杂高层与超高层建筑工程的项目建设需求越来越大。然而,其建设设计过程的复杂程度也在不断加深,尤其是结构设计。做好结构设计工作是保障建筑物使用安全性和经济性的关键。对于复杂高层建筑或者是超高层建筑,要根据它们所承受的不同强度来开展抗震设防烈度的设计工作。

1建筑结构设计方案的选择

1.1结构方案和结构类型的选择在设计复杂高层与超高层建筑结构的过程中,结构方案选择的合理性是决定其建设质量的关键。对于复杂高层与超高层建筑结构方案的选择,如果没有根据实际工程情况进行,就很容易导致建设后期中的调整。这就在一定程度上增加了复杂高层与超高层建筑结构的设计难度,从而为建筑设计单位带来较大的修改工作量和经济损失。因而,复杂高层与超高层建筑的设计单位在结构方案的选择过程中,应充分结合相关的建筑结构专业知识,并将其应用到设计当中。对于结构类型的选择,设计人员不仅要将工程建设地的岩土工程地质条件考虑在内,还要将抗震设防烈度的要求考虑在内。这样才能降低工程建设企业复杂高层与超高层建筑工程的造价。由此可以看出,在选择结构设计类型时,需要认真考虑工程的造价和施工的合理性。

1.2结构方案和结构类型的选择要点结构方案和结构类型的选择应注重复杂高层与超高层建筑的概念设计。由大量的设计实践经验得出,在复杂高层与超高层建筑的结构设计过程中,要尽可能地提升建筑结构的均匀性和规则性,保证建筑工程结构的传力途径直接而清晰,尤其是结构竖向和抗侧力的传力途径。随着建筑行业的快速发展和科学技术的不断进步,如何实现可持续发展的建设目标已经成为研究人员重点关注的问题。

2建筑结构设计要点

2.1抗震设防烈度复杂高层与超高层建筑抗震设防烈度的设计是保证建筑物使用安全的重要设计内容。对于复杂高层与超高层建筑的结构设计要求,设计人员要根据其承受的不同强度来开展抗震设防烈度的设计工作。然而,由于建筑物高度是不同的,这就意味着在进行结构设计时,要依据实际工程情况进行有针对性的设计。一般情况下,复杂高层与超高层建筑高度均超过300m,那么在结构设计时,就不适合将其设计在抗震设防烈度为“八”的区域,而更适合设计在抗震设防烈度为“六”的区域。由此可以看出,在设计复杂高层与超高层建筑结构时,要综合考虑抗震设防烈度的具体情况。这样做,不仅可以有效减少建设误差,还可以保障居民的生命财产安全。此外,提高复杂高层与超高层建筑结构设计中的抗震技术水平,能够在一定程度上增强建筑物的经济性和安全性。因此,设计人员应从细节出发,秉承“以人为本”的设计理念。只有这样,才能有效保障人民群众的生命财产安全。

2.2结构舒适度确保复杂高层与超高层建筑水平振动舒适度是树立“以人为本”重要结构设计理念的基础。从结构设计的一般方法来说,复杂高层与超高层建筑的结构是相对柔软的。因而,在进行结构设计的过程中,不仅要保证结构设计的安全性,更要满足建筑物使用人群对舒适度的要求。这就意味着要对高层建筑的高钢规程和混凝土规程作出明确的设计要求。这一过程是使高层建筑物的结构设计达到顺风向和横风向顶点的最大加速度的重要设计内容。结构舒适度分析是复杂高层与超高层建筑结构设计的重要组成部分。具体内容包括以下两方面:①对混凝土结构的建筑来说,其设计的阻尼比最好取0.05;②对于钢结构以及混合结构的建筑来说,其设计的阻尼比要根据工程项目的实际情况控制在0.01~0.02之间。此外,从复杂高层与超高层建筑的建设用途来看,公共建筑的水平振动指标限值与公寓类建筑的指标限制存在较大的差异,因此,设计人员要根据建筑使用功能的不同进行差异性设计,比如可以通过优化TMD技术或TLD技术来实现。这样一来,就可以在复杂高层与超高层建筑水平振动舒适度不合格的情况下,进一步提升建筑物的舒适度水平。

2.3施工过程可行性是对复杂高层与超高层建筑结构进行设计时必须要考虑的问题,否则,即使设计得再合理、先进技术应用得再多,也无法满足实际建设要求。因此,设计人员在设计的过程中,要充分考虑钢材的传力效果以及复杂节点部位钢筋的可靠性、施工建设的可操作性。这也是设计人员在对复杂高层与超高层建筑进行结构设计的过程中必将会涉及到的问题。要想解决型钢与其混凝土梁柱节点处主筋相交的问题,可采用以下四种设计方法对其进行有针对性的设计:①将钢筋与其表面的加劲板进行焊接处理;②将钢筋绕过型钢;③通过在钢板上开洞的方式来穿钢筋;④在型钢与其混凝土梁柱节点表面焊接钢筋、连接套筒。由于复杂高层与超高层建筑的建设要求越来越高,因此,可以采取一些特殊的施工工艺,这也是保证建筑结构稳定的有效措施。

3结束语

总而言之,复杂高层与超高层建筑的结构设计要点是将结构方案和结构类型、抗震设防烈度、结构舒适度以及施工的具体过程考虑在内,同时,还要将提高建筑构件的材料利用效率和结构设计的可行性作为设计重点。这是因为上述内容是提升复杂高层与超高层建筑质量的重要保障。由此可以看出,复杂高层与超高层建筑结构设计所有过程的实现都离不开设计人员对工程建设项目的全面了解。

参考文献

[1]刘军进,肖从真,王翠坤,等.复杂高层与超高层建筑结构设计要点[J].建筑结构,2011(11):34-40.

[2]黄鹤.复杂高层与超高层建筑结构设计要点探讨[J].才智,2012(04):24-25.

超高层建筑结构设计范文第2篇

关键词:超高层建筑;结构设计;关键性问题

前 言

目前,随着我国社会和科学技术的不断发展,超高层建筑越来越受到人们的关注,并且超高层建筑在我国城市建设中的地位也不断备受重视。由于超高层建筑是一个复杂和系统化的过工程,超高层建筑的结构设计不仅要具有一定的安全性,还应该保证超高层设计的结构设计的科学性和合理性。因此,建筑施工单位应该注重超高层建筑结构设计中的一些关键性问题,从而提高超高层建筑施工的质量。

1 高层建筑结构的特点

超高层建筑结构的设计不仅要保证超高层建筑能够承受水平方向的荷载,还应该保证超高层建筑能够承受垂直方向的荷载。在实际进行超高层建筑结构设计时,外界因素产生的水平方向的荷载是超高层建筑结构设计应该主要考虑的因素。随着我国城市超高层建筑的不断增加,因此,超高层建筑的结构会直接影响超高层建筑的舒适性。但是,超高层建筑的结构不仅能够影响住房的舒适性,还能影响超高层建筑的质量。因此,在进行超高层建筑的结构设计时,首先首先应该将超高层建筑的承载控制在一定的范围内,所以,超高层建筑结构设计的核心就是对其抗压力的设计。

2 超高层建筑结构体系的选择

2.1 超高层结构体系分类

由于超高层建筑结构体系的不同,可以将超高层建筑结构的设计主要包括混凝土的设计、钢结构与钢组合结构的设计和钢筋混凝土结构的设计等。目前,我国的超高层建筑大多都是采用的是钢筋混凝土结构,钢筋混凝土的结构主要包括框架结构、剪力墙结构和伸臂结构及悬挂结构等。

2.2 超高层建筑体系选用原则

在进行超高层建筑体系的选用时,应该按照合理、经济和安全等原则选择最为合适的超高层建筑体系。当然,超高层建筑体系的选择还需要以建筑物的要求、建筑物的高度和建筑施工的环境等为依据。同时,超高层建筑的结构还应该具有较好的承受压力的能力。

2.3 超高层的结构材料分析

目前,钢筋混凝土料是超高层建筑建设过程中使用最广的材料,当然,钢筋混凝土材料的选用应该以超高层建筑结构的设计要求为依据,从而较好地发挥钢筋混凝土材料的性能。由于钢筋混凝土材料具有耐久性和结构刚度大、耐火性较好、维护费用低等优点,因而钢筋混凝土材料被广泛使用于建筑领域。但是,应该注意钢筋混凝土的结构厚度问题,从而更加合理地选择钢筋混凝土的材质。

2.4 超高层结构体系选择

超高层建筑物结构体系的选择一般包括以下几个方面:①框架结构体系。框架结构是指横向和纵向的利用梁、柱等组成的结构,并且能承受水平和垂直方向荷载的建筑结构体系。由于单一的框架结构平面布置比较灵活,使得框架结构体系具有空间大的优点,因而被广泛使用于超高层建筑中。②剪力墙结构体系。剪力墙结构是指利用高层建筑物的横向和纵向墙壁承载水平和垂直方向荷载的结构。由于建筑物的剪力墙大多都是以钢筋混凝土的材质,因而剪力墙结构对于提高超高层建筑的抗震性能十分有利。③框架-剪力墙结构。框架-剪力墙是指选取了框架结构和剪力墙两者的优点,使得超高层建筑的结构不仅能够满足建筑结构布局灵活的优点,还能使超高层建筑结构具有较好的抗测力能力。当然,由于剪力墙太少,就会增大建筑物侧墙的压力而使得其出现变形等问题;而剪力墙增多,就会影响高层建筑的经济性,还会影响超高层建筑的使用性能。

3 高层建筑结构设计的问题分析及对策

3.1 扭转问题

超高层建筑结构设计的核心是刚度的中心、几何形心和结构重心,然而,超高层建筑物结构的扭转问题主要就是在进行结构设计时,没有将超高层建筑物刚度的中心、几何形心和结构重心进行重合,使得超高层建筑在水平压力下出现扭转的现象。为了更好地解决超高层建筑物结构设计中出现的扭转问题,结构设计人员在进行超高层建筑物的结构设计时,应该选用合理的平面布局图,从而保证超高层建筑物的三个核心能够重合。

3.2 受力性能的问题

对于超高层建筑物的结构设计方案,建筑师在最初进行结构设计时,一般很少考虑超高层建筑的具体结构特征,而过多考虑的是超高层建筑物的空间结构,从而使得超高层建筑物结构设计的受力性能存在一定的问题。因此,在进行超高层建筑物的结构设计时,应该明确所选择结构体系中向下作用力和地基承载力之间的关系。同时,在进行超高层建筑物结构设计方案选择阶段时,还需要对超高层建筑的主要承重部位的布局和数量进行总体设计。

3.3 超高的问题

明确,超高层建筑都存在超高承重的问题,由于我国对超高层建筑的抗震能力具有相关的要求,使得我国超高层建筑物的结构高度也具有严格的规定。因此,在进行超高层建筑物的结构设计的过程中,建筑设计人员会由于结构类型的更换而忽略超高层建筑物存在的超过问题,从而导致结构施工图不能通过审核。因此,需要对超高层建筑物的结构设计方案重新进行设计和审核,以解决超高层建筑物结构设计中的超高问题。

3.4 嵌固端的设置问题

现在,我国很多超高层建筑物结构设计都会配置两层以上地下室,使得超高层建筑物的嵌固端一般都设置在地下室顶板的位置。对于嵌固端的设置问题,高层建筑物结构设计师一般会忽略这类问题带来的后期影响。从而使得在进行超高层建筑物的施工过程中,会由于嵌固端的设置问题而经常进行设计方案的修改,进而给超高层建筑物埋下了安全隐患。

4 基础设计

基础设计是超高层建筑物结构设计的一个最为重要的设计,同时基础设计对超高层建筑物结构整体设计具有非常重大的影响。因此,超高层建筑结构基础设计时,应该保证超高层建筑的埋置深度必须满足基地变形和稳定的相关要求,从而减少超高层建筑物出现倾斜等问题。对于桩基的采用,其埋置的深度也应该按照相关的设计要求进行,使得超高层建筑一般都适合设置地下室结构。由于人工挖孔桩具有承载能力大和施工工艺简单等优点,目前在贵州市的超高层建筑施工中被广泛采用。在基础设计前,应该提前在超高泥岩承载力不高层建筑物的附近设置地下连续墙作为挡土支护,同时,针对超高层建筑施工场地的问题,基础设计时超高层建筑的楼层中心范围应该采用深埋的方法,使得超高层建筑物的中筒和相邻的墙体直伸到基础内,至于一些外墙等结构应该采用人工挖孔桩。超高层建筑物的基础平面图如图1所示。

5 总 结

总而言之,超高层建筑的结构设计是一个全面和系统化的工作,它对超高层建筑物的建设具有非常重大的意义。随着我国超高层建筑的不断发展,超高层建筑结构设计的要求也越来越高,因而需要高层建筑结构设计师不断提高自己的专业水平,总结实际设计的经验,以解决超高层建筑物结构设计中的关键性问题,从而促进我国超高层建筑行业的良好发展。

参考文献

[1]肖自强,张建明.论超高层建筑结构设计[J].建筑与结构设计,2013(24):25~32.

[2]卓瑜,林新阳.浅谈超高层建筑结构设计的若干问题[J].广东土木与建筑,2012(3):31~32.

[3]王民伟,刘士充.浅谈超高层建筑结构体系[J].百科论坛,2012(13):385.

超高层建筑结构设计范文第3篇

本工程位于天津津滨新区中心商务商业区响锣湾商务区,场北道、西场道与滨河路间。抗震设防烈度为7度,设计基本地震加速度为0.15g,III类场地土。本工程包括A座177.3m(46层)和B座99.6m((25层),3层地下室。A,B座在地面(1层)以上完全分开,地下室连在一起。由于本工程B座体型规则,且高度为99.70m,所以本工程B座不超限。本文仅介绍A座相关情况。本建筑物A座塔楼共46层,其中2~4层为大堂、办公、小部分商业及餐饮,5~15层为酒店,16、32层为避难层,17~39层均为酒店式公寓,40~46层为办公。其中1层层高5.5m,2层、4层层高4.15m,3层及5~25层层高3.9m,26~39层层高为3.6m,40层及以上层高3.9m。

2结构布置及其选型

本项目A座平面呈斜边倒梯形,建筑物高宽比约5.96。在整个平面中间设一大核心筒,大核心筒内部左右两边各设一个核心筒,两核心筒之间有掏空中庭,两核心筒之间及核心筒下部设置局部剪力墙(小筒)以增强整体结构刚度。根据建筑平面,本工程拟采用钢管组合柱框架-核心筒结构。核心筒作为抗侧力体系的第一道防线,为增强核心筒的抗震性能,在关键部位剪力墙及核心筒部分剪力墙边缘构件内设置工字钢。钢管组合柱框架形成结构的第二道抗侧力体系。框架梁的选型经过综合比较后拟采用普通钢筋混凝土梁。结构设计本着简洁至上的原则,在满足预期性能目标前提下,尽可能避免局部楼层的刚度及强度的突变,以避免结构薄弱层的产生[1]。通过分析比较,本工程未设刚性加强层(Outriggers),仅在避难层通过加大梁截面形成所谓的有限刚度加强层。本工程A座建筑高度177.3m,根据《钢管混凝土叠合柱结构技术规程》(CECS188:2005)第5.1.6条的规定,本建筑高度小于该条180m的框架—核心筒高度限值。因此,A座建筑不属于高度超限。根据计算,本工程A,B座建筑考虑偶然偏心后均属于扭转不规则,但不存在扭转超限(楼层扭转位移比小于1.40),同时本工程不存在平面不规则、竖向不规则。平面标准层均在中间设置了中庭,其中A座中庭面积约102m2,B座中庭面积约125m2,综合开洞面积均小于30%,开洞面积及有效楼板宽度都满足高规关于楼板开洞的要求,无其余不规则项。

3基于性能的结构抗震分析

针对本工程的特点,对结构进行计算和分析时,除需考虑常规的竖向荷载、小震作用及顺风向风荷载作用外,尚以高于现行规范的标准,采用基于性能的抗震设计方法,对结构进行中震作用下的屈服分析、罕遇地震作用下的弹塑性时程分析,来使结构达到规范要求的“小震不坏、中震可修、大震不倒”的三水准抗震设防目标[2]。

3.1结构整体分析

本工程使用中国建筑科学研究院PK.PMCAD工程部编制的结构分析程序《多层及高层建筑结构空间有限元分析与设计软件SATWE》(2006年10月版)进行结构分析。为体现指标的合理性,计算采用A,B座单独计算,整体计算作为内力和配筋计算用。由于A座建筑高度较高,作为对比分析,采用韩国MIDAS(730版本)软件作补充。

3.2多遇地震时程分析

根据《建筑抗震规范》(GB50011—2010)5.1.2条的要求,本工程A座应进行多遇地震的时程分析。本工程地震时程采用2条天然波和1条人工波(7度、III类场地),多遇地震的最大加速度为55cm/s2。计算结果表明,3条波均满足不小于振型分解反映谱法计算结果的65%,且3条平均值为振型分解反映谱法计算结果的84.8%(0°),87.7%(90°)。基本符合抗震规范的选波要求。根据时程分析的结果,结构上部约1/3范围内的地震剪力略大于振型分解反映谱法计算结果,施工图设计中,适当放大此范围的反应谱计算结果。

4中震弹性分析

考虑到本工程竖向构件是整个结构抗震中十分重要的构件,对其进行了中震作用下的弹性验算,以判别其是否达到了中震弹性的抗震性能目标。即在中震不屈服计算的基础上,将荷载分项系数恢复为正常值,材料的强度取设计值,抗震承载力调整系数取1.0,不考虑地震作用的内力放大调整,不考虑风荷载,这时构件的地震作用组合效应不大于按强度设计值计算的抗震承载力。验算结果表明,竖向构件在中震作用下均不屈服,基本处于弹性阶段,不会出现塑性损伤。

5罕遇地震作用下动力弹塑性时程分析

对本工程非线性时程分析采用SATWE系列软件的EPDA程序,地震动的输入本工程采用中国地震局第一监测中心提供1条大震人工波和2条大震人工波共3条地震波。加速度最大值取310cm/s2(0.31g),阻尼比0.04。图2和图3给出了弹塑性时程分析X方向和Y方向的层间位移角。计算结果表明,在罕遇地震作用下,结构X方向的最大层间位移角为1/188,Y方向的最大层间位移角为1/123。均满足1/100的限值要求。计算结果表明,21层、39层,其层间最大有害位移角相对稍大,说明该部位为薄弱位置。设计中拟对该部位作加强。罕遇地震作用下,X方向的最大底部剪力为126164kN,约为重力荷载代表值的10.1%;Y方向的最大底部剪力为130027kN,约为重力荷载代表值的10.6%,分别为多遇地震反应谱计算所得底部剪力的4.85倍和4.62的倍。

6结构抗震加强措施

通过对本工程的弹性、塑性分析,本工程结构体系合理,刚度、承载力分布均匀,具有多道防线,能满足性能设计的预期目标。针对本工程接近高度超限情况,拟在施工图设计中采用如下的技术条件和加强措施,以满足性能设计的预期目标。1)对框架柱、剪力墙的加强措施。本工程因为高度接近超限,而且地震设防烈度为7.5度、III类土区域,结构设计时框架柱、剪力墙构造按照特一级控制。为加强核心筒抗震性能,尤其是抗剪承载力的提高,避免剪力墙的剪切破坏,核心筒剪力墙采用钢管组合剪力墙,相关规范参见《钢管混凝土叠合柱结构技术规程》框架柱的轴压比不大于0.65,剪力墙在重力荷载代表值作用下的轴压比≤0.45。竖向构件按照中震不屈服进行设计;水平构件的抗剪能力也按中震不屈服设计。适当加强墙、柱的配筋,墙、柱在构造上按特一级控制。底部加强区剪力墙分布筋的最小配筋率为0.4,其余部位剪力墙的最小配筋率为0.3,以保证剪力墙在罕遇地震作用下不出现剪切铰,具有良好的延性。钢管混凝土柱套箍指标≥0.60,含管率≥4%。2)增强结构刚度。在避难层加高主梁高度,形成有限加强层,增强全楼的整体刚度,适当加厚楼板及板配筋,以加强在地震作用下可靠传递水平剪力。3)由于局部开洞,验算罕遇地震作用下楼板薄弱位置的抗拉、抗剪强度并保证其满足强度要求(验算时荷载分项系数取1.0,材料强度取标准值),以确保在罕遇地震作用下楼板仍能作为刚性隔板可靠传递水平剪力。

7结语

超高层建筑结构设计范文第4篇

【关键词】高层建筑;超高层建筑;结构分析;

在国外高层建筑物要比我国的高层建筑早很多,已经有一百多年的历史,最早建成高层建筑物的国家是美国。随着经济的不断发展,人口的不断增加,二战以后,世界对高层以及超高层建筑物的结构体系研究已经逐渐发展,结构设计水平逐渐提高,这使得高层与超高层建筑迅猛发展起来,并成为一个国家或者是城市的经济发展标志,越来越多的超高层建筑出现在人们的生活中,并且层数也越来越高,在某种程度上来讲,建筑物的层数比拼已经成了国家与国家的经济发展水平比拼。起初在高层与超高层建筑中,使用的是钢筋混凝土结构,但是事实证明钢筋混凝土的自重较大,体积也比较大,使得高层与超高层的功能受到限制。但是随着对高层与超高层建筑的结构设计,使用钢结构进行建设避免了钢筋混凝土结构的缺点,提高了高层与超高层建筑的使用功能,这是高层与超高层建筑中的一次跨越。目前,在我国的发达城市中超高层建筑越来越多,很多超高层建筑已经列入世界超高层建筑中的前茅,这是我国经济与科技发展的体现。

一、高层与超高层建筑结构设计的特点

首先,重视建筑物结构的水平荷载,防止地震力以及风载对建筑物造成影响。高层建筑与超高层建筑的自重以及楼面的荷载所引起的弯矩及轴力仅仅与建筑物总高度的一次方成正比。而建筑物的水平荷载所产生的力矩与轴力相对较大,与建筑物高度的二次方成正比另外,对于一定高度的建筑来讲竖直方向的荷载时一个固定值,而水平方向的荷载,由于受到地震以及风荷载的作用,会随着建筑物的结构特征的不同而发生较大的变化,可见水平方向的荷载作用力在结构设计中的重要性。

其次,重视建筑结构的轴向变形。在高层以及超高层建筑中,柱体会因为较大的竖向荷载而产生较大的轴向变形,此变形会严重影响到连续梁的弯矩大小,使得连续梁的中间支撑位置的负弯矩值变小,正弯矩值变大,两端的支撑位置处的负弯矩值也随之变大建筑中预制的构件长度要根据轴向的变形值进行调整与制作,因此建筑结构发生较大的轴向变形时,下料的长度会受到严重的影响另外,建筑结构发生轴向变形时还会对建筑构件的剪力以及侧移值的大小造成影响,使其产生影响到建筑物整体安全的结果。

第三,失稳是结构设计中的主要控制目标。与多层建筑相比,高层与超高层建筑对侧移的大小控制是尤为重要的,是建筑结构设计的关键之处。建筑物的高度越大,水平荷载作用下的结构侧移值会越来越大,对此进行控制是尤为重要的,要将侧移值控制在规定的安全范围内。

最后,重视对建筑结构的抗震性能化设计。使高层及超高层建筑和多层建筑的结构提高关键部位的抗震能力、变形能力,因此当发生地震或者是风荷载作用时发生变形的情况会更多、更严重。要想提高高层及超高层建筑的变形能力,使其在塑性变形后能力不减,避免在地震中发生房屋倒塌的现象,必须在对建筑的结构进行设计时,注意对结构延性的设计,采取相应的措施来提高结构的延性,最终达到提高建筑结构质量的目的。

二、高层及超高层建筑的结构体系

随着我国建筑业的不断发展,建筑技术趋于成熟,数量也越来越多,为了便于建筑规范的执行,将建筑物分为级与级的高层建筑。通常情况下,级建筑物只要按照现行的规定进行设计即可,但是对级建筑物在结构体系的设计时,要求要更严格,下面对常用的结构体系进行阐述。

首先,有框架结构,框架结构高度局限较大,在高烈度地区做到规范限值时,构件的截面过大,影响使用且不经济,也不满足国家规范多道设防的理念,所以出现框架―剪力墙体系。框架剪力墙体系实现了多道设防的理念,在建筑物的高度上比框架有所提高,大大的提高了建筑的承载力、刚度和延性,也能满足使用的需求,只需在建筑物的适当位置设置一定比例的剪力墙,从而达到使结构在竖向和水平的布置具有合理的承载力和刚度,更合理的满足规范的要求。使用灵活,一般用于对空间使用有要求的建筑,如办公、车库等公共建筑,在此结构中,两个体系所扮演的角色各不相同的但又不可分开,剪力墙起到承受水平方向剪力的作用,框架起到承受垂直方向的荷载作用。框架剪力墙体系所呈现的位移形式为弯剪型。在水平方向承受的作用力,剪力墙与框架通过刚度较强的楼板和连续梁组成到一起,形成相互合作的结构体系。剪力墙在建筑结构中的设计优点很多,是结构整体的侧向高度增大,水平方向的位移减小,框架所承受水平方向的剪力明显减小,且竖向方向的内力分布也变得均匀。因此,框架剪力墙体系的建筑物的框架体系低于建筑物的能建高度。其次,剪力墙体系。高层及超高层建筑物的受力结构是由剪力墙结构替代的,且全部由此替代为剪力墙体系。在此体系中,单片的剪力墙在建筑结构中承受了所有水平方面的作用力以及垂直方向的荷载作用力。由于剪力墙体系的结构为刚性,因此位移时出现的曲线形式为弯曲型。剪力墙体系的优点很多,具有较高的强度与刚度,延性良好,力的传递均匀,具有一定的整体性,此体系的建筑物坍塌现象少,被广泛应用在高层及超高层建筑中,能建高度较大,大于框架剪力墙体系以及剪力墙体系。第三,全剪力墙结构。此结构所承受的横向荷载与竖向荷载都是剪力墙,没有框架柱结构。此建筑结构适用于高层建筑中,并且选用此建筑结构建筑的楼层可以比框架剪力墙结构高。此结构的缺点在于成本造价高,内部的空间不可以进行任意的分割。在实际的工程建筑中,设计者首先要对框架剪力墙结构进行考虑,若此结构无法满足建筑的要求,则选择全剪力墙结构。

第四,避难层的设置。对于高层建筑以及超高层建筑来讲,避难层的设置是非常必要的,因为一旦高层建筑以及超高层建筑发生火灾时可以进行避难,因为避难层的空间大,通风好。通常情况下,当建筑物的高度达到一百米后,便要在建筑物内进行避难层的设置,以便于消防安全。避难层的设置位是有规定的,第一层与避难层的设置层数不能超过十五层面积的设计要满足人员的避难要求要在避难层处设置消防电梯口避难层要配备全套的消防设备等。

三、制作与安装

对测量工具以及钢尺的量具进行统一。对高层建筑以及超高层建筑进行施工时,所涉及到的环节较多,如土建、机械设备的安装、钢结构等,对这些环节进行施工时,所应用到的测量工具以及钢尺要进行统一,要按照国家的相关规定进行量具的选择,使得各类测量按照统一标准进行,提高建筑物的整体质量。

超高层建筑结构设计范文第5篇

关键词:超高层建筑;结构体系;新发展

引言

随着科技日新月异的发展,高层建筑如雨后春笋般层出不穷,超高层建筑结构体系的研究成为了设计师们关注的重要课题。超高层建筑结构的发展包括了新型材料的应用、新型的结构体系和设计理念,不仅一定程度上解决了人们关心的空间利用问题,也是建筑业未来发展的重要组成部分。在现有超高层建筑特点的基础上,不断创新优化,来满足人们日益增长的需求,更是我们需要加以关注的重要问题。

1 超高层建筑结构特点

在超高层建筑结构的设计中,水平和垂直荷载能力对于高层建筑整体本身是一项重要的考验。建筑结构中会受到风荷载或者地震荷载这样的水平方向的荷载,建筑结构本身不同,水平荷载也会发生较大的变化;而竖直方向的承重对于一个固定建筑来讲是固定的,所以只要将超高层建筑的负荷力控制在一定程度,对于整体建筑结构的完成质量起到决定性的作用。在对抗荷载的同时,也需要考虑到建筑的抗震能力。因为发生地震或者是风荷载作用时,建筑结构发生变形的情况会更为复杂,所以也要关注结构延性的设计,提高整体建筑结构的质量。

2 超高层建筑的结构体系

2.1 框架结构

框架结构在超高层建筑结构体系中是基础结构,也是使用较为广泛的结构。框架结构是由梁和柱等连接组成的。这种框架结构的优点是较为灵活的平面布置和整体空间较大的框架结构。单独的框架结构对于建筑的高度有很大的限制,剪力墙体系也就发挥了改善高度的作用,在建筑物的高度上相比框架有一定的提高。只需在建筑物的适当位置设置一定数量的剪力墙,就可以在很大程度上提高建筑物的承载力,并且满足了规范的要求。剪力墙承受了水平方向的荷载,框架具有承受竖直方向的力的作用,剪力墙和框架通过刚度较强的楼板和连续梁组合到一起,产生相互合作的建筑结构体系。

2.2 剪力墙体系

剪力墙体系具有良好的整体性和空间稳定作用,在高层建筑中比框架结构的抗侧力能力要好。剪力墙具有一定的整体性的结构优势,在水平外力的影响下产生的侧移小,并且力的传递均匀,因此广泛应用于在超高层建筑结构体系中。剪力墙大多是钢筋混凝土的材质,也具有不错的抗震能力。缺陷是结构自重比较大,灵活性不好。

2.3 全剪力墙结构

全剪力墙结构指的是全部由剪力墙组成的结构体系,其中剪力墙承受了所有来自水平方向和垂直方向的外力。全剪力墙建筑结构有着比框架剪力墙结构更高的高度。但是全剪力墙的造价成本比较高,而且内部空间不能随意分割。所以在实际工程里,设计者通常会优先考虑框架剪力墙。当剪力墙处于无法全部落地式的情况下,而建筑的底部又需要较大的空间,设计师就会采用底部框支剪力墙结构的体系。

2.4 避难层的设置

高层建筑里,避难层的设置体现了对人们生命安全的尊重,它的存在是十分必要的。避难层一定程度上起到生命保护的作用,因此对于避难层设计的要求以及规范也是比较复杂的。一旦建筑中发生火灾时,避难层的空间大、通风好,人们可以在避难层进行避难。避难层的设置需要关注很多问题,比如:避难层要有全套的消防设备,设置消防电梯口等,给人们多一个安全保证,人们在遇到危险的时候能够安全逃生。

2.5 筒体结构

筒体结构是高层结构综合演变和不断发展的结果,是框架剪力墙结构和全剪力墙结构发展的产物。筒体在结构中起到抗侧力的作用,包含有多种形式。筒体结构有两种类型:实、空腹体。在筒体结构中,剪力墙集中而拥有较大的自由分割空间,同时具有较强的抗震与抗风能力,这是筒体结构的一大特点。因此筒体结构也是超高层建筑中经常使用的,例如写字楼等。

3 超高层建筑结构体系的未来发展与展望

早期超高层建筑在国内的数量十分稀少,主要分布于经济发达的城市中。随着建筑体系的不断完善以及国内经济水平的整体提升,超高层建筑在众多城市中都兴建起来,侧面表现了我国城市化的速度正逐步加快。超高层建筑结构体系在高速发展的过程中,带给了我们很多思考:超高层建筑的存在伴随着资源消耗和综合污染,大量建设是否真的有必要;超高层建筑的数量是否需要限制,怎样算达到建筑饱和;超高层建筑的运营是否给当地带来了积极的影响等等。这些问题是超高层建筑结构未来发展面临的挑战,需要建筑者甚至运营商去仔细斟酌。

尽管有这些问题和困难的存在,人们对于超高层建筑发展依然十分看好。超高层建筑的存在拓展了人们的生存空间,解决了土地资源的问题,让人们在有限的空间里稳定持续的获取收益。超高层建筑结构体系,经过一系列的标准制约构成了一体化的体系,形成了新型的稳定结构。在超高层建筑结构未来发展的过程中,我们要不断总结建设超高层建筑结构的体系以及特点,在这些总结经验中寻找新的突破点。在很多实际案例中也可以看出来,现在很多超高层建筑结构正在向着更合理有效的受力体系和更符合使用和质量需求的方向发展。我们在创新的过程中不能忽视超高层建筑的耐久性和稳固性的特点,在此基础上完善结构体系,给出全新的发展方向。

4 结束语

超高层建筑的存在不仅解决了土地资源紧张的问题,也是一个国家经济发展水平的展示。我们相信超高层建筑结构体系正在向着更为合理并且不断完善的方向前进。超高层建筑的结构设计是一项全面系统化的工作,对于建筑业的发展起到重要的作用,也是超高层建筑结构体系发展的灵魂工作。新的高层建筑结构设计丰富了建筑业的内容,为人们提供更加舒适可靠的生活工作空间的同时,也会尽最大可能做到环保、节能,这也会是建筑业发展的努力目标。高层建筑设计师也需要不断发现人们对于高层建筑的需求,提高自身的专业水平,用实战经验解决发展中出现的关键问题,促进超高层建筑结构体系的优良发展。

参考文献

[1]郭怀祥.浅谈超高层建筑结构设计的关键性问题[J].中华民居,2014.

[2]夏于忠.刍议高层建筑深基坑的开挖与支护[J].中华民居,2014.

[3]董苏媛.高层及超高层建筑结构分析与设计[J].中华民居,2014.

[4]苏敏华.超高层建筑结构体系的新发展[J].城市建筑,2013,2:66-67.

超高层建筑结构设计范文第6篇

关键词:民办院校;高层建筑结构设计;实践应用

作者简介:胡恺(1984-),男,湖北襄阳人,武昌工学院土木工程系,助教。(湖北?武汉?430065)

中图分类号:G647?????文献标识码:A?????文章编号:1007-0079(2012)26-0094-01

“高层建筑结构设计”是土木工程专业房屋建筑方向的一门核心专业课程,主要是在已学过的专业基础知识(结构力学、钢筋混凝土结构设计等)为基础,进行多层、高层建筑结构计算的学习。该课程结构体系复杂,对先修课程的依赖程度较高,授课及学习难度较大。[1]鉴于本课程的特点,特别是针对民办院校土木工程专业学生的实际情况,结合民办院校“应用型”人才培养的指导方针,有针对性地谈一些本课程的改革方案,希望对提高民办院校学生“高层建筑结构设计”实践应用能力起到抛砖引玉的作用。

一、“高层建筑结构设计”课程的意义

高层建筑的出现是人类社会商业化、工业化和城市化发展的必然结果。从19世纪末现代高层建筑的出现,到如今已建成的160层,总高828米的迪拜哈利法塔,充分印证了高层建筑与社会生产发展及人类活动空间的不断探索有密切联系,特别是土地资源的稀缺性也推动着高层建筑的研究与发展。

高层建筑的迅猛发展离不开结构设计人员对其安全性与经济性的考量,每一栋高层建筑的设计都需要结构人员遵循高层建筑结构设计规范,结合高层建筑设计经验、选择合理的结构体系、设置合适的支撑构件,从而在保证高层建筑在施工和使用时的安全上,起到了举足轻重的作用。

“高层建筑结构设计”则是高层建筑的结构设计者在校内接触高层建筑设计的一门主修课程,[2]具有很强的专业性、应用性和综合性。该课程主要介绍高层建筑的多种结构体系、高层建筑荷载与荷载组合、每种结构体系的计算方法与设计概念等。学习本课程,使学生能够掌握高层钢筋混凝土框架结构、剪力墙结构、框架—剪力墙结构的计算与构造,了解高层钢结构及筒体结构、混合结构的设计特点。通过本课程的学习,学生应具备手工计算多、高层框架结构内力分析的能力,具备分析和解决常见的高层建筑选型、设计、施工的能力。

二、民办院校“高层建筑结构设计”的教学现状

作为土木工程专业房屋建筑方向的一门核心专业课程,民办院校开设本课程的教学目的就是给学生架设一座由教室理论学习到设计室实际操作的桥梁,能够为社会输送具有专业技能的“应用型”人才,满足民办院校“应用型”人才培养的特点。但是由于该课程所涉及的结构体系复杂,设计概念与规范要求各不相同,对先修课程依赖程度较高,特别是在民办院校中开设本门课程时,授课和学习效果往往并不理想。

1.教师的教学重点和市场需求之间的矛盾

由于该课程涉及的结构体系较多,不论是常见的框架、剪力墙结构体系还是超高层建筑使用的筒体与支撑体系,教师在备课时往往会做到“面面俱到”,不漏掉教材里任何一个章节。这样的备课与授课思路固然没有问题,但是却没有找到教学“重点”,不能做到有的放矢,而这里的“重点”便是市场:学生毕业后主要接触什么形式的建筑、什么样的高层建筑结构形式出现得频率最多。

教师往往把时间花费在大量的荷载计算、内力组合以及内力计算等理论推导上,却没有给学生带去最有工程价值的、最容易动手实践的基本知识。

2.学生的专业基础薄弱与该课程抽象复杂之间的矛盾

作为民办院校的本科生,由于入校时的基础较薄弱,特别是理论推导与虚拟抽象的思维活动比较欠缺。不少学生对学科基础课已表现出力不从心,一知半解;当他们接触到更加复杂的高层建筑设计理论及内力计算时,则早已失去了兴趣,主观上表现出回避与厌恶的情绪,以致长期不到课、不出勤。这种现象也普遍出现在其他的核心专业课课堂之上。

3.课程开设的学期与就业、考研等客观因素之间的矛盾

“高层建筑结构设计”对先修课程的依赖性较高,如“混凝土结构设计”、“抗震结构设计”、“结构力学”等专业基础课。本课程作为一门核心的专业课程一般开设在大四上学期,而此时的学生虽已学过基础课程,但不免会有遗忘,加之此时是毕业生找工作和考研的集中时期,本课程的教学受到多种方面影响,成为客观且不可回避的现实。如何加强该课程与先修课程的连贯性、回避学生就业、考研对核心专业课的影响,是民办院校不得不面对与解决的一个现实问题。

4.课程较强的实践性与课程设计环节缺失之间的矛盾

民办院校大四上学期的专业核心课程都具有课时较少且无课程设计环节的特点,“高层建筑结构设计”课程也不例外。一门应用性强、能够充分调动学生主观能动性的课程,却没有实践教学环节的辅助,是很不合理的。学生也只有在理论与实践的交叉作用下,才能收获最多。即使大四学生的时间紧迫,也不能舍弃该课程的实践教学,影响学生“高层建筑结构设计”的工程应用能力。

三、民办院校“高层建筑结构设计”的教学思考

1.以市场需求为导向,调整课程的教学重点与方向

现代高层建筑的结构形式主要以框架、剪力墙与框架—剪力墙结构为主,只有极少数学生才有机会接触更复杂的超高层建筑结构。因此,以市场需求为导向,抓住重点,集中优势力量,重点讲解与练习常见的结构形式才是适合于民办院校“高层建筑结构设计”教学的合适方法。同时,对课时分配以及总的课时计划安排上要敢于创新,缩短理论教学的间隔时间,重点对几类常见的高层建筑结构作深入分析与介绍,从而加深学生的印象。市场的需求决定了教师授课的重点,给予学生最想要的和最需要的知识,是“应用型”民办院校教师的最高使命。

超高层建筑结构设计范文第7篇

【关键词】超高层建筑;基础结构;设计;

中图分类号: TU208 文献标识码: A.

引言:基础是整个建筑工程的重要部分,其重要性在结构、占比、造价、工时上有着全面的体现,是建筑设计、建设和施工单位高度重视的关键部位和环节。超高层建筑基础设计工作中只有通过全面了解情况、优化基础选型、全面科学计算等工作才能够确保超高层建筑基础的安全性和功能,同时确保超高层建筑基础工程造价的可控和降低。在超高层建筑基础实际的设计工作中要对基础选型影响因素进行控制,坚持基础选型的原则,通过对超高层建筑框架结构、箱(筏)和桩箱(筏)种类基础的有效设计和全面控制,实现超高层建筑基础设计的目标,促进超高层建筑基础功能的完善,真正完成超高层建筑基础设计的系统性、全面性的目标。

一、超高层建筑结构设计原则

(1)选择适合的基础方案

应该根据工程的上部载荷分布和结构类型,地质条件,施工条件以及相邻的建筑物影响等各种因素进行综合性分析,选择既合理又经济的方案,必要时要进行地基变形演算,在进行设计时要最大限度地发挥地基的潜力。在进行基础设计时,应该参考临近建筑资料和进行现场查看,要有详细的地质勘查报告,一般情况下,在一个结构单元内部适合用两种不同的类型。

(2)对计算结构进行正确分析

高层建筑结构设计普遍运用计算机技术,但是,往往不同的软件会得出不同的计算结果。所以,对于程序的适用条件、范围等设计师应该进行全面的了解。因为软件本身有缺陷、人工输入有误或者程序与结构的实际情况不相符合,在计算机辅助设计时,都会造成错误的计算结果,所以,在拿到电算结构时要求结构工程师要慎重校对,认真进行分析,做出合理的判断。

(3)选用适当的计算简图

.为了保证结构的安全,在选择计算简图时要选择适当的计算简图。如果计算简图选用不当,则会造成结构安全隐患,要有相应的构造措施来保证计算简图。为了减少计算简图的误差,实际结构的节点应该保证在设计所允许的范围之内,因为其不能是纯粹的刚结点。

(4)采取相应的构造措施

强剪弱弯、强柱弱梁、强压若拉、. 强节点弱构件、.注意构件的延性性能原则是在结构设计中要始终牢记的。要注意钢筋的锚固长度,特别是钢筋执行段锚固的长度。要加强薄弱部位,考虑温度应力的影响。

(5)合理选择结构方案

要选择一个切实可行的结构体系与结构形式,一个经济合理的结构方案是一个合理设计的保证。结构体系应该传力简捷,受力明确。地震区应力求平面和竖向规则,同一结构单元不宜混用不同结构体系。总之,必须综合分析工程的材料、施工条件、设计要求、地理环境等,并且要与水、电、建筑等专业进行充分的协商,以此为基础确定结构方案,为结构选型,最好进行多方案比较后选用较为优秀的.

二、超高层建筑基础选型工作的要点

2.1超高层建筑基础选型的影响因素

2.1.1超高层建筑上部结构对基础选型的影响

上部结构对超高层建筑基础类型、深度、浮力等参数存在着直接的影响,由于上部结构种类的不同,会引起超高层建筑基础荷载大小和分布的不同,要在设计超高层建筑基础予以注意。同时,不同类型的超高层建筑上部结构会因自身的类型不同而产生不同的沉降幅度和变形幅度,因此,带来超高层建筑基础形式上的不同。地下室的种类和形状也会对基础选型有一定影响,要在设计超高层建筑基础时做以重点考量。

2.1.2地质条件对超高层建筑基础选型的影响

地质条件中两项情况对超高层建筑基础选型影响最为显著,一是,地基持力层情况,持力层是承受超高层建筑基础负荷的土层,要根据持力层承载能力大小和压缩模量变化幅度选择超高层建筑基础类型;二是,穿越土层基本状况,应该根据土层中地下水影响和桩基穿越能力的大小选择超高层建筑基础的类型。

2.1.3周围环境因素对超高层建筑基础选型的影响

一是,超高层建筑施工的振动和噪声要对基础带来各种影响,因此需要对此加以控制和预防,以便超高层建筑基础能够持久、稳定和安全。二是,超高层建筑施工中的空间因素也会给基础类型带来一定的影响,要选择既利于施工有利于稳定的超高层建筑基础类型。三是,超高层建筑施工中挤土效应,超高层建筑基础桩基的入土和挤土会产生挤土效益,这会对周边建筑和地下管网造成影响,应该从最小影响原则出发,优先选择挤土效应最小的桩基方式进行超高层建筑基础施工。

2.1.4超高层建筑基础桩种类的影响

不同种类的基础桩有着不同的尺寸,应该从持力层性质、安全性要求、超高层建筑负荷等主要方面确定基础桩的类型和规格,使其满足超高层建筑总体施工建设的需要。

2.1.5超高层建筑基础施工的工期

工期是设计超高层建筑基础类型的重要参考参数,要在确保超高层建筑基础施工速度、施工质量和施工效益的基础上形成最为科学的施工

工期,实现超高层建筑总体价值的全面兼顾。

2.2超高层建筑基础选型的基本原则

超高层建筑基础选型应该坚持的原则有:一是,多样式原则,超高层建筑基础设计单位应该全面掌握各种超高层建筑基础类型,并有针对性地选择社会和综合价值较高的超高层建筑基础类型。二是,经济性原则,超高层建筑基础设计要追求最佳的经济效益,因此,设计超高层建筑基础时要考虑到成本控制、施工进度的重要因素,全面提高超高层建筑基础设计和施工的经济性。三是,总体优化原则,超高层建筑基础设计单位要对各种设计综合起来,将各种设计的优势集中起来,形成优化的超高层建筑基础设计,以实现超高层建筑建设的基本目标。

三、超高层建筑基础设计的方法

当前超高层建筑基础设计采用上部结构与地基、基础共同作用的分析方法,这种方法中地基、基础、上部结构之间同时满足接触点的静力平衡以及接触点的变形协调两个条件,即将上部结构、基础和地基三者看成是一个彼此协调的整体。这种从整体上进行相互作用的分析方法难度较大,计算量庞大,对计算机的性能及存储量要求较高,只在较复杂或大型基础设计时,按目前可行的方法考虑地基-基础-上部结构的相互作用。共同作用分析方法的进步之处仅在于它考虑了上部结构的刚度,这一优势是传统设计方式所不具备的。

四、做好超高层建筑基础设计的要点

1框架结构基础设计的要点

在超高层框架结构基础设计时,基础宜柔不宜刚;若地基土为高压缩性,则基础宜刚;当采用桩基时,可考虑采用变刚度布桩的方式(如改变基础中部桩径或桩长、加密中部布桩),以调整地基或桩基的竖向支承刚度,使差异沉降减到最小,从而减小基础或承台的内力。

2箱(筏)基础设计的要点

对超高层建筑箱(筏)基础设计时,考虑上部结构参与工作有利于降低箱基的整体弯曲应力。建议采用共同工作整体分析进行计算,这样算得的整体弯曲箱基底板钢筋应力才比较符合实际;另外,共同作用使得上部结构下面几层边柱(墙)出现较大内力,采用常规设计方法时应提高边柱(边墙)的内力。

3桩箱(筏)基础设计的要点

超高层建筑桩箱(筏)基础上部荷载满布,可采用变刚度布桩的方式,调整桩基的竖向支承刚度,从而调整桩顶反力分布;若考虑利用桩间土分担上部荷载,充分发挥箱(筏)底桩间土的承载力,可适当增加基础中部桩的间距;另外,若上部结构为剪力墙,则桩宜沿剪力墙轴线布置,这样与

满堂布桩相比可以大大减小底板的厚度。

参考文献

[1]姜海菊.江浙地区超高层建筑基础的选型与优化设计――以某超高层住宅楼工程为例[J].建筑,2011(08)

[2]王荣彦,徐玲俊,张亚敏.郑州东区超高层建筑基础选型探讨[J].岩土工程界,2005(12)

[3]徐鼎新.改进基础设计降低工程造价――谈上海超高层建筑基础设计改进的几点经验[J].建筑施工,1990(02)

超高层建筑结构设计范文第8篇

【关键词】超高层住宅的结构优化设计 要求设计方案

中图分类号:TU318文献标识码: A 文章编号:

目前,从整个建筑发展形势上来看,高层建筑在所占建筑类型中的比例会越来越大。在人们对空间充分利用的需求下超高层建筑工程应运而生的,这体现了人们对更舒适、更具现代化的高质量的城市生活的追求。因此就未来的发展前景来看,建筑高层或超高层住宅是今后整个建筑行业的重点。而近年来,随着中国经济和社会的发展的发展,高层或超高层建筑将越来越多的出现在人们的视野当中。所以,高层或超高层建筑结构优化设计的重要性就显得越来越重要。

结构优化设计的基本原理

所谓结构优化设计,就是指在满足工程结构的基本条件下按预定目标设计结构建造方案并找出最优方案的设计方法。应该怎样做好结构优化设计:首先,要选择合理的结构方案,其决定了整个设计的好坏成败。因为对同一个建筑设计而言,结构设计的方案是多种多样的,而选择不同方案会对工程质量和工程造价产生不同的影响。其次,进行正确的结构计算,一体化计算机结构设计程序的应用和完善,帮助结构工程师能越来越轻松的进行计算分析,使得结构设计更加经济和合理。再次,要提高材料的利用率,因为结构设计的目的就是花尽可能少的钱,做最安全适用建筑,这就要求结构设计时对材料选用要合理,利用要充分。还有,要正确合理的运用和理解《规范》,其是我们设计中必须遵循的标准,是国家技术经济政策,科技水平以及工程实践经验的总结。

二、超高层住宅结构设计的基本要求

满足舒适性的要求。住宅建筑设计应为住户起居舒适性的要求提供条件,例如,多种户型要灵活分隔室内的空间,人居的热光声的环境等要求,给居住的人创造一个舒适的环境。结构方案还应该考虑到住户在日后改变分隔的空间的可能性,当采用剪力墙结构的时候,宜采用大开间的布置。

满足经济性的要求。结构设计时应根据房屋的建造地点、层数多少、平立面体形,在满足耐久性、安全性和舒适性要求的前提下采用经济又合理的结构体系,在构件设计中应该精打细算,要严格执行规范构造要求,注意避免不必要的铺张浪费。尤其是在地基基础设计中更要注意此方案的经济比较,因为地基基础的设计方案是否合理对房屋造价非常重要。

满足耐久性和安全性要求。住宅实行商品化后,应为住户的耐用消费品,使用寿命长是区别其他消费品的最大特点。因此,结构耐久性和安全性是住宅结构设计最基本的要求。结构体系的选择以及材料的选用,都应有利于抗风抗震,以及使用寿命期间改造维修的可能性。

超高层建筑中的优化设计方案

房屋结构抗震性设计。在工程图纸设计过程中,房屋结构按抗震设防分类,房屋抗震等级可根据房屋高度、烈度以及结构类型按国家《抗震规范》确定。地震震力振型组合数据对建筑应当不考虑耦联扭转计算;当振型数大于3 的时候,应取3 的整数倍计算,但数据不能大于建筑物层数;当房屋层数不大于2 时,振型数则可取房屋层数。对于不规则房屋的结构,应考虑扭耦联转,对高层房屋建筑来说,振型数应取不小于9;房屋结构层数多或房屋结构刚度突变系数大的话,振型数则应多取,例如结构中含多塔结构或顶部有小塔楼和转换层等,振型数应取不小于12 的数,但其大小仍不能大于房屋总层数3 倍,除非其含有弹性定义的楼板,而且采取总刚性分析的时候,振型数才能够取的更大。

耐久性的优化设计。在之前大部分混凝土结构设计方案中,很多没有充分考虑到建筑结构设计耐久性,也就是保证高层建成之后,在合理使用期限内,要能满足用户正常使用要求。但是很多的设计未能达到,造成此现象的根本原因是没有充分考虑到建筑结构在使用的过程中,由于遭受条件和使用环境变化最终造成房屋结构损伤,引起房屋可靠度指数下降。对一般高层混凝土结构设计来说,低造价和省材料设计都应为满意的结构设计,但随着人们生活水平的提高和在实际工程中,有时在其他使用要求或技术指标上升为设计主要矛盾时,设计者们就要放弃对经济的单纯追求。所以当选以高层混凝土结构优化为设计的主要目的时,就应依据设计所要面对的关键性问题,分清主次,选多目标或单目标来实施优化,达到满意效果。

合理使用高强钢筋与高强混凝土。高层建筑的总造价一般都包括框架结构材料、施工和基础的物料费用等,其中用钢量以及构筑件截面积对房屋造价影响较大,故在建筑设计中合理使用高强混凝土与高强度钢筋可有效降低用钢量,节约建筑成本。若高层建筑设计位于厚软的地基上,那么由于坐落在地基上的荷载大,合理使用高强钢筋和高强混凝土来优化构件的截面积,减轻结构重量,将会显著降低工程造价及基础设施施工难度,取得较好经济效果。对于震区的高层楼房来说,地震力作用的大小与建筑物的自重相关,人为地减轻建筑物的自重,降低结构在地震的荷载,可提高建筑物的安全性。在设计中高效地使用高强钢筋及高强混凝土,能快速有效的缩小梁墙板柱等构件截面积,达到建筑造价目的。

房屋结构周期性折减系数。房屋框架结构和顶盖等结构设计中,因为填充墙体存在使结构实际表现刚度大于设计计算刚度,计算周期也会大于实际周期,所以当算出结构剪力偏小时,会使房屋的某些结构不安全,而应该对房屋结构计算周期适当的进行折减,这样能达到很好的效果,但是对于房屋框架结构,计算的周期不宜折减或折减系数取小。

地下室的层数处理。多层房屋框架结构房屋一般都设置地下室结构。由于隔墙较少,故常采用的是板筏基础。设计计算时将上部结构与地下层数结合在一起,并在图纸中按实际的地下室的层数计算。如此一来,计算基础底板以及地基纵向荷载可一次设计完成。同时通过侧层移刚度性系数比较,可以调整和判断房屋相应嵌固位置,适当加固构造措施,保证楼板最小配筋率和厚度。当房屋结构纵向不规则时,要验算其最薄弱层。

总结

随着我国经济的发展,我国基础设施的建设也有了很好的发展,越来越多的流动资金向基础设施建设这个行业汇集。在人们对空间充分利用的需求下超高层建筑工程应运而生的,这体现了人们对更舒适、更具现代化的高质量的城市生活的追求。因此就未来的发展前景来看,建筑高层或超高层住宅是今后整个建筑行业的重点。而近年来,随着中国经济和社会的发展的发展,高层或超高层建筑将越来越多的出现在人们的视野当中。所以,高层或超高层建筑结构优化设计的重要性就显得越来越重要。

参考文献

[1] 杨益妮。 结构设计对建筑工程造价的影响因素分析[J]. 科技信息. 2010(28)

[2] 赵健生,刘瑛,王栋,刘希泉,宁宁。 青岛某住宅小区9号楼工程结构优化设计[J]. 青岛理工大学学报. 2009(06)

[3] 刘礼联。 小高层住宅短肢剪力墙结构设计优化措施分析探讨[J]. 中外建筑. 2010(05)

[4] 马琳。 带转换层的短肢剪力墙结构的计算[J]. 中外建筑. 2005(04)