首页 > 文章中心 > 高层建筑抗震结构设计

高层建筑抗震结构设计

高层建筑抗震结构设计范文第1篇

关键词:建筑工程,结构,抗震设计

Abstract: using the modern science and technology to reduce and prevent earthquake disaster, the structure aseismatic design is a kind of effective method. So here is the author of the current structural seismic design Suggestions to explore.

Keywords: construction project, the structure, the seismic design

中图分类号:S611文献标识码:A 文章编号:

建筑物本身又是一个庞大复杂的系统,在遭受地震作用后其破坏机理和破坏过程十分复杂。且在结构分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,也存在着不确定性。因此,建筑结构抗震设计就显得尤为重要。

1.有关抗震设计的若干概念

为了保证结构的抗震安全,根据具体情况,结构单元之间应遵守牢固连接或有效分离的方法。高层建筑的结构单元宜采取加强连接的方法。尽可能设置多道抗震防线,强烈地震之后往往伴随多次余震,如只有一道防线,在首次破坏后在遭受余震,结构将会因损伤积累而导致倒塌。适当处理结构构件的强弱关系,使其在强震作用下形成多道防线,并考虑某一防线被突破后,引起内力重分布的影响,是提高结构抗震性能,避免大震倒塌的有效措施。合理布置抗侧力构件,减少地震作用下的扭转效应。结构刚度、承载力沿房屋高度宜均匀、连续分布、避免造成结构的软弱或薄弱部位。结构构件应具有必要的承载力、刚度、稳定性、延性及耗能等方面的性能。主要耗能构件应有较高的延性和适当的刚度,承受竖向荷载的主要构件不宜作为主要耗能构件。合理控制结构的非弹性(塑性铰区),掌握结构的屈服过程,实现合理的屈服机制。框架抗震设计应遵守“强柱、弱梁、结点更强”的原则,当构件屈服、刚度退化时,结点应能保持承载力和刚度不变。采取有效措施,防止钢筋滑移、混凝土过早的剪切破坏和压碎等脆性破坏。考虑上部结构嵌固于基础结构或地下室结构之上时,基础结构或地下室机构应保持弹性工作。高层建筑的地基主要受力范围内存在较厚的软弱黏性土层时,不宜采用天然地基。采用天然地基的高层建筑应考虑地震作用下地基变形对上部结构的影响。为了充分发挥各构件的抗震能力,确保结构的整体性,在设计的过程中应遵循以下原则:①结构应具有连续性。结构的连续性是使结构在地震作用时能够保持整体的重要手段之一。②保证构件间的可靠连接。提高建筑物的抗震性能,保证各个构件充分发挥承载力,关键的是加强构件间的连接,使之能满足传递地震力时的强度要求和适应地震时大变形的延性要求。③增强房屋的竖向刚度。在设计时,应使结构沿纵、横2个方向具有足够的整体竖向刚度,并使房屋基础具有较强的整体性,以抵抗地震时可能发生的地基不均匀沉降及地面裂隙穿过房屋时所造成的危害。

2.抗震设计一般规定

2.1多层和高层现浇钢筋混凝土房屋的结构类型和适用的最大高度应符合要求。平面和竖向均不规则的结构或建造于Ⅳ类场地的结构,适用的最大高度应适当降低。合相应的计算和构造措施要求。

2.2钢筋混凝土房屋应根据烈度、结构类型和房屋高度采用不同的抗震等级,并应符合相应的计算措施要求。

2.3钢筋混凝土房屋抗震等级的确定,尚应符合下列要求:框架一抗震墙结构,在基本振型地震作用下,若框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的50%,其框架部分的抗震等级应按框架结构确定,最大适用高度可比框架结构适当增加:裙房与主楼相连,除应按裙房本身确定外,不应低于主楼的抗震等级;主楼结构在裙房顶层及相邻上下各一层应适当加强抗震构造措施。裙房与主楼分离时,应按裙房本身确定抗震等级;当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可根据具体情况采用三级或更低等级。地下室中无上部结构的部分,可根据具体情况采用三级或更低等级;抗震设防类别为甲、乙、丁类的建筑应结合有关抗震设防标准的规定和确定抗震等级;其中,8度乙类建筑高度超过规定的范围时应经专门研究采取比一级更有效的抗震措施。

2.4高层钢筋混凝土房屋宜避免采用规定的不规则建筑结构方案,不设防震缝。

3. 建筑防震设计方法

建筑抗震的概念设计指在进行建筑结构抗震设计时,应着眼于建筑物结构的总体地震的震动反应,按照建筑结构的破坏机制和破坏过程,灵活应用建筑抗震的设计准则,全面而合理地解决建筑结构设计中出现的基本问题。

钢结构建筑有许多优良的特性。有很好的抗震、抗风性能。钢结构整体刚性好、强度高、重量轻、变形能力强,建筑物自重仅为砖混结构的1/5,抗震性能却是砖混结构的2倍以上,并有很强的抗风性能,有效的保护人民生命和财产安全。建筑钢结构都是由多层水平的楼盖和竖向的柱、墙等组成。楼盖主要承受竖向荷载,而建筑竖向的柱、墙等构件因为建筑高度的变化,其组成方式和受力变形.特性结构体系也有明显的变化。框架、剪力墙及筒体是结构中抵抗竖向及水平荷载的基本单元,由它们及其变体组成了各种结构体系,如框架结构体系、框架一支撑结构体系、框架-剪力墙体系、框架一简体结构体系、交错析架结构体系等。

建筑设计应设置多道抗震设防体系。由于地震的震动往往会持续一定时间,而且震动是往复的。根据对地震的大量研究可以看出,建筑物的倒塌通常是由于地震的持续往复作用,使建筑物的结构造到破坏,从而丧失了对建筑物重力荷载的承载能力。所以,建筑抗震规范提出“强柱弱梁、强剪弱弯”的抗震设计思想。建筑柱桩是建筑主要承受重力荷载的构件,通过科学、合理处理柱与梁之间的强弱关系,使建筑框架梁在地震中先于柱子屈服,出现了塑性铰,从而耗散一定的地震能量,柱桩在建筑抗震中退居到第二道抗震设防体系。剪切破坏属于力学的脆性破坏,而弯曲破坏是材料力学中的延性破坏,破坏后出现塑性铰,建筑结构还能够继续承载。“强剪弱弯”的设计思想则使剪切破坏退居到第二道抗震设防体系。

建筑抗震设计要具备合理的刚度和承载力分布以及与之匹配的延性。结构构件必须具备足够大的承载能力和刚度(刚度包括抗侧刚度和抗扭刚度),结构构件的承载能力和刚度是相关的,一般来说,建筑刚度越大,其承载能力也越大。增大建筑结构构件的承载力,可以推迟地震时构件的屈服能力,减轻地震对构件的屈服程度,降低对构件延性的要求,但这提高了建筑工程造价。要实现经济合理的建筑抗震结构体系,使建筑物在遭受大地震侵袭时,仍具有很强的抗倒塌能力,最理想的是建筑物部分结构构件破坏,通过延性耗散地震能量,避免建筑物的倒塌。

建筑延性系数设计方法。该方法的实质是通过建立建筑构件的位移延性系数或建筑截面曲率延性系数与塑性铰区混凝土极限压应变的关系,由结构约束箍筋来保证核心混凝土能够满足所要求的极限压应变,从而使建筑构件具有所需要的延性系数。建筑延性包括建筑结构延性、构件延性和截面延性三个方面。结构延性可以用顶点位移延性和层间位移延性来表达;构件位移延性与塑性铰区长度和截面延性等有关;截面延性与建筑物的几何形状、混性土强度、轴压比、纵筋含钢率、含箍特征值等因素有关。

采用能力谱方法进行建筑抗震设计。该方法是通过地震反应谱曲线和建筑结构能力谱曲线的叠加来评估建筑结构在给定地震作用下的反应特性。反应谱是指单自由度体系在给定地震输入下的加速度谱;能力谱是指通过对建筑结构进行静力推的分析,转换得到等效单自由度体系的加速度和位移之间的关系曲线。能力谱方法由Freeman等提出,经过不断的完善和革新。《日本建筑标准法》和美国ATC-40都采用能力谱法作为基于性能,位移抗震设计方法。Chopra提出了将能力谱方法和结构损伤指数评定相结合的屈服位移能力谱的地震损伤分析方法,增加并强化了能力谱法的实用性。因此,能力谱法的实质是采用的基于承载力的设计方法加位移、变形的能力校核,并依据能量的设计方法。对抗震设计的研究表明地震动瞬时能量在大多数情况下对结构最大位移反应具有决定性作用。但要建立基于能量的有效建筑抗震设计框架还需更深入的研究。

4.结束语

随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用用于结构设计。结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力的“抗”到允许结构屈服,并赋予结构一定的非弹性变形性能力的“耗”的一系列转变

参考文献

高层建筑抗震结构设计范文第2篇

关键词:高层建筑;抗震设计;结构设计

引言

随着建筑行业的快速发展,我国建筑逐渐向高层建筑和超高层建筑结构发展。高层建筑的结构复杂,层数比较高,建筑地基承受的荷载比较大。地震发生时,震源对高层建筑结构会产生冲击力,容易造成建筑梁、柱断裂,建筑倒塌等现象,严重威胁到人民群众的安全。我国是地震灾害比较频繁的国家,高层建筑抗震设计一直是社会关注的重点,抗震设计的好坏直接关系到高层建筑的质量。因此高层建筑抗震设计的时候要根据高层建筑的实际情况,提高建筑结构抗震性能。

1超限高层建筑结构基于性能抗震设计与常规抗震设计的比较

1.1基于性能的抗震设计的概念

概念设计是目前一种比较先进的设计理念,与传统建筑设计相比,概念设计不需要精准的计算或参考建筑设计规范相关的目录,而是设计者根据实践经验,按照建筑结构体系的力学关系、结构破坏机理,从建筑结构整体进行把握设计。传统的建筑设计思想无法满足人们对建筑结构抗震功能的要求,为了提高建筑结构抗震安全性能要求,抗震设计已经发生了较大变化。比如建筑结构以力分析为主并兼顾力与变形,考虑到建筑结构变形、耗能和损失,以及非线性分析和可靠性分析。基于性能的抗震设计是20世纪90年代美国建筑设计师提出来的一个全新的设计理念。它的主要核心是将抗震设计从保护居民生命财产安全为基本目标转移到不同风险水平地震作用力下满足人们对建筑的性能要求,通过多层次、多目标的抗震安全设计,保障建筑安全,最终实现经济效益和投资效益的平衡,满足人们对建筑的个性需求。

1.2我国常规抗震设计方法

当前大部分国家的抗震设计规范为“小震不坏、中震可修、大震不倒”的原则,我国采用二阶段抗震设计方法满足工业建筑和民用建筑实现以上三个原则的抗震要求,并在这个基础上根据建筑物抗震重要性分成甲、乙、丙、丁四类建筑物,根据建筑物的类别设置相应的抗震防烈要求。二阶段抗震设计方法如下:第一阶段是对建筑结构强度进行验算,也就是小震的地震洞参数,通过弹性模量计算建筑结构的弹性地震作用力,并与建筑物风荷载、雪荷载、水平荷载等进行组合,计算建筑结构截面的抗震承载力,确保建筑结构的强度,并通过合理的平面结构布置,确保建筑结构的抗拉力。第二阶段则是验算建筑结构的弹塑性,也就是对地震作用下很容易倒塌的建筑结构按照大震标准进行设计,处理好建筑结构的薄弱环节,以免地震发生时首先冲击建筑结构的薄弱环节,影响到整个建筑结构的安全性和稳定性。

1.3常规抗震设计方法与基于性能抗震设计方法的比较

基于常规抗震设计方法与基于性能抗震设计方法在设防目标、设计实施方法和检验方法、实现性能和工程应用方面都有所不同,具体见表1。通过比较发现,基于性能抗震设计方法是未来建筑抗震设计的发展方向,它适应了社会新技术和新工艺发展需求,能够满足建筑业务单位和使用单位对建筑结构安全性、经济性等相关要求。

2超限高层建筑结构的抗震性能目标

某酒店塔楼的高度是168.9m,结构计算高度为176m,建筑结构为B类钢筋混凝土高层建筑。建筑场地类别为III类,建筑抗震等级为二级。

2.1结构的抗震性能水准

按照相关规定,酒店的塔楼高度、平面扭转不规则等不能超限,所以在第一、二阶段抗震设计过程中,必须采取有效的方法满足建筑工程国家以及地方相关的标准,并将基于性能抗震设计目标概念进行设计。按照《建筑抗震设计规范》给出的抗震性能设计方法以及《高层建筑混凝土结构技术规范》中的相关规范进行设计,确定该酒店的性能水准为C类,具体控制目标如下:

2.2建筑结构的性能目标

超限高层建筑结构规则性、高度等方面超出了建筑工程规范中的适用限值,使得抗震设计缺乏相应的参考依据。基于性能目标设计方法在设计的时候,需要综合考虑到建筑场地实际设防裂度、超高限值以及建筑结构不规则等经济因素,对超高建筑的薄弱环节、主抗侧力构件等结构变形能力和抗震承载能力有具体的性能目标。按照建筑工程设计中相关内容,建筑结构关键构件由建筑结构工程师根据工程实际情况分析。比如水平转换构件和支撑竖向构件、大悬挑结构的主要悬挑构件、长短柱在同一楼层的数量相当于在该层各个长短柱等要求。这其实是将过去常规抗震设计中的“小震不坏、中震可修、大震不倒”的抗震设计原则进行量化和细化。比如将A级性能目标设计要求建筑结构小震不坏、中震和大震不坏,就是要求建筑结构在中震和大震中依然保持一定的弹性。

3结语

随着建筑行业的快速发展,常规的建筑工程抗震设计方法已经无法满足当下建筑设计的要求,基于建筑结构性能抗震设计理念对抗震结构的目标进行量化,明确抗震目标性能,能够提高建筑结构抗震性能,必将成为建筑行业的发展趋势。

参考文献:

高层建筑抗震结构设计范文第3篇

关键词:高层建筑;抗震结构;设计;问题;措施;

引言

随着经济社会的不断发展,高层建筑也不断涌现出来,但是由于近些年频繁发生的地质灾害,也给高层建筑的结构设计敲响了警钟。高层建筑也越来越多,在这种情况下必须做好抗震设计,设计人员在高层建筑抗震设计中,都是按照抗震结构设计规范进行的,他们希望设计的结构能够达到强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现“小震不倒、中震可修、大震不倒”的目的,但是在实际设计中,却不能达到这种效果。本文将从抗震结构设计的基本原则,我国高层建筑抗震设计常见的问题以及提高抗震性能措施三个方面对高层建筑的抗震结构进行阐述。

1.高层建筑抗震结构设计的基本原则

(1)结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能。①结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则;②对可能造成结构的相对薄弱部位,应采取措施提高抗震能力;③承受竖向荷载的主要构件不宜作为主要耗能构件。

(2)尽可能设置多道抗震防线。由于每次强震之后都会伴随多次余震,因此在建筑物的抗震设计过程中若只有一道设防,则其在首次被破坏后而余震来临时其结构将因损伤积累而倒塌。因此,建筑物的抗震结构体系应由若干个延性较好的分体系组成,在地震发生时由具有较好延性的结构构件协同工作来抵挡地震作用。当遭遇第二设防烈度地震即低于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏,但经一般修理或不需修理仍可继续使用。

2.我国高层建筑抗震设计常见的问题

2.1工程地质勘查资料不全

在设计初期,设计人员应该及时掌握施工场地的地质情况,但是往往在设计过程中,却没有建筑场地岩土工程的勘察资料,就不能很好的进行地基设计,给建筑物的结构带来安全隐患。

2.2建筑材料不满足要求

对于材料而言,我们要明确这样一个道理:地震对结构作用的大小几乎与结构的质量成正比。一般说在相同条件下,质量大,地震作用就大,震害程度就大,质量小,地震作用就小,震害就小。所以,在建筑物的楼板、墙体、框架、隔断、围护墙以及屋面构件中,广泛采用多孔砖、硅酸盐砌块、陶粒混凝土、加气混凝土板、空心塑料板材等轻质材料,将能显著改善建筑物的抗震性能。

2.3建筑物本身的建筑结构设计

建筑物如果平面布置复杂,致使质心与刚心不重合,在地震作用下产生扭转效应,则会加剧了地震的破坏作用,海城地震和唐山地震中有不少这样的震害实例。台湾9.21地震中,一栋钢筋混凝土结构由于结构平面不规则,在水平地震作用下,结构产生严重扭转效应而破坏倒塌,同时撞坏相邻建筑上部的阳台。

2.4平面布局的刚度不均

抗震设计要求建筑的平、立面布置宜规正、对称,建筑的质量分布和刚度变化宜均匀,否则应考虑其不利影响。但有的平面设计存在严重的不对称:一边进深大,一边进深小;一边设计大开间,一边为小房间;一边墙落地承重,一边又为柱承重。平面形状采用L、π形不规则平面等,造成了纵向刚度不均,而底层作为汽车库的住宅,一侧为进出车需要,取消全部外纵墙,另一侧不需进出车辆,因而墙直接落地,造成横向刚度不均。这些都对抗震极为不利。

2.5防震缝设置不规范

对于高层建筑存在下列三种情况时,宜设防震缝:①平面各项尺寸超过《钢筋混凝土高层建筑结构设计与施工规程》(JGJ3- 91)中表2.2.3 的限值而无加强措施;②房屋有较大错层;③各部分结构的刚度或荷载相差悬殊而又未采取有效措施;但有的竟未采取任何抗震措施又未设防震缝。

2.6结构抗震等级掌握不准

有的提高了,而有的又降低了,主要是对场地土类型、结构类型、建筑高度、设防烈度等因素综合评定不准造成。

上述这些问题的存在,倘若不能得到改正,势必对建筑物的安全带来隐患。上述这些问题的原因是多方面的,这就需要设计人员从设计的角度避免这些问题的出现,防止将这种问题带入施工中,应该高层建筑的抗震性能。

3.提高抗震性能措施

3.1选择合理结构类型

在高层建筑中,其竖向荷载主要使结构产生轴向力,而水平荷载主要使结构产生弯矩,随着高度的增加,在竖向荷载不变的情况下,水平荷载作用力增加,此时竖向荷载所引起的建筑物侧移很小,但是水平荷载参数的侧移就非常大,与高度层四次方变化,因此在高层建筑中,主要对水平荷载进行控制,在设计过程中,应该在满足建筑功能及抗震性的前提下,选择切实可行的结构类型,使其具有良好的结构性能。目前大多数的高层建筑都采用了钢混结构,这种结构具有较大的刚度,空间整体性好,材料资源丰富,可组成多种结构体系。但是其变形能力差,造价相对较高,当场地特征周期较长时,容易发生共振现象。

3.2减小地震能量输入

具有良好抗震性能的高层建筑结构要求结构的变形能力满足在预期的地震作用下的变形要求,因此在设计过程中除了控制构件的承载力外还应控制结构在地震作用下的层间位移极限值或位移延性比, 然后根据构件变形与结构位移的关系来确定构件的变形值,同时根据截面达到的应变大小及分布来确定构件的构造要求,选择坚硬的场地土来建造高层建筑等方法来减小地震能量的输入。

3.3减轻结构自重

对于同样的地基条件下进行建筑结构设计若减轻结构自重则可相应增加层数或减少地基处理造价,尤其是在软土基础上进行结构设计这一作用更为明显,同时由于地震效应与建筑质量成正比,而高层建筑由于其高度大重心高等特点,在地震作用时其倾覆力矩也随之增加, 因此, 为了尽量减小其倾覆力矩应对高层建筑物的填充墙及隔墙尽量采用轻质材料以减轻结构自重。

3.4尽可能设置多道抗震防线

当发生强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

4.结语

总之,面对中国的高层建筑抗震结构存在的诸多问题,限于我国作为一个发展中国家的财力、物力,探讨、研究有效的建筑抗震措施的任务仍然十分艰巨。于此同时,我国政府相关部门也应该加强规范力度,发挥好对高层建筑防震措施的检查、检验效力。

参考文献

[1]罗联训. 浅论高层混凝土建筑抗震结构设计[J]. 中华民居(下旬刊),2014,06:25.

[2]李鸥. 浅议高层混凝土建筑抗震结构设计[J]. 价值工程,2015,09:175-176.

高层建筑抗震结构设计范文第4篇

【关键词】高层建筑;抗震;设计

一、前言

近年来,高层建筑遭受地震后受到巨大破坏的例子屡见不鲜,这提醒我们,高层建筑结构急需提高抗震性能,以提高高层建筑使用的安全性,保护我国居民的人身财产安全。

二、建筑结构抗震等级的划分

地震的等级是要按照地震的强弱程度来进行划定的。在中国,地震等级的划定有6个大类:三级是小地震,三级到四点五级是有感地震,四点五级到六级是中强地震,六级到七级是强烈地震,七级到八级则是大地震。设计单位依照有关规范,根据建筑物的类别划分和设防标准,根据房屋的高度、结构设计等等方面,采用不一样的抗震等级。比如,在钢筋混凝土建筑结构中,抗震等级有四个级别,分别为一般、较为严重、严重及很严重。

在进行高层建筑结构抗震设计时,混凝土结构应该按照建筑的高度、结构形式及设防烈度选用不同的抗震等级,而且应当满足相关的计算及抗震措施。

三、影响建筑物抗震效果的因素

研究高层建筑结构的抗震设计,必需明确影响建筑物抗震效果的主要因素。下面,将从施工材料、建筑结构本身的设计以及建筑场地情况三个方面进行分析。

1、建筑在建造过程中所使用的材料

建筑结构的材料是影响抗震效果非常重要的因素,但是这个因素往往被人们忽视,工作人员需要明确这样一点:在一般情况下,地震对建筑物作用力的大小与建筑物的质量成正比。在同等地震环境下,建筑物材料使用越好,其受到的地震作用力也相对较小;反之,建筑物就会遭到来自地震的很大的作用力。所以,在实际的建筑物的建设中,建议他们多采用隔断、板楼、维护墙等构件,广泛采用空心砖、加气混凝土板、塑料板材等质轻的建筑材料,这将会有利于建筑物抗震性能的提高。所以,高层建筑在具体施工中,要加强监管和规范,严格做好高层建筑施工管理,从建筑结构的质量上来提高抗震效果。

2、建筑物自身的结构设计

建筑物的结构设计是影响抗震效果极为关键的一个因素,建筑物若要达到抗震目的,必须进行合理的结构设计,保证抗震措施合理,能够基本实现小地震不坏、大地震不倒这样的目标。无论点式住宅或是版式住宅,都要进行合理的结构设计,提高建筑结构的抗震性能。如果建筑物对平面的布置较为复杂,质心与刚心不一致,在地震情况下,将会加剧地震的作用影响力,破坏性增强。所以,建筑物的结构平面布置尽量保证建筑物质心和刚心重合,提高建筑物的抗震能力。

3、建筑物所处地质环境情况

在地震中,对建筑物造成破坏的原因是多方面的,比如:岩石断层、山体崩塌、地表滑坡等使得地表发生运动,造成建筑物的破坏;海啸、水灾等次生灾害对建筑物造成破坏。在造成建筑物破坏的诸多原因中,有些是可以通过工程措施加以预防的。所以,在选择建筑工地的位置之前,要进行详尽的勘探考察,分析地形和地质条件,避开不利地段,挑选对建筑物抗震有利的地点。

四、高层建筑结构抗震设计原则

1、结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能

(一)结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。

(二)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。

(三)承受竖向荷载的主要构件不宜作为主要耗能构件。

2、尽可能设置多道抗震防线

(一)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。

(二)强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

(三)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。

(四)在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

3、对可能出现的薄弱部位,应采取措施提高其抗震能力

(一)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。

(二)要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。

(三)在抗震设计中有意识、有目的地控制薄弱层,使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

五、高层建筑结构抗震设计的方法分析

高层建筑结构的抗震设计要讲求一定的方法,要进行全方面的分析研究,之后才能够进行结构抗震设计。下面本文就从以下几个方面进行分析。

1、高度重视抗震结构设计工作

近几年地震频发,人们对于建筑抗震性能越来越重视,这就需要在高层建筑结构抗震性能设计方面入手,提高建筑的抗震功效。一般来说,我国150米以上的高层建筑,经常采用的三种主要的结构体系为框―筒、框架―支撑以及筒中筒的结构体系,在设计的过程中经常采用钢结构或者是钢管混凝土结构,这样能够很好的减小柱断面的尺寸,有效的提升高层建筑结构的抗震性能。除此之外,在实际的设计过程中,还需要逐步转变设计理念,转向以柔性为主的抗震模式,以有效的减弱地震释放的能量对建筑物的冲击。

2、采用高延性设计方式,提升抗震性能

我国的很多高层建筑在进行抗震设计的过程中,较多的采用延性结构,即适当的控制建筑结构的刚度,允许在地震发生时建筑结构的构件能够进入到具有较大延性的塑性状态中,这样能够有效的消减地震发生时产生的能量,减小地震对建筑物的破坏程度。

3、采用恰当的结构抗震设计方法,有效的进行设计的定量分析

在高层建筑结构抗震设计过程中,要积极的采用基于位移的结构抗震方法,要对实际的情况进行具体分析,这样才能够确保建筑结构的变形弹性能够在地震作用下破坏力降低到最低。在对建筑构件的承载能力进行验收的过程中,需要控制好结构在地震作用下层间位移的限值,并且以此来确定建筑结构构件的变形值。在这个过程中还需要注意,要根据建筑界面的应变分布和大小情况确定构件的构造要求,以此来进行恰当的设计。

4、高层建筑结构抗震设计中要尽可能的减轻结构的自重

在同样的施工条件下减轻建筑结构的自重,能够在适当的情况下增加建筑物的层数,尤其是在软土地基上进行建筑结构的抗震设计,这种现象更为明显。由于高层建筑的重心较高,当发生地震时建筑物的倾覆力矩也会相应的增加,所以说为了减小其对建筑物的影响需要尽量的使用轻质材料,并且改善施工工艺,最大限度的降低建筑结构的自重。

六、结束语

综上所述,高层建筑结构要想提高抗震性能,就必须要从抗震结构设计着手,优化设计的每一个环节。其次,要保证施工机械设备和材料的质量,做好施工的质量监管工作,保证高层建筑结构抗震目标得以实现。

参考文献

[1]闫旭梅.高层建筑结构抗震设计分析[J].科技传播,2010(08).

高层建筑抗震结构设计范文第5篇

【关键词】高层建筑;结构;抗震设计

高层建筑是社会生产的发展和人类物质生活的产物,是现代社会工业化、商业化和城市化的必然结果。当前我国高层建筑数量不断的增加,一方面提高了有限的土地的使用效率,促进了我国建筑行业的发展,另一方面给建筑结构抗震设计工作带来极大的挑战。我国是一个地震多发国家,很多城市都位于地震带上,因此在高层建筑结构设计过程当中一定要做好相应的结构设计工作,从而减少地震带来的破坏和损失。

1抗震设计目标

国家为了规范建筑的抗震设计,出台了一系列的标准,其中的抗震设防烈度就是一个十分重要的标准,对于规范我国的建筑抗震设计具有十分重要的意义。抗震设防烈度是指按国家规定的权限批准作为一个地区抗震设防依据的地震烈度。我国《建筑抗震设计规范》提出三个水准的设防要求,即“小震可修,中震不坏,大震不倒”。它是通过二阶段设计方法来实现的。(1)按小震作用效应和其他荷载效应的基本组合演算结构构件的承载能力,以及在小震作用下演算结构的弹性变性。(2)在大震作用下验算结构的弹塑性变形,以满足第三水准抗震设防目标的要求。第二水准抗震设防目标的要求,是以抗震构造措施来保证的。抗震设计目标是整个高层建筑抗震设计的大方向,所有的抗震设计工作都围绕着抗震设计目标而进行,因此对于建筑的抗震设计具有重大的意义。

2高层建筑抗震设计中存在的问题。

研究高层建筑结构的抗震设计,必须要先明确目前高层建筑抗震设计中所存在的问题,影响抗震设计效果的因素。

2.1地基选取不合理。

高层建筑应选择位于开阔平坦地带的坚硬土场地或密实均匀中硬土场地,远离河岸,不应垮在两类土壤上,避开不利地形、不采用震陷土作天然地基,避免在断层、山崖、滑坡、地陷等抗震危险地段建造房屋。高层建筑的地基选取不恰当可能导致抗震能力差。

2.2建筑物高度过高

根据我国现行的高层建筑混凝土结构技术规程规定,在标准的设防烈度和科学的结构形式下,高层建筑需要有合理的建设高度,只有在这种高度下,抗震设计才会稳定安全,但是,我国有不少建筑已经超过的高度限制,当遇到震力时,这些超高的建筑物的变形破坏性会发生很大的变化,因而会降低建筑物的抗震性能,同时,其它的不良的因素也会被诱发出来,导致结构设计和工程预算参数的改变。

2.3材料选用不科学,结构体系不合理。

目前,我国建筑物主要是由钢筋混凝土组成的。因此,变形的控制与设计必须以钢筋混凝土结构的位移限值为准。但是,钢筋混凝土的弯曲变形侧移较大,如果利用钢框架来减少位移,不仅会增加钢筋的负荷,且无明显的辅助效果,为此,有时还必须加大混凝土的刚度或设置伸臂结构,这样才能勉强满足其位移控制标准。

3高层建筑抗震设计探讨

3.1场地和地基的选择

建筑的场地以及地基的选择对于高层建筑的抗震能力具有直接的影响,是建筑抗震设计的基础。在进行建筑场地以及地基的选择时,应该充分的了解当地的地震活动情况,对当地的地质情况进行科学的勘察,在收集丰富资料的基础之上对场地进行综合的分析和评价,评估当地的抗震设计等级。对于一些不利于抗震设计的场地应该尽可能的进行规避,而实在无法规避的应该有针对性的做好相应的处理措施。在高层建筑地基选择过程当中应该尽可能的选择岩石或者是其它具有较高密实度的基土,从而提高建筑地基的抗震能力,尽可能的避开不利于抗震的软性地基土。对于一些达不到抗震要求的地基应该采取相应的措施进行加固和改造,使其能够符合相应的标准

3.2选择合理的结构类型

高层建筑从本质上讲是一个竖向悬臂结构,垂直荷载主要使结构产生轴向力与建筑物高度大体为线性关系;水平荷载使结构产生弯矩。从受力特性看,垂直荷载方向不变,随建筑物的增高仅引起量的增加;而水平荷载可来自任何方向,当为均布荷载时,弯矩与建筑物高度呈二次方变化。从侧移特性看,竖向荷载引起的侧移很小,而水平荷载当为均布荷载时,侧移与高度成四次方变化。由此可以看出,在高层结构中,水平荷载的影响要远远大于垂直荷载的影响,水平荷载是结构设计的控制因素,结构抵抗水平荷载产生的弯矩、剪力以及拉应力和压应力应有较大的强度外,同时要求结构要有足够的刚度,使随着高度增加所引起的侧向变形限制在结构允许范围内。

3.3建筑结构材料的选择

结构材料选用也很重要。可以对材料参数随机性的抗震模糊可靠度进行分析,改变过去对结构抗震可靠度的研究只考虑荷载的不确定性而忽略了其他多种不确定因素,综合考虑了材料参数的变异性,地震烈度的随机性及烈度等级界限的随机性与模糊性对结构抗震可靠度的影响。在钢筋的使用上应该尽可能的选择韧性较高的产品。垂直方向受力钢筋应该选择热轧钢筋,等级至少达到HRB400级和HRB335级,而箍筋宜选用HRB335、HRB400和HPB235级热轧钢筋。在进行建筑材料的选择过程当中应该充分考虑抗震的性能,但是在实际的建设过程当中还要兼顾建筑的成本和造价控制,尽可能通过科学合理的设计,在用尽可能少的材料达到最佳的抗震效果,在二者之间寻找一个最佳的位置。

3.4消震和隔震措施设计

在我国,许多高层建筑进行抗震设计时,多采用延性结构,也就是适当控制建筑结构的刚度,允许地震时结构的构件进入到具有很大延性的塑性状态,从而消耗地震作用时的能量,使地震反应减小,减弱地震给高层建筑带来的破坏。如果某高层建筑的承载能力较小,但是具有较高的延性,那么在地震中它也不容易倒塌,因为延性构件可以吸收较多的能量,经受住很大的结构变形。延性结构的运用,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒”。

进入20世纪以来,人们对建筑物抗振动能力的提高做出了巨大的努力,取得了显著的成果,其中阻尼器的使用在高层建筑的抗震方面有很大的作用。通过对使用阻尼器进行减震和能量的吸收,可以巧妙地避免或减弱地震对高层建筑的破坏。

3.5设置多道抗震防线

高层建筑结构防震可以设置多道抗震防线,增强对地震的抵抗力。高层建筑物设置多层的地震抵抗防线,第一道防线遭到破坏之后,有后备的第二道、第三道甚至更多的防线对地震的作用力进行阻挡,避免高层建筑物的倒塌。高层建筑结构进行抵抗地震设计时,可以采用具有多个肢节和壁式框架的“框架剪力墙”等防震结构。

框架剪力墙具有性能较好的多道防线抗震结构,其中的剪力墙是第一道抗震防线,也是主要的抗侧力构件。所以为保证它的承受能力较高,剪力墙要足够多。同时,为承受剪力墙开裂后重分配的地震作用,任一层框架部分按框架和墙协同工作分配的地震剪力,不应小于结构底部总地震剪力的20%和框架各层地震剪力最大值的1.5倍中两者的较小值。剪力墙结构中剪力墙可以通过合理设置连梁(包括非建筑功能需要的开洞组成多肢联肢墙)使其具有多道抗震防线性能。

随着经济的不断发展,我国的高层建筑将会不断增加。高层建筑结构的抗震是非常重要的一方面,在设计过程中,必须以抗震设防为目标,不断优化方案,对不同地区不同建筑采用不同的抗震方案,从而寻求最合理的抗震设计。

参考文献:

[1]刘华新,孙志屏,孙荣书.抗震概念设计在高层建筑结构设计中的应用[J].辽宁工程技术大学学报,2007(02)

高层建筑抗震结构设计范文第6篇

关键词:高层建筑;框架结构 ;抗震

中图分类号:[TU208.3] 文献标识码:A 文章编号:

一 建筑结构抗震的理论分析

1 建筑结构抗震规范简介

建筑结构抗震规范是由各国建筑抗震经验总结而来,具有权威性。建筑结构抗震规范是指导建筑抗震设计,包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。

2 抗震设计的理论

(1)拟静力理论:拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论:反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

(2)动力理论:动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

二 高层建筑结构抗震设计

1 抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且强柱弱梁,强脊弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

2 高层建筑结构的抗震设计方法

① 阻尼器的使用

目前,运用于高层建筑的结构调谐振动控制装置有多种:调谐质量阻尼器 、调谐液体阻尼器、质量泵、摆式质量阻尼器、液体—质量控制器等。其中,调谐液体阻尼器是一种被动耗能减振装置,近年来进行了大量的研究和应用。调谐液体阻尼器利用固定水箱中的液体在晃动过程中产生的动侧力来提供减振作用。其具有构造简单,安装容易,自动激活性能好,不需要启动装置等优点,可兼作供水水箱使用。

② 柔性结构的运用

在高层建筑抗震当中,即由传统的以“硬抗”为主的抗震体系转变为以“柔抗”为主的结构减震控制体系。建筑采用动力平衡的建筑结构体系防震减震效果会更好,这样可以以柔克刚、刚柔相济,有效的释放地震冲击力。

③ 高延性构件的运用

目前,我国的高层建筑很多采用延性结构体系来抗震设防,即适当控制结构的刚度,容许结构构件在地震时进入塑性状态,具有较大的延性,以此消耗地震能量,减小地震反应,减轻地震给高层建筑带来的破坏与损失。如果一座高层建筑物具有较大的延性,即使承载能力较低,它所能吸收的能量也会较大,虽然较早出现损坏,但能经受住较大的变形,避免倒塌;而仅有较高强度而无塑性变形能力的脆性结构,吸收能量的能力弱,一旦遭遇超过设计水平的地震时,很容易因脆性破坏而突然倒塌。所以,延性结构的运用这种体系,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒”。

④ 设置多道抗震防线

高层建筑结构需要设置多道抗震防线。建筑物应设置多道抗震防线,当第一道防线的构件在强烈地震作用下遭到破坏后,后备的第二道乃至第三道防线能抵挡后续的地震动的冲击,使建筑物免于倒塌。

3高层建筑结构抗震设计

(1)选择场地地基

选择场地地基首先要根据实际工程需要,并且还要考虑地震活动情况。分析天然地基时的抗震承载力要根据不同的场地来进行,另外,分析地震所造成的危害度也要根据不同场地来进行。如果有必要,可采用规范的地基来进行处理。对避让距离的确定可根据地震强度、断裂的地质历史、场地土的厚度来进行,进而有利于对场地范围内的地震断裂的确定。必须确保避开对建筑不利的地段来进行场地地基的选择,如果如法避开,可以利用合适的抗震措施来进行。

(2)合理匹配建筑结构刚度、承载力和延性设计

建筑结构的抗力较高时能够在一定程度上降低总体延性的要求。因此,要综合考虑整个结构的承载力和构造等因素来对结构的抗震能力进行衡量。当发生地震时,建筑物将会受到地震作用,其大小与动力特性有着很大的关系。但是,结构的抗侧力刚度的提高一般都需要提高工程造价,因此,使结构中的所有构件都具有较高的延性是提高建筑物的抗震性能最理想的措施,虽然这个理想措施很难在实际中实现。工程实践比较经济可行的方法就是有选择的提高结构中的重要构件以及关键杆件的延性。因此,合理匹配建筑结构刚度、承载力和延性设计在高层建筑结构抗震设计中是非常重要的。

参考文献

[1] 朱镜清.结构抗震分析原理[M].地震出版社,2002.11.

[2] 李国强.沈祖炎.高层建筑抗展设计的发展趋势.建筑结构学,1992,8.

高层建筑抗震结构设计范文第7篇

关键词: 高层结构,地震荷载,概念设计

我国是地震高发地区,如2008 年的汶川大地震和2010 年玉树地震都造成大量的房屋倒塌,不仅使经济遭到损失而且人员也有很多伤亡,同时也看到很多房屋尤其是高层建筑在巨大的灾难面前经受住了严峻的考验,这说明只要严格按照抗震设计规范来建造的建筑是能保障人民的生命财产安全的。然而高层建筑在地震时的损坏还是超出了我们的预期,因此高层建筑抗震设计是建筑物安全考虑的重要问题。现在我们抗震规范要求“小震不坏,中震可修,大震不倒”的三个水平的设防目标,以上是建筑设计抗震最低要求,而我们在进行高层建筑结构抗震设计中,要结合地区烈度及等级来考虑高层建筑抗震要求,其中下面几个方面是优先考虑的。

1 建筑抗震的理论分析

拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

2 高层建筑抗震概念设计

目前我们对地震还知之甚少,建筑结构抗震设计理论目前还是以试验与简化后的理论结合来制定的,还有不少不足和待完善的地方,所以在结构抗震设计时常常通过软件数值计算,但只能从局部来解决。而结构抗震概念设计的目标是建筑物的整体结构在地震时能够发挥耗散地震能量的作用,通过结构合理布局,选择延性好,耗能强的结构体系来达到抗震设防目标。就是我们常说的强柱弱梁,强剪弱弯,强节点弱构件,这就要求我们考虑以下几个方面: 1) 要求采用受力明确,传力简单的结构体系; 2) 采取相应的抗震构造措施如加构造柱,圈梁,加强层,转化层等来达到抗震要求; 3) 选取合适强度同时有良好延性的建筑材料以及正确施工技术实现对高层建筑结构体系抗震性能的合理控制。

3 场地与基础

地震造成建筑的破坏首先考虑场地与基础,因场地造成的工程的震害是很难恢复以及处理的,对于场地选择尽可能避开断裂带和不利地段( 如软弱土,液化土,高耸孤立的山丘,半挖半填地基,断层破碎带等) ,如避免不了就要对场地地基进行加固处理( 如换土垫层法,重锤夯实法,强夯法,振动水冲法,深层挤密法,沙井预压法等) ,所以尽可能挑选对建筑抗震有利的地段( 如开阔平坦地带的坚硬场地或者密实均匀中硬场地) ,不仅有利于建筑抗震性能而且经济合理。对高层建筑抗震地基优先选择浅基础,并且同一结构体系不宜设在不同性质的地基上,同一建筑不宜采取两种以上的不同基础,同时要考虑建筑结构上部体系与地基基础相互作用关系。

4 选择良好的抗震结构体系

1) 高层建筑结构抗震体系选择不同于其他建筑布局,除了简单合理的结构布置,考虑其规则与对称,避免出现扭转与失衡情况,因此竖向结构布置应有规则的均匀变化,从上而下结构刚度逐渐变小,如果由于建筑要求而发生平面,刚度以及承载力局部的突变变为不规则体系时,我们要根据地震规范与高规以下几个方面来判断其是否规则: a. 扭转不规则; b. 抗扭刚度弱; c. 层刚度小; d. 平面不规则; e. 楼板不规则; f. 竖向刚度不规则,满足其中一项为不规则,满足其中三项为特别不规则,对于不规则结构要采取抗震措施来加强薄弱层的抗震性能,要进行超限高层建筑高层抗震设防的专项审查,此外对于多项指标超过抗震规范3. 4. 4 条为严重不规则建筑,应该与建筑设计人员沟通最好改变设计方案。2) 多道抗震设防。控制同一结构各构件或部件在地震中损坏或形成塑性铰的顺序而成的多道防御系统,使整个结构坏而不倒。为了避免因局部失效或者薄弱层而引起结构的破坏,要求结构体系由延性好的不同结构体系形成刚性的超静定结构来共同工作以抵抗地震破坏。要求结构体系良好的整体性和变形能力,当第一道抗震防线遭受超过它设防要求而破坏,第二道防线作为下一道屏障对结构体系进行保护。如框架剪力墙体系既有框架又有抗震墙,抗震墙作为第一道防线,框架作为第二道防线。但如果抗震墙很少,结构就不是多道防线的结构体系。从以上可以看出房屋的倒塌由于抗侧力构件不能承受荷载作用力,当采用多道抗震设防时,可以适当降低第一道防线的控制能力,提高第二道防线抗震能力。3) 抗震薄弱层。薄弱层也是建筑抗震设计需重点关注的地方,根据材料的规格尺寸,刚度,变形能力,使用功能和建筑的美学的要求,致使建筑结构体系会突破常规要求,出现竖向和平面变化比较大的结构体系而成为相对的抗震薄弱环节,在罕见地震荷载作用下率先出现屈服,而发生弹塑性非线性变形,造成建筑的破坏,这里要强调三点: a. 薄弱层只是在强震情况下考虑的结构弹塑性变形问题。b. 要对结构从整体上进行受力分析,而避免只是考虑部分薄弱层受力与变形。c. 由于结构是不是薄弱层只是一个相对概念,因此常常因为设计施工或者材料的变化导致薄弱层的改变,在此控制薄弱层位置发生转移而又能达到它的变形能力,这是控制结构抗震性能最关键的。

5 非结构构件抗震设计

除承重结构以外的固定构件都是非承重结构,虽然非承重结构在建筑中只是附件非关键结构,但在屡次的震害过程中非结构造成的人员与财产损害已屡见不鲜了。非结构构件抗震要求以下几点: 1) 先分清哪些是非结构构件,如屋顶的装饰属于结构构件与否并不好界定,这种情况一般按结构构件处理。2) 非结构体系对结构体系影响,对于设备作用在其结构主体上的非结构构件应计算设备的重力,与结构柔性连接的非结构可以不计其刚度,但当有专门构造措施可计入抗震承载力,同时要考虑非结构上作用的力对建筑结构的作用,并且相互的联系要满足锚固要求。3) 非构件自身的地震力作用在其重心上,对于支撑在楼层和防震缝的两侧的非结构构件,要计入地震时支撑点之间相对的位移产生的作用效应,非构件在位移方向的刚度要根据其端部实际联系分别根据不同的连接方式采用不同的力学模型。

6 结语

高层建筑设计前的地质勘察是建筑是否成功的前提,接着根据地勘报告设计建筑方案是关键一步,建筑物设计是否有良好的抗震效果主要在建筑方案体现,接着是施工图设计,它是把建筑思想变为现实最重要的一步,也是高层建筑结构设计抗震性优劣的十分重要的具体体现,设计的基本要求要保证在“小震不坏,中震可修,大震不倒”基本目标,设计高层建筑物时,要注意建筑物的结构布置问题,尽量保证质心与刚心重合、重心与质心重合、刚心与重心重合的三心合一。这样能提高抗震效果,增强抵御地震的抗破坏性。总之提高高层建筑抗震性能要根据建筑的等级来考虑安全指数。从一开始地区规划,地质勘查以及后来的建筑结构设计,建造过程以及施工工艺等的选择这些都是控制高层建筑抗震效果的关键原因。

参考文献:

[1] 华颖. 抗震概念设计在高层建筑结构设计中的应用[J].中华民居,2013( 6) : 78-80.

高层建筑抗震结构设计范文第8篇

关键词:抗震设计;高层建筑;措施;分析方法

1.前言

由于城市人口的发展,为了节约用地,更好地利用空间,往往在建筑设计时首先考虑高层建筑,从而高层建筑有了飞速的发展,高层建筑的发展趋势是高度越来越增加,体型和平面日趋复杂。由于高层建筑又坐落在不同的地域,加上地质构造复杂,高层建筑很容易受到地震等自然灾害的损害,地震发生具有很大的随机性,破坏后果严重。而高层建筑抗震设计方法研究目前还不十分成熟,仅仅依据微观的数学力学,没有充分考虑高层建筑结构内力的阻尼变化、材料时效、非弹性性质以及空间作用等其他相关因素,很难在结构上提高高层建筑的抗震能力。为了降低在遭遇地震时的经济和人力损失,因此,对高层建筑结构的抗震设计方法研究具有很大的必要性。

2.地震对高层建筑的作用影响分析

2.1对高层建筑构件形式方面

(1)在高层建筑的框架结构中,通常地震对板和梁的破坏程度轻于柱;

(2)地震作用经常在多肢剪力墙(钢筋混凝土结构)的窗下引起交叉斜向的裂缝;

(3)如果混凝土柱配置螺旋箍筋,即使地震引起较大的层问位移,对柱以及核心混凝土作用并不明显;

(4)钢筋混凝土框架结构,如长、短柱并用于同一楼层,长柱受损害较轻。

2.2对高层建筑结构体系方面

(1)对于钢筋混凝土柱、板体系的高层建筑,各层楼板因楼层柱脚破坏或者侧移过大以及楼板冲切等因素而在地面坠落重叠;

(2)对于“填墙框架”体系的高层建筑,由于受窗下墙的约束,因而容易发生外墙框架柱在窗洞处短柱型剪切现象;

(3)对于“填墙框架”体系的高层建筑,地震对采用敞开式框架问未砌砖墙的底层破坏严重;

(4)对于框架一抗震墙体系的高层建筑,地震损害不大;

(5)对于“底框结构”体系的高层建筑,地震严重破坏刚度柔弱的底层。

2.3对高层建筑地基方面

(1)如果地基自振周期与高层建筑结构的基本周期相同或相近,地震作用因共振效应而增加;

(2)如果高层建筑处在危险和地形不利的区域,则容易使高层建筑因地基破坏而受损;

(3)地基处地质不均匀,在地震作用下容易使上部结构倾斜甚至倒塌;

(4)若高层建筑的地基处有较厚的软弱冲积土层,则地震作用对高层建筑的损害显著增大。

2.4对高层建筑刚度分布方面

(1)对于采用L形以及三角形等平面不对称的高层建筑,地震作用能够使建筑结构发生扭转振动,因而损害现象严重;

(2)对于采用矩形平面布置的高层建筑结构,如果该建筑的抗侧力构件(如电梯井等)布置存在偏心情况时时,同样会使建筑结构发生扭转振动。

3.建筑结构抗震设计方法分析

3.1静力法

如果以F作为地震作用于建筑设施的力,以M表示建筑物的重量,以R表示地震震度,则有以下公式:

F=R×M (1)

这种以“震度”表示地震尺度的想法,在1924年(日本关东发生大地震后第二年)被纳入日本的建筑工程相关的技术规范中,当时,人们已经意识到房屋的重量是影响地震破坏能力的一个极为重要的因素。在当时的条件下人们认为为建筑重量10%的水平力大约地震惯性力相当。在当时还假定:建筑结构的承载能力大小决定了房屋的抗震能力大小;地震力与建筑地基以及结构的实际特性等因素无关。

3.2反应谱法

美国在1933年长滩发生大地震以及在1940年ELcentro发生大地震时。均取得了强震加速度记录。美国的一些相关研究者依据建筑物自振特性资料以及这些强震记录提出了著名的地震反应谱理论,具有非常重要的现实意义。近些年来,我国在抗震设计领域也取得了较大的进展,逐渐形成了科学合理而又普遍适用的建筑结构抗震设计方法。大部分的建筑结构抗震设计规范都是根据结构能力以及反应谱理论建立起来的。

3.3弹性动力时程法

弹性动力时程分析法抗震结构设计的原理是,根据地震烈度、高层建筑场地类别以及设计分组的判断,然后选用合适数量的地震地面运动加速度的记录,对其积分然后求解运动方程,最终计算出在模拟的地震中建筑的加速度、速度以及位移的响应,进行抗震设计。高层建筑运动方程是独立的,我们要计算各个时刻的结构反应只需用到数值方法求解。

3.4静力弹塑性法

静力弹塑性分析方法的原理为计算现有设计方案的抗侧力能力,进而估计出其抗震能力,其具体方法为:根据房屋的具体情况在房屋上施加某种分布的水平力,逐渐增加水平力使结构各构件依次进入塑性,调整水平力的分布和大小,直到结构达到位移超限。其优点在于:据结构的振型变化可以求得水平力的分布,根据结构在不同工作阶段的周期通过设计反应谱可以求得水平力的大小。

3.5动力弹塑性分析法

我们以{y},{y'},{y''}分别表示运动的水平位移和速度以及加速度,以yg表示地面运动水平加速度,则在多自由度系统中,在地面运动作用下的振动方程可以用以下公式表示:

[M]{y''}+[C]{y'}+[K]{y}=-[M]{L}yg (2)

采用各种手段划分由强震记录的水平方向上的时间一加速度曲线,将其分为一系列极小的时间段,运用震动方程对对每一个时段方程进行积分求解,可求得每个时间段内体系的加速度、速度以及位移,最终可计算出结构内力。

4.建筑结构抗震方法的比较

地震是一种破坏性严重的自然现象,其三要素分别为:幅值、持时与频谱特征。建筑结构抗震设计的方案应体现地震动特性和结构特性,所考虑的地震作用应在在地震作用下最大程度地反映结构的真实响应。表1为抗震设计方法反应结构特性以及地震动特性的具体情况对比。

5.建筑结构设计案例分析

某高层建筑,地下3层,地上28层,总建筑面积约6万m2。其中,7~28层为住宅区;第6层作为空中花园以及设备转换层;4~5层为办公用区域;1~3层为商场楼层;地下3层作为设备用房和车库;第7层楼盖作为高层建筑的结构转换层。高层建筑总高度(地面以上)为90.4m。该高层建筑以钢筋混凝土框架剪力墙作为工程主体,柱截面面积为700×1100m2、800×1100m2,墙厚2-4m,板厚为:转换层1.8m、天面1.2m、住宅1m、裙楼1.1m,梁截面面积为190×400-240×600m2。转换层框支梁为400×1300-500×1500m2。该高层建筑要求Ⅶ度的防烈度;建筑设防类别为丙类;设计第1组为地震分组。预期的抗震等级为:8层以上为二级;1-8层为一级;6层以下普通框架为一级;框支框架为特一级。根据建筑结构抗震设计的相关规范,本工程设计中有四项不合理,具体为:

5.1扭转不规则

在考虑各种因素的情况下,楼层竖向构件的水平位移最大应小于等于该楼层平均值的1.2倍,而在本高层建筑中此比值最大为1.32,大于1.2,属于扭转不规则。

5.2凹凸不规则

在该高层建筑中,平面最大凸出部位凸出尺寸为L=17.24m,Bmax=41.20m,L与Bmax之比为41.84%,而规范要求的此值为35%。

5.3楼板局部不连续

塔楼部分楼层电梯间局部楼板最小净宽3m,相关的建筑规范规定此值为5m。

5.4竖向抗侧力构件不连续

塔楼剪力墙通过转换梁向框支柱传递,属竖向抗侧力构件不连续。

5.5解决措施

具体到本高层建筑,在进行建筑结构抗震设计时为了满足相关规范的要求,需要采取的措施如下:

(1)加强剪力墙底部部位。

(2)根据规范要求提高框支柱的配筋率。

(3)塔楼楼梯问及周边楼板厚度增大至1.5m。

(4)转换层板厚度增大至1.8m。

(5)将剪力墙底部加强部位的钢筋配筋率提高到0.5%。

(6)将剪力墙的底部加强部位以及框支柱等部位的抗震等级均提高一级。

6.结束语

随着高层建筑的发展,建筑结构的抗震设计显得越来越重要。高层建筑结构的抗震设计方法和抗震措施在不断的改进,在对建筑结构进行抗震设计时要根据高层建筑的实际情况而选择科学合理的抗震结构设计方法。

参考文献

[1]包世华,王建东.大底盘多塔楼连体结构的受力分析[J].建筑结构学报,2010,(16):52-56.

[2]娄宇,王红庆,陈义明.大底盘上双塔和连体高层建筑的振动分析[J].建筑结构学报2009,(24):31-33.

[3]卞朝东,李爱群,娄宇,吴耀辉.高层连体结构振型及其参与系数的分析[J].建筑结构学报,2009,(14):81-82.

[4]傅赣清.关于对称结构体系自由振动力特性的证明[J].广州工业大学学报,2009,(19):21-32.

[5]钱镓茹,罗文斌.建筑结构基于位移的抗震设计[J],建筑结构,2010,(14):3-61.

[6]彭光华、查松山.桥梁设计抗震技术的探索[J],中国水运(下半月),2011,(12):27-31.

收稿日期:2013-4-17