首页 > 文章中心 > 欧姆定律的比值问题

欧姆定律的比值问题

开篇:润墨网以专业的文秘视角,为您筛选了八篇欧姆定律的比值问题范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

欧姆定律的比值问题范文第1篇

一、教材分析

欧姆定律》一课,学生在初中阶段已经学过,高中必修本(下册)安排这节课的目的,主要是让学生通过课堂演示实验再次增加感性认识;体会物理学的基本研究方法(即通过实验来探索物理规律);学习分析实验数据,得出实验结论的两种常用方法――列表对比法和图象法;再次领会定义物理量的一种常用方法――比值法。这就决定了本节课的教学目的和教学要求。这节课不全是为了让学生知道实验结论及定律的内容,重点在于要让学生知道结论是如何得出的;在得出结论时用了什么样的科学方法和手段;在实验过程中是如何控制实验条件和物理变量的,从而让学生沿着科学家发现物理定律的历史足迹体会科学家的思维方法。

本节课在全章中的作用和地位也是重要的,它一方面起到复习初中知识的作用,另一方面为学习闭合电路欧姆定律奠定基础。本节课分析实验数据的两种基本方法,也将在后续课程中多次应用。因此也可以说,本节课是后续课程的知识准备阶段。

通过本节课的学习,要让学生记住欧姆定律的内容及适用范围;理解电阻的概念及定义方法;学会分析实验数据的两种基本方法;掌握欧姆定律并灵活运用.

本节课的重点是成功进行演示实验和对实验数据进行分析。这是本节课的核心,是本节课成败的关键,是实现教学目标的基础。

本节课的难点是电阻的定义及其物理意义。尽管用比值法定义物理量在高一物理和高二电场一章中已经接触过,但学生由于缺乏较多的感性认识,对此还是比较生疏。从数学上的恒定比值到理解其物理意义并进而认识其代表一个新的物理量,还是存在着不小的思维台阶和思维难度。对于电阻的定义式和欧姆定律表达式,从数学角度看只不过略有变形,但它们却具有完全不同的物理意义。有些学生常将两种表达式相混,对公式中哪个是常量哪个是变量分辨不清,要注意提醒和纠正。

二、关于教法和学法

根据本节课有演示实验的特点,本节课采用以演示实验为主的启发式综合教学法。教师边演示、边提问,让学生边观察、边思考,最大限度地调动学生积极参与教学活动。在教材难点处适当放慢节奏,给学生充分的时间进行思考和讨论,教师可给予恰当的思维点拨,必要时可进行大面积课堂提问,让学生充分发表意见。这样既有利于化解难点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃。

通过本节课的学习,要使学生领会物理学的研究方法,领会怎样提出研究课题,怎样进行实验设计,怎样合理选用实验器材,怎样进行实际操作,怎样对实验数据进行分析及通过分析得出实验结论和总结出物理规律。同时要让学生知道,物理规律必须经过实验的检验,不能任意外推,从而养成严谨的科学态度和良好的思维习惯。

三、对教学过程的构想

为了达成上述教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性和自觉性,对一些主要教学环节,有以下构想:1.在引入新课提出课题后,启发学生思考:物理学的基本研究方法是什么(不一定让学生回答)?这样既对学生进行了方法论教育,也为过渡到演示实验起承上启下作用。2.对演示实验所需器材及电路的设计可先启发学生思考回答。这样使他们既巩固了实验知识,也调动他们尽早投入积极参与。3.在进行演示实验时可请两位同学上台协助,同时让其余同学注意观察,也可调动全体学生都来参与,积极进行观察和思考。4.在用列表对比法对实验数据进行分析后,提出下面的问题让学生思考回答:为了更直观地显示物理规律,还可以用什么方法对实验数据进行分析?目的是更加突出方法教育,使学生对分析实验数据的两种最常用的基本方法有更清醒更深刻的认识。到此应该达到本节课的第一次,通过提问和画图象使学生的学习情绪转向高涨。5.在得出电阻概念时,要引导学生从分析实验数据入手来理解电压与电流比值的物理意义。此时不要急于告诉学生结论,而应给予充分的时间,启发学生积极思考,并给予适当的思维点拨。此处节奏应放慢,可提请学生回答或展开讨论,让学生的主体作用得到充分发挥,使课堂气氛掀起第二次,也使学生对电阻的概念是如何建立的有深刻的印象。6.在得出实验结论的基础上,进一步总结出欧姆定律,这实际上是认识上的又一次升华。要注意阐述实验结论的普遍性,在此基础上可让学生先行总结,以锻炼学生的语言表达能力。教师重申时语气要加重,不能轻描淡写。随即强调欧姆定律是实验定律,必有一定的适用范围,不能任意外推。7.为检验教学目标是否达成,可自编若干概念题、辨析题进行反馈练习,达到巩固之目的。然后结合课本练习题,熟悉欧姆定律的应用,但占时不宜过长,以免冲淡前面主题。

四、授课过程中几点注意事项

1.注意在实验演示前对仪表的量程、分度和读数规则进行介绍。

2.注意正确规范地进行演示操作,数据不能虚假拼凑。

3.注意演示实验的可视度.可预先制作电路板,演示时注意位置要加高.有条件的地方可利用投影仪将电表表盘投影在墙上,使全体学生都能清晰地看见。

4.定义电阻及总结欧姆定律时,要注意层次清楚,避免节奏混乱.可把电阻的概念及定义在归纳实验结论时提出,而欧姆定律在归纳完实验结论后总结.这样学生就不易将二者混淆。

欧姆定律的比值问题范文第2篇

关键词:静电场;直流电;电流方向;电压方向;基尔霍夫定律

静电场是电荷周围存在的一种特殊形式的物质,电荷之间的相互作用是通过电场实现的。对电场的任何一点来说,放在这点的电荷所受的电场力跟它的电荷的比值,总是一个常量,可以用来表示电厂的强弱叫做这一点的电场强度。电场强度是矢量,它的方向规定为正电荷所受电场力方向。除了用电场强度来描述电场的强弱及方向外,电场线也用来形象表示电场强弱及方向。电场线是在电场中画出的一系列从正电荷出发到负电荷终止的曲线,并且使曲线上每一点的切线方向都跟该点的电场强度方向一致;电场强度越大的地方,电场线越密,电场强度越小的地方,电场线越疏,沿着电场线的方向是电势降落的方向。

在复杂电路的某一段电路或一个电路元件的分析与计算时,可事先假定一个电流的方向,这个假定的方向叫做电流的“参考方向”。我们规定:若电流的“参考方向”与实际方向相同,则电流值为正值,即I>0;若电流的“参考方向”与实际方向相反,则电流值为负值,即I<0。和分析电流一样,有时很难对电路或元件中电压的实际方向做出判断,必须对电路或元件中两点之间的电压任意假定一个方向为 “参考方向”,在电路中一般用实线箭头表示,箭头所指的方向为参考方向。当电压的“参考方向”与实际方向一致时,电压值为正,即U>0;反之,当电压的“参考方向”与实际方向相反时,电压值为负,即U<0。电流与电压有了参考方向后,电流与电压就有了正负。

电流与电压参考方向,在应用基尔霍夫定律解决复杂电路计算中,贯穿始终。

欧姆定律是分析与计算电路的基础。如果电阻元件上的电压与通过它的电流参考方向相同,欧姆定律可表示为U=IR,如果电阻元件上电压的参考方向与电流的参考方向不同时,则欧姆定律可表示为U=-RI。除了欧姆定律,分析与计算电路还离不开基尔霍夫电流定律和电压定律。基尔霍夫电流定律应用于节点,基尔霍夫电压定律应用于回路。

基尔霍夫电流定律是用来确定连接在同一节点上的各个支路电流之间的关系的。由于电流的连续性,电路中任何一点(包括节点)均不能堆积电荷。因此“任何一瞬时,流入任一节点的支路电流之和恒等于流出该节点的支路电流之和”,这就是基尔霍夫电流定律的基本内容。

基尔霍夫电压定律是用来确定回路中的各段电压之间的关系。“在任一回路中,从任何一点出发以顺时针或逆时针方向沿回路循行一周,回路中各段电压的代数和等于零”,这就是基尔霍夫电压定律的基本内容。为了应用基尔霍夫电压定律,必须选定回路的参考方向,当电压的参考方向与回路的循行方向一致时取正号,反之取负号。列方程时,不论是应用基尔霍夫定律或欧姆定律,首先都要在电路图上标出电流、电压或电动势的参考方向;因为方程式中的正负号是由它们的参考方向决定的,若参考方向选得相反,则会相差一个负号。

如图所示电路中,已知R1=10Ω,R2=5Ω,R3=5Ω,Us1=12v,Us2=6V。

求:R1、R2、R3所在支路电流I1、I2、I3。

解:1.先假定各支路电流的参考方向,如图所示。

2.根据KCL列出节点电流方程,由节点A得到I1+I3-I2=0。

3. 选定回路的绕行方向就是电势降落的方向,如图所示。

4. 根据KVL列出两个网孔的电压方程。

网孔AdcBbA:-I2R2-I3R3+Us2=0;其中I2R2、I3R3为负是因为电流与电压参考方向相反,欧姆定律用负的。

网孔AbBaA:I1R1+I2R2-Us1=0;其中Us1为负是因为它电压的方向与循行方向相反。

代入电路参数,得方程组:

I1+I3-I2=0

-6=-5I2-5I3

12=10I1+5I2

解方程组,得:I1=0.72A,I2=0.96A,I3=0.24A。

从基尔霍夫定律的应用中可以看到,电流、电压的方向问题就是解题的对错问题,足以见证电流、电压方向的重要性。如果没有静电场的电场线的形象讲解,学生就很难看出电流与电压实际方向的一致性,那么,欧姆定律正负公式推出就难讲述,欧姆定律讲不好,基尔霍夫定律就很难讲,更别说应用基尔霍夫定律解决实际问题了。所以,静电场内容是是直流电内容讲解的前提和基础,两章内容密不可分。

参考文献:

1.《大学物理教程》.山东大学出版社.

欧姆定律的比值问题范文第3篇

关键词: 《电工基础》渗透习题意识

在《电工基础》教学中渗透“习题意识”,是指根据教学大纲的要求,按知识的系统性、规律性,有目的、有意识地结合教材内容,适当编制习题让学生去解答,克服做题的盲目性、随意性,使教学趋向量化和定向化。同时,在《电工基础》教学中渗透“习题意识”,也能有效增强学生的主动性,激发学生学习兴趣。

笔者多年来一直担任计算机对口单招班《电工基础》课程教学和高三复习教学任务,在教学过程中经过总结和提炼,认为在《电工基础》课程中渗透“习题意识”应切实从下列三个方面去做。

一、讲清基本概念和基本定律的同时,注意渗透“习题意识”

对于基本概念,一般都应使学生理解它的含义,了解概念之间的区别和联系。如在讲授“电压和电位”的概念时,教师要引导学生理解两者之间的关系,理解电压的“绝对性”,即电路中两点之间的电压与所选择的参考点无关;理解电位的“相对性”,即电路中某点的电位取决于所选择的参考点,参考点改变,该点的电位也随之改变。在讲清这些概念的同时,教师应及时设计一些习题让学生思考,以加深对知识的理解。例如,讨论某电路中A、B两点之间的电压(分别选择A点和B点作为参考点),验证A、B两点之间电压的“绝对性”;讨论该电路中A、B两点的电位(分别选择A点和B点作为参考点),验证A、B两点电位的“相对性”。

对于基本定律,在讲解时教师应注意通过实例、实验和分析推理过程引出,应使学生掌握基本定律的表达式(包括文字表达和数字表达式)和适用范围。如在讲授“部分电路欧姆定律”时,笔者要求学生理解该定律的文字表达:“通过电阻的电流与加在它两端的电压成正比”;掌握该定律的数学表达式I=U/R。在理解和运用该定律时学生要注意以下几点:①R、U、I必须属于同一段电路;②不可把三个量间的因果关系与数量上的联系混为一谈:从电流形成条件的角度来分析,导体两端存在的电压是因,而导体中形成电流是果。欧姆定律揭示了由导体两端电压决定导体中电流的规律性。U、I之间的这种联系是因果关系。在运用欧姆定律来解决具体问题时,已知三个量中的任意两个量,即可求出第三个量。这仅仅是利用了三个量之间数量上的联系。③运用欧姆定律计算电阻时,即R=U/I。这仅仅意味着利用加在电阻两端的电压和流过电阻的电流来量度电阻的大小,而绝不意味着电阻是由电压和电流的大小决定。无论加在电阻R两端的电压取何值,电压U和相应的电流I的比值总是不变的。这时,教师可以通过设计一些判断题和选择题,通过习题来巩固该定律,辨析相关的表述。

因此,教师在传授电工基础知识时,要探索处理问题的方法,理清研究的思路,注意培养学生的分析能力、推理能力和想象能力。在这一环节中,教师应按知识重点、学生的知识水平及知识的“转化”规律,编选一些有利于巩固知识、掌握知识的基本练习题。这些习题,尽可能包括计算题、问答题(所学知识定向说明和解释电现象的题目)、选择题(目的性较强的题目)、证明题、思考讨论题和引申题等。

二、选好习题,上好习题课,通过例题渗透“习题意识”

题目的选择直接影响习题课的质量。教师必须精心选题,习题的选编要有利于学生加深对概念和知识的理解,以及对解题方法的掌握,通过例题的讲解和作业题的练习,达到明确概念、掌握方法、启迪思维、培养能力的目的。因此,在选择电工基础习题时,教师要注意目的性、典型性、延伸性、针对性和综合性。习题教学是将知识转化成能力的过程,在习题教学中教师应尽可能采用“多变、多析、多问、多解”的导向法。“多变”就是对一道题改变叙述方式、增减或隐蔽条件,增设“干扰量”或“比较量”,进行纵变、横变、纵横变,让学生在分析、比较和判断中拓宽思路。“多析”,就是让学生对一道题从不同角度入手进行分析,培养学生的逻辑思维能力。“多问”,就是对一道题从不同角度提问,使原题“开花”形成程序题,这样做既可以拓宽思路,又可以使学生把知识学活。“多解”,就是对同一题从不同角度启发、诱导,让学生用多种方法去解答。这样做不但可以发展学生思维,而且可以让学生沟通新旧知识的联系。可见,在习题教学中通过“四多”导向有助于激发学生求知欲望,发展学生的创造性思维。同时,教师应通过讲例题渗透“习题意识”,让学生注重习题的变通性,强化对问题的多维思考,以便充分发挥例题的示范、开发、导向等功能。

三、搞好复习,以“考”代“练”,强化“习题意识”

复习是电工基础教学中不可缺少的环节,复习的本身就渗透着提高。复习的重点应放在系统地掌握教材内容的内在联系上,掌握分析问题的方法和解决问题的方法上。教师努力从如下三方面去做,才能实现复习所要达到的目标。

1.在概念和规律的复习中,教师要向学生介绍知识结构,注重挖掘知识的内在联系,搞清知识的来龙去脉,务必使学生把所学知识系统化、条理化、立体化。

2.教师应结合各知识点编选习题,对典型题深入剖解,解题强调“四多”,即“多变、多析、多问、多解”,使学生通过解典型题,达到触类旁通的学习效果。

3.教师要搞好训练,精选题目,以“考”代“练”,单元过关。“练”是关键,“考”是手段。为此,教师要注重理解能力的考查,进行鉴定性测试、形式性测试和总结性测试,在形成性测试后,及时进行反馈、矫正、补缺、提高。同时,教师要瞄准对口高考试题的题型和考查方向,强化规定时间内的仿真适应性做题训练,从而提高学生做题效率,强化“习题意识”。

从上述几个方面可见,在电工基础教学中巧妙渗透“习题意识”是符合教学规律的,它与搞“题海战术”截然不同。渗透“习题意识”跟传授知识和培养能力是有机的结合,它贯穿在教学的全过程中。这个过程是一个以“用”促“学”,学用结合的过程。在教学过程中巧妙设计习题(或题组),能给学生提供一个运用所学知识解决实际问题的“实习”场所,有效地调动和发挥学生的主观能动性,提高“转化”效率。值得注意的是不能以习题代课本,因为习题在很大程度上只能体现知识的点,体现不了知识的面,但习题有导向作用,所以教师对习题的选编要紧紧围绕掌握知识、发展智能这两个基本点,使习题有实际意义。

参考文献:

欧姆定律的比值问题范文第4篇

一、电源

1.电源仅起搬运电荷的作用,其本身不能创造电荷;电源是将其他形式的能量转化为电能的装置。

2.图l示意了非静电力使正电荷在电源内部由负极移至正极。

我们知道,在外电路中正电荷在恒定电场的作用下由电源正极移向电源负极,静电力做正功。作为电源只是将由外电路到达电源负极的正电荷及时运送到电源正极;电源内部的电场力对移动的正电荷是做负功的,因此,需要存在非静电力,且需要非静电力做正功。电源是通过非静电力做功把其他形式的能转化为电势能的装置。

3.不同的电源,非静电力做功的本领不相同,物理学中用电动势来表明电源的这种特性。

对电源电动势E存在以下两种理解。

(1)电势的“跃升”:以一节电池为例,电池内部的正极和负极附近分别存在化学反应层。反应层中的非静电力(化学作用)把正电荷从电势低处移至电势高处,在这两个地方,沿电流方向电势产生“跃升”。图2深刻、直观地表现出了闭合电路中的电势变化(图中D、C分别表示电池溶液中与两电极靠近的位置)。外电路中的电流由高电势流向低电势(沿图示电流方向由A到B),内电路中的电流由低电势流向高电势(沿图示电流方向由B到A)。

进一步来理解“电势的变化”。如图3所示,探针A与正极板靠得很近(对应图2中的DA),探针B与负极板靠得很近(对应图2中的BC),将这两处升高的总电势取为E,它等于内、外路电势降落(分别为电压表V'、V的示数U内、U外)之和,即E=U内+U外。从电源内部有电流、电压,能体会到电源内部是有电阻的。

(2)非静电力做功:①非静电力做功W非电是非电能转化为电能的量度。若电荷量q通过电源,电源内部电势的“跃升”(即电源电动势)取为E电源.则有W非电=qE电源。②根据能量守恒定律可知,非静电力做的功应该等于内、外电路中电能转化为其他形式能的总和,即W非电一E外+E内。③静电力做正功,电荷的电势能减少,电能转化为其他形式的能:这里非静电力做正功,电荷的电势能增加,其他形式的能转化为电能。

电源电动势E的数值:①由W非电=qE电源可得,电源电动势,即电源的电动势在数值上等于单位正电荷经电源内部从负极板移动到正极板非静电力所做的功。对于确定电源,电源电动势E为比值定义式。②由U内分别为外、内电路电阻上的电压,则,可以得出E=U外+U内,即③U外又称为路端电压U路,故外电路断开时,I=0,Ir=0,则开路路端电压等于电源电动势;当电源内阻可以忽略不计时,r=0,Ir=0.则路端电压等于电源电动势。④电源电动势取决于电源本身的构造,与外电路的变化无关。

侧,将电动势为3.0V的电源接入电路中,测得电源两极间的电压为2.4V,当电路中有6C的电荷通过时,求:

(1)有多少其他形式的能转化为电能?

(2)外电路中有多少电能转化为其他形式的能?

(3)内电路中有多少电能转化为其他形式的能?

解析:(1)Eq=3×6J=18J。

点评:Eq为其他形式的能转化为电能的数值,U外q、U内q分别为外电路、内电路中电能转化为其他形式能的数值。

二、电流

1.恒定电场:导线内的电场是由电源、导线等电路元件所积累的电荷共同形成的。尽管这些电荷也在运动,但有的流走了,另外的又来补充,所以电荷的分布是稳定的,稳定分布的电荷所产生的电场是稳定的电场,称为恒定电场。

在静电场中所讲的电势、电势差及其与电场强度的关系等,在恒定电场中同样适用(如匀强电场中场强,恒定电场中场强,均表示单位长度内的电势变化)。

有同学问:静电平衡的导体内部场强处处为零,为什么流有电流的导线内部的场强却不为零?

释疑:其实,原因就在于静电平衡的导体内不存在电荷的定向移动,而流有电流的导线内却存在电荷的定向移动,不是静电平衡的导体了。

2.电流方向的规定:正电荷定向移动的方向规定为电流的方向。导体中可以自由移动的电荷为自由电子,定向移动的自由电子(载流子)的移动方向与电流的方向相反。

电流虽有方向,但是标量,不是矢量。如图4所示,干路电流I与两支路电流I1、I2间的大小关系是I=,这一关系不会因a值的变化而改变,也就是说I1、I2与I不满足平行四边形定则(满足平行四边形定则的物理量才为矢量)。

3.电流的定义式,其中g为时间t内通过导体横截面的电荷量。

4.电流的微观表达式:如图5所示,设导体中单位体积内的载流子数为n,载流子的电荷量为q,载流子的定向移动速率为v,则,

(l)单位体积内的载流子数n取决于导体的材质。

(2)若单位长度内的载流子数为N,则电流的微观表达式为I=Nqv。

例2(2015年安徽卷)一根长为L,横截面积为S的金属棒,其材料的电阻率为ρ,棒内单位体积内的自由电子数为n,电子的质量为m,电荷量为e。在棒两端加上恒定的电压时,棒内产生电流,自由电子定向移动的平均速率为v,则金属棒内的电场强度大小为()。

解析:如图6所示,金属棒内的场强大小答案为C。

点评:ρnev字面上与电压U无关,实际上,v是与U有关的,故ρnev也就与电压U有关了。

例3 某电解液中,若2s内各有1×1019个二价正离子和2×1019个一价负离子以相反方向通过某截面,那么通过这个截面的电流是()。

A.O

B.0.8A

C.1.6A

D.3.2A

解析:负离子的定向移动可以等效为等量正电荷沿负离子移动的相反方向运动。因此,I=答案为D。

点评:正、负载流子做定向移动时都能形成电流,只要注意负离子定向移动与等量正电荷定向移动形成电流的方向相反即可。

三、用欧姆定律分析电路动态问题

欧姆定律:在同一电路中,导体中的电流与导体两端的电压成正比,与导体的电阻成反比,即。

例4 在如图7所示的电路中,闭合开关S,当滑动变阻器的滑动触头P向下滑动时,四个理想电表的示数都发生变化,电表A、V1、V2、V3的示数分别用I、U1、U2和U3表示,电表示数变化量的大小(绝对值)分别用I、U、U2和U3表示,下列比值错误的是()。

解析:分析“电路连接方式”,可以认为电流I从电源正极流出,经电流表A、R1、R2、开关S回到电源负极。

因为U1为定值电阻R1上的电压,定值电阻R1,所以选项A正确。当滑动变阻器的滑动触头P向下滑动时,可变电阻R2接人电路的阻值变大(回路总电路R总变大,电流I变小,U1变小,U2变大,U3变大)。由可知,变大。取Ur为电源内阻电压改变量的大小,由闭合电路欧姆定律可知,初态,末态,对等式两边取改变量后,得,即,则,因此,可见不变.选项B错误.c正确。因为U3为上的电压,又有,可知变大。由闭合电路欧姆定律,得,即,因此见选项D正确。答案为B。

点评:电阻的定义式,表示某一状态下的电阻等于其上电压与电流的比值。对于定值电阻R,有u=RI,即R能等于;但对于变化的电阻R变,有,不满足“”,不满足“”,即变化的电阻不恒等于其上电压变化量与电流变化量的比值。在闭合电路中,对于变化电阻部分的,不是恒等于R变,而是等于回路中除变化电阻以外的所有定值电阻的总和,电源的内阻r等于“路端电压变化量与通过电源电流变化量I的比值”,即

跟踪训练

1.在导体中有电流通过时,下列说法中正确的是()。

A.电子定向移动速率很小

B.电子定向移动速率是电场传导的速率

C.电子定向移动速率是电子热运动速率

D.在金属导体中,自由电子只不过是在速率很大的无规则热运动上附加了一个速率很小的定向移动

2.半径为R的橡胶圆环均匀带正电,总电荷量为Q。现使橡胶圆环绕垂直圆环平面且通过圆心的轴以角速度叫匀速转动,则由圆环产生的等效电流应有()。

A.若ω不变而使电荷量变为原来的2倍,则电流也将变为原来的2倍

B.若电荷量Q不变而使角速度变为原来的2倍,则电流也将变为原来的2倍

C.若Q、ω均不变,将橡胶网环的横截面积变小,并使圆环半径变大,电流也将变大

D.若Q、ω均不变,将橡胶圆环的横截面积变小,并使圆环半径变大,电流也将变小

3.如图8所示,电压表由灵敏表G与电阻R串联而成,某同学在使用中发现此块电压表的读数总比真实值偏小一点儿,要想使电压表读数准确可采取的措施是()。

A.在电阻R上并联一个比其小得多的电阻

B.在电阻R上并联一个比其大得多的电阻

C.在电阻R上串联一个比其小得多的电阻

D.在电阻R上串联一个比其大得多的电阻

4.如图9所示,直线“是电源的路端电压随输出电流变化的图像,曲线b是一个小灯泡两端电压与电流的关系图像。如果把该小灯泡与电源连接,此时电源效率为0.4,则下列说法正确的是()。

A.小灯泡工作时的电阻大小为4Ω

B.电源电动势为9V

C.电源内阻为3Ω

欧姆定律的比值问题范文第5篇

发散思维的培养首先要鼓励学生大胆发挥想象力,学习知识要不惟书,不迷信老师、家长,大胆质疑,淡化标准答案,鼓励多向思维。在寻求唯一答案的影响下,学生往往是受教育越多,思维越单一,想象力越有限。这就要求教师充分挖掘教材的潜在因素,在课堂上启发学生,展开丰富的想象力,展现物理情景,构想物理过程,想象物理结果。

在物理概念规律的教学中引导学生多方位理解、体验,打破常规,弱化思维定势,构建物理量和物理规律的方向思维。如:

利用并联电路特点结合欧姆定律推导出“两导体并联后总电阻与支路电阻的关系”:组织学生讨论:此值是否比R1、R2都小。不设具体数据,能通过代数式变换证明,引导学生从数学的量值关系,侧面理解刚学过的物理规律。

再如:通过探索欧姆定律地实验数据比较分析:得出导体AB的,小于导体CD的。在相同的电压(6.0V)下,IAB=0.6A>ICD=0.4A,问:“这个比值为什么是反映导体本身阻碍电流的性质,而不是反映导体容易导电的性质。反映导体导电性质,同一导体衡量值该是还是?”通过正向、反向思维加深对电阻的理解,从而I-U图像上图线的斜率误为电阻值的失误大大减小。

其次,通过“一题多解”培养学生的发散思维。针对同一个知识点,从相互关联的不同角度考虑,尽可能多地给自己提一些“假如……”“假定……”“否则……”之类的问题,培养多向考虑的高质量思维品质。如:

例:一灯泡标有“6V,6W”字样,现要将它接到9V的电源上,并使灯泡正常发光。求:①需要串联一个多大的电阻?②电阻消耗的功率为多大?

解法一:小灯泡正常工作,灯L与电阻R串联,根据IL=IR得:

解得:

R=3?

解法二:由电路中各用电器消耗的功率之和等于总功率计算。

小灯泡正常工作

总功率

R消耗的功率

解法三:根据串联电路电压分配的关系计算。

评析:通过“一题多解”,是学生不满足于常规的一般解法,勤思多想,从多角度进行发散思维的训练,使学生的思维定式具有流畅性,而不至于妨碍思维的灵活性和独创性。

再次,利用开放性试题培养学生的发散思维

开放性试题主要表现在物理情景、条件的不定性,解题过程、方法的多样性,解题和结论的不唯一性。教学过程中经常设计开放性试题,有利于培养学生的综合能力和创造能力。

例:小明同学利用图中所示的电路计算电阻Rx消耗的功率,已知电源电压不变,R的阻值为R0,开关S闭合后电流表A1的示数I0,由于缺少条件,他不能算出,请你补充一个条件,帮他算出电阻Rx消耗的功率。

分析:此题条件不足,利用公式可以求出Rx消耗的功率,R与Rx并联,可知Rx上的电压,只要知道Rx的阻值,便可求出Rx消耗的功率。所以应该补充可求出Rx的功率条件:Rx的阻值为R'或者Rx的电流为I'。

解法一:补充条件,Rx=R',则

解法二:补充条件,通过Rx的电流为I'时,

解法三:补充条件,干路电流为I,则

最后,在课堂教学和日常练习中,通过学生自己编题,锻炼了学生的发散思维。自己编题使学生处于主动地位,提高了学习的积极性,由于在编题中要考虑各种可能性,训练了学生思考问题的全面性。如:给出条件,通过学生自己编题培养学生从部分出发认识整体的分析性思维;给出部分条件和结果,通过自己编题得到需要的条件,训练学生的逆向思维,从而培养学生的发散思维。

例:请你根据电功公式W=UIt和电热公式Q=I2Rt,自编一道非纯电阻电路的计算题,并求出W和Q。

解析:一台电动机正常工作时的电压为380V,线圈电阻是2?,通过线圈的电流是10A,式电动机正常工作1s电流做功为W,线圈产生的热量为Q,求出W和Q。

欧姆定律的比值问题范文第6篇

伏安特性曲线即I-U图像叫导体的伏安特性曲线,这个图像是通常用于研究导体电阻的变化规律,是一种常见的图像方法。根据伏安特性曲线的不同,把I-U图像是通过原点的直线的电学元件称为线性元件;I-U图像是曲线的电学元件称为非线性元件。

伏安特性曲线中通过坐标原点的直线(即线性元件)电阻的计算,可直接用R=U/I求得,因此直线的斜率K=I/U即是电阻的倒数,电阻恒定不变。而非线性元件的伏安特性曲线是弯的,各点的斜率时刻发生改变,那么非线性元件的伏安特性曲线上某点的电阻是该点切线斜率还是该点与原点连线的斜率呢?为什么会有两种矛盾的表达的方式,哪一种才是正确、合理的呢?

一、典型例题

例1:如图1中所示,如果你加在导体的电压为原来的3/5,导体中的电流是减少0.4A,如果所加电压变成原来的2倍,则导体中的电流为多大?

解法一:一个线性电阻的解决方案:导体的电阻,符合欧姆定律,由欧姆定律:R=U /I ,

又知R= ,解得I =1.0A.

又因为R= = ,所以I =2I =2.0A.

解法二:画出导体的I-U图像,如图所示,设原来导体两端的电压为U 时,此时导体中的电流为I .由图知 = = = .所以I =1.0A,I =2I =2.0A.

例2:小灯泡的伏安特性曲线如图中的AB段(曲线)所示,由图2可知,灯丝的电阻因温度的影响改变了?摇?摇 ?摇?摇Ω.

解:A点电阻R = = =30Ω,

B点电阻R = = =40Ω,

所以R -R =10Ω。

例3:为探求小灯泡L的伏安特性,连好图示电路后闭合开关,通过移动变阻器的滑片,使小灯泡中电流由零开始逐渐增大,直到小灯泡正常发光。由电流表和电压表得到的多组度数描绘出的U-I图像应是(?摇?摇?摇?摇)。

解析:灯丝的电阻会随着电压的增大而增大,在图像上某点到原点连线的斜率则越来越大。答案选C。

二、提出问题

做这类题目,学生通常有两种思想:一种是用欧姆定律可直接使用瞬时电压除以电流等于电阻。另一种是I-U图像上斜率的倒数(或U-I图像上斜率)是电阻,根据微分的思想,无限小的电流通过电阻影响电压,则切线的斜率(或倾斜)就应该是那时的电阻。例1中这两种想法并不矛盾,但例2、例3两题中可明显看出当时的电压除以电流得到的数值与该点切线的斜率的倒数(或斜率)显然是有出入的,这是为什么呢?

在教学中,例2我们通常会强行要求同学们采用第一种方法,即“用当时的电压除以电流得到电阻”,但遇到例3的情况,可以采用比较前后两点分别到原点连线的斜率的大小,也可以比较某两点切线斜率的大小,但是其中的道理由于课时问题一般不会对学生多加解释,学生因为并未理解,所以做到这类题目,虽然反复训练,但错误率仍然很高,甚至一些教师只是机械教学,并未真正理解。

三、解决问题

方案一:从实际得到I-U或U-I图像的方法入手。

想一想,是怎么做出图像的?是通过实验所得到的电压表及电流表的实验数据,通过描点描绘出来的图线,而这一定是有误差的,原因是曲线上的点是无数的,却不可能做无数次的实验,从而描绘出无数个点?所以我们做出的图像并不是准确的图像,但是能反映出导体的电压、电流变化的趋势。所以当题目像例2那样要求出某时刻的电阻时,就应该用该时刻的电压除以该时刻电流。例3的目的不是让我们准确地计算出每一刻的小灯泡的电阻,只是让我们观察图像的变化趋势,可以从图线斜率趋势确定阻力的变化。而例1由于图像是一条直线,相比曲线误差小,用该时刻的电压除以该时刻电流求出的电阻与用斜率求电阻结果是一致的,也就不存在这类问题。

方案二:应用静态电阻和动态电阻的概念加以分析。

对于非线性元件来说,有两个电阻概念:静态电阻和动态电阻。在工作状态的一个非线性元件静态电阻(也称为直流电阻)等于该点的值的电压和电流值的比值;非线性元件在某一工作状态下的动态电阻(也称交流电阻)等于该点的电压对电对电流的导数值,即r=tanβ= ,可见对非线性元件,静态电阻和动态电阻是两个不同的概念。

(一)对于线性电阻而言,只有静态电阻,其应用在中学阶段比较简单。

例1就是属于这种情况,所以两种方法求得的结果是一样的。

(二)对于非线性电阻而言,既有静态电阻,又有动态电阻。

例2从图中可以看出,一个小灯泡是一个非线性元件,在不同电压下有不同的电阻。题目要求的是小灯泡在3V、6V时的静态电阻,所以用当时的电压除以电流得到电阻。而例3要研究的是灯泡变化过程的动态电阻的变化,因而可以用斜率求解电阻。

欧姆定律的比值问题范文第7篇

一、电磁学教材的整体结构

电磁运动是物质的一种基本运动形式.电磁学的研究范围是电磁现象的规律及其应用.其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等.为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的.透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学.对此,应从以下三个方面来认真分析教材.

1.电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行,这两种方式均在高中教材里体现出来.只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力.

场的方法是研究电磁学的一般方法.场是物质,是物质的相互作用的特殊方式.中学物理的电磁学部分完全可用场的概念统帅起来,静电尝恒定电尝恒定磁尝静磁尝似稳电磁尝迅变电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的各章内容.

“路”是“场”的一种特殊情况.中学教材以“路”为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等.

“场”和“路”之间存在着内在的联系.麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的.“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法.

2.物理知识规律物

理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系.

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来.物理定律的形成,也是在物理概念的基础上进行的.但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性.

第二册第一章“电潮重要的物理规律是库仑定律.库仑定律的实验是在空气中做的,其结果跟在真空中相差很小.其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况.

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律.欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的.欧姆定律的运用有对应关系.电阻是电路的物理性质,适用于温度不变时的金属导体.

“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念.

“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律.在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线.本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础.电磁感应的重点和核心是感应电动势.运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的.

“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步.麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步.

3.通过电磁场在各方面表现的物质属性,使学生建立“世界是物质的”的观点

电现象和磁现象总是紧密联系而不可分割的.大量实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着.电场的基本特性就是对位于场中的其它电荷有力的作用.运动电荷的周围除了电场外还存在着另一种唱—磁场.磁体的周围也存在着磁场.磁场也是一种客观存在的物质.磁场的基本特性就是对处于其中的电流有磁场力的作用.现在,科学实验和广泛的生产实践完全肯定了场的观点,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态.

运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用.所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的.麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场.按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场.电磁场由近及远的传播就形成电磁波.

从场的观点来阐述路.电荷的定向运动形成电流.产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场.导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处.导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷.当导体中电势差不存在时,电流也随之而终止.

二、以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体

1.场的客观存在及其物质性是电学教学中一个极为重要的问题.第一章“电潮是学好电磁学的基础和关键.电场强度、电势、磁尝磁感应强度是反映电、磁场是物质的实质性概念.电场线,磁感线是形象地描述场分布的一种手段.要进行比较,找出两种力线的共性和区别以加强对场的理解.

2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用.在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等.场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度.在电场中用电场力做功,说明场具有能量.通常说“电荷的电势能”是指电荷与电场共同具有的电势能,离开了电场就谈不上电荷的电势能了.

3.认真做好演示实验和学生实验,使“潮抽象的概念形象化,通过演示实验是非常重要的措施.把各种实验做好,不仅使学生易于接受知识和掌握知识,也是基本技能的培养和训练.安排学生自己动手做实验,加强对实验现象的分析,引导学生从实验观察和现象分析中来发展思维能力.从物理学的特点与对中学物理教学提出的要求来看,应着力培养学生的独立实验能力和自学能力,使知识的传授和能力的培养统一在使学生真正掌握科学知识体系上.

欧姆定律的比值问题范文第8篇

【关键词】:师范学校 教学探究 物理定律

一、 物理教学中物理量与物理定律之间的关系

物理定律是反映物理量之间的本质联系,因果关系与严格的数量依存关系;凡有关教材中的众多公式,重要推论和原理都可以由它引导与推得。物理概念建立量的观念,有量度公式(长度、质量、时间除外,它们是人为规定无量度公式的物理量)的物理概念叫物理量(如:加速度、电场强度、电动势、频率、功、发光强度、折射率等)。

物理量教学在发展学生个性上有积极推动作用。历代物理学家的重大发现,都是由他们高度发展的抽象思维能力与兴趣、意志、信念等的智慧结晶。其中促使他们这种个性充分发展的因素,往往都是由于大量实验的物理现象中所形成的新的物理量作导航。例如牛顿的经典力学就是以力、质量、加速度等物理量为出发点,导出牛顿运动定律的结果;法拉第就是由于电动势,磁通量等物理量的提出而导致法拉第电磁感应定律的发现。所以就充分发展学生个性看,要明确认识到物理量是师范物理教学的重要一环。此外,和物理量的教学一样,物理定律的教学同样能开发学习智力,培养学生物理思维能力,促进学生个性的发展。

二、 物理定律的教学探究

1、引入新课。物理量的学习只是一些支离破碎的物理知识,从结构体系上看,这些物理概念,物理量无主心骨,缺乏凝聚中心,所以只有以物理定律作组织的枢纽,物理教学才显得有起有合、能散能收、内容丰富,形成一个完整的知识体系。在备课中思考,怎样循循善诱,巧妙而有效地向学生交代教学的目的,并将物理定律的学习转化为学生学习目的,引入新课。

2、重视实验。物理教学的特点在于突出物理实验。在物理定律的教学上又有特殊性,就是突出定律的演示实验与学生实验,且要做好、做准。以提供学生发现物理规律的必要条件与学习环境。引导学生设计实验装置,学会运用物理实验方法来研究提出的新课题。

3、建立量的观念、会用数学公式表示。做定量的演示实验时,要提醒学生,哪个值不变,测哪两个物理量之间变化的对应值,作好实验记录,将其中准确的计算值列入设计好的表格中,运用数学方法,找出确切的数学表达式。一般以运用比例与研究比值的数学工具较多。例如,当m一定时,a∝F;F一定时,a∝1/m,a∝F/m改写成等式a=KF/m(当统一采用国际单位制时,K=1)所以a=F/m或F=ma,这就是牛顿定律的数学表达式。在教学中,应该把这种运用数学研究物理定律的方法交给学生,要求学生学会掌握。

4、弄清物理定律的物理意义与适用范围。学生认识物理定律后,首先要正面理解物理定律的语言表达;其次,要弄清物理定律的数学表达式的真正含义,把和它相邻的公式以及由它导出的公式从物理意义上划清界限,以免混淆不清。例如,就欧姆定律来说,它的数学表达式I=U/R要与电阻的量度公式R=U/I,电阻定律的表达式R=ρL/S和导出公式U=IR的含义都区别开来。此外,还要指明它的适用范围。任何一个物理定律,都是在一定条件下,运用物理的理想过程和理想实验的思想方法得到的,因此,每个定律都有它的适用范围。例如:库仑定律(适用于真空中的点电荷);机械能守恒定律(适用于只有重力和弹力做功的条件下)等。只有知道了它们的物理意义和适用范围,才有利于学生掌握和应用。

三、 物理量的教学方法探究

1、物理量的引入。讲授物理量时,首先要介绍建立物理量的过程,搞清为什么要引入该物理量。新的物理量的引入,不管采取什么方式,为了获得最佳教学效果,所提出的问题必须满足三个条件:一要反映学习这个物理量的客观性与必要性;二要巧妙把它的教学目的转化为学生的学习目的;三要激起学生的求知欲。例如讲加速度时可以这样引入:"人走路、马拉车、汽车跑、飞机飞,除了运动快慢程度不一样,还有什么不同(速度改变的快慢不同)。不同物体、速度的改变快慢不同,尽管是同一物体(汽车),在不同时间(起动、刹车)速度的改变快慢也不一样,为了描述速度改变的快慢程度而引入加速度这一物理量"。定性的分析引出物理量后,还要定量的研究它的定义式。

2、建立量的观点,导出量度公式。物理学中的物理量用数学形式表达成物理公式后,显得特别简单、明确,便于运用它来进行分析、推理、论证。所以数学知识是研究物理问题的工具,用好数学对解决问题是很必要的,但是却不可以单纯从数学角度看待物理问题。例如,根据场强定义式E=F/q,不能单纯从数学角度看,认为E跟分子成正比,跟分母成反比。类似的还有电容C=Q/U电势φ=EP/q电阻R=U/I等。又如,加速度a1= - 8m/a1,a2=5m/a1,不能单纯从数学角度判断a1小于a2。对于物理量,要掌握它的物理意义,理解物理量定义的物理过程与真实的含义。例如电学中电动势的定义式:ε=W/q和电压的表达式:U=W/q,数学符号相同,单位都是伏特,如果学生不理解它们的物理过程与物理含义,就会混淆不清,感到莫名其妙。总之,物理量的学习,不能死记、强背、硬套。要理解性记忆,实质性掌握,灵活性应用。

参考文献: