首页 > 文章中心 > 风险评估的定义

风险评估的定义

开篇:润墨网以专业的文秘视角,为您筛选了八篇风险评估的定义范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

风险评估的定义范文第1篇

(一)内部审计定义的准则差异在内部审计目标方面,中外准则不存在差异,均以实现组织目标为己任。区别在于国际内部审计协会(IIA)的定义较为全面的渗透了风险导向内部审计的思想,即内部审计除改善内控和治理过程之外,还对风险管理产生影响,参与风险管理是内部审计职责之一。然而中国内部审计准则在定义中并没有涉及风险管理方面,目前我国内部审计领域关于风险导向思想的认识较IIA相比还存在差距,内审与风险管理的协同作用有待在内审定义中予以确认。

(二)审计计划的准则差异在审计计划方面,通过比较IIA《工作标准2000——内部审计活动管理》规定,和我国颁布的《内部审计具体准则第1号——审计计划》第十条规定,二者均在审计计划制订阶段体现了风险导向内部审计的思想,奠定了风险因素在整个内部审计工作中的基础作用,但在多大程度上凸显风险导向的思想存在明显差异。IIA将风险作为制订审计计划唯一提到的计划基础,而我国内部审计具体准则是将组织风险和其他因素并列成为年度审计计划的考虑因素。此外,中外内部审计准则关于审计计划中体现风险导向内部审计思想部分的详尽程度也存在不同。IIA的几个相关实务公告对准则给出的大框架进行了补充完善,就这一方面而言比我国准则更为完整、详细、丰富。

(三)其他方面的准则差异在风险管理的准则上,中国起步虽然较晚,但已基本实现与国际接轨,准则覆盖的范围与详细程度和国际基本没有重大差异,但在局部细节方面,比如在没有风险管理部门的企业中,内部审计应如何参与风险管理过程这一问题,IIA提供了解决思路,而我国准则并没有涉及。在管理层对风险的接受方面,国际准则中单独列示,而我国准则却没有关于管理层对风险接受的相关内容,更谈不上凸显风际导向内部审计的思想。

二、在我国推动风险导向内部审计实践的对策

(一)严格区分内部审计与风险管理的职责范围为保证内部审计的独立性,对于分别设立了内部审计和风险管理部门的企业,内部审计部门不能直接参与风险管理过程,两个部门的职能设置必须严格区分、不能有交叉,内部审计必须独立于风险管理过程之外。否则,一方面可能产生互相推诿责任的情况;另一方面,若内部审计在事实上承担部分风险管理部门的职责,在进行内部风险管理审计时,就可能出于对自身评价和自身工作的考虑,无法给出客观公正的结论。对于只设立了内部审计部门而没有设置风险管理部门的企业,内部审计部门应当承担起风险管理的责任,识别、评估并应对风险,执行咨询职能,但不对该过程进行风险管理审计。

(二)提高风险评估信息技术在识别风险之后进行风险评估,是风险导向内部审计后续工作的基础,决定了风险应对方案与审计范围和资源分配的优先顺序。如何量化风险,是风险评估面临的重要问题,也是阻碍风险导向内部审计全面实施的影响因素之一。内部审计人员不管是对风险管理部门的风险评估报告出具审计意见,还是由基于风险管理的企业内部控制探析文/曲江玲本部门进行风险评估,都要求内部审计人员熟练掌握风险评估技术。企业应针对自身业务特点建立风险评估模型,积极筹备建立风险评估管理系统,依据管理层偏好设立风险模型系数,多维度分析风险,实时监控重大风险,将经过内部审计部门认可的历史风险评估记录录入系统。遇到重大事项或者争议较大的事项时,可积极寻求外部专家工作。

风险评估的定义范文第2篇

关键词:复杂网络;推广模型;风险传播

中图分类号:TP393.0 文献标识码:A

1 引 言

随着网络安全问题的日益突出,风险评估越来越受到人们的重视。风险评估一般分为静态评估和动态评估两种,前者评估体系比较完善,评估精确性程度较高,但缺点是评估周期过长,评估模型可能随着时间的推移而不能适用,不能反映网络的实时信息;后者评估能根据网络状况适时的做出风险估计,能及时反映网络风险的动态变化,性能好于静态评估[1,2]。而针对动态风险评估的研究有:基于免疫的网络安全风险检测的模型[3,4],是一种基于入侵时的检测模型;基于隐马尔可夫模型的网络风险评估方法研究[5,6];基于贝叶斯模型的网络风险动态评估方法[7,8], 可以对网络的总体风险和局部要素可能引起风险的程度进行评估。以上文献对网络入侵检测研究较为深入,但侧重于对攻击的动态评估,未能考虑已有风险如何扩散与转移。针对网络风险传播,张永铮等提出了用于评估网络信息系统的风险传播模型[9]和一种求解网络风险传播问题的近似算法[10],对已有风险在网络中的传播进行研究,但其传播模型与算法存在一些缺点:首先,模型中仅考虑了风险传播模型,未能考虑风险引入模型;其次,一个部件上可能存在多个弱点,则该部件对另一部件的同一方向的可问路径可多于一种,则部件不能在有向图中被视为图节点。第三,最小入度的部件感染风险的概率较低,因此其作为风险源的概率不高。第四,若入度最小的部件已经感染风险,其出度不一定是最大的,正如流感爆发在人口密集的地区一样,则其风险不能立即传播出去,存在滞后性,时效性欠佳。

本文在针对网络风险传播问题,结合复杂网络中传播蔓延现象的推广模型 [11,12],提出了一种网络风险传播模型及相关定义,并改进了风险传播算法。

2 推广模型下的风险传播

网络信息的动态风险不仅仅表现为一般意义的风险,其传播可能会对社会造成不可估量的损失,如病毒的传播造成的跨域风险、有害信息的传播造成的社会风险等。为此我们将借鉴复杂网络的传播机理和分析的方法,研究网络风险传播模型。

按照复杂网络的传播蔓延现象的推广模型[11,12]:假设网络中有N个个体,每个个体是三种状态的中的一种:易染态S,感染态I和移除态R,在时刻t,个体i随机的与个体j相连,若i∈S,j∈I,则个体i以概率p得到一个正剂量di(t′),这里di(t′)都服从分布函数f(d)。每个个体都保留着过去T时期中所接受的总的剂量

在本文中,暂不考虑网络风险移除状态,即仅考虑风险在整个网络中如何转移,而未考虑网络风险传播后所造成情况的如何消除。因此上述推广模型应用于风险传播如下:

计算技术与自动化2016年6月

第35卷第2期吕元海等:基于复杂网络的风险传播模型及有效算法

每一时刻t,风险结点j对其直连结点i每发动一次攻击,就会从被攻击结点i中获取一定的信息剂量di(t),则在过去T时期中风险结点获取被攻击结点的信息总剂量为:

3 风险传播模型

3.1 相关定义

定义1.结点:指网络系统中任意一台网络设备上任意可能被利用的最小单元。其中已经被利用的称为风险结点,而尚未被利用的称为非风险结点。

定义2.有向路径:结点A访问结点B时,形成的从A指向B的单向访问关系。这里所说的单向访问关系是指合法或非法的、由主动发起方指向被访问方的访问,而不代表实际信息传输的路径,因为严格的讲,任何两个相连结点之间的链路都是双向的。有向路径概率即为结点访问概率。

定义3.风险传出:指风险结点对其所访问的任一结点造成的损失或影响。

定义4.风险引入:指非风险结点访问风险结点时,由于存在实际信息的交换而受到该风险结点的影响。

这里举例说明一下定义3、4,某病毒利用空气(相当于网络中的信息交换链路)进行传播,当病体A主动接触易染体B时,A将病毒传播给B,其中A主动接触B即为A访问B,病毒传播方向为A到B;反之当易染体B主动接触病体A,也会被感染,同样病毒传播方向为A至B,但为B访问A。

定义5.风险传出公式:设结点n被成功利用的概率为Pn,被利用后对网络系统的危害程度为Wn,利用至该结点的有向路径概率为Pmn,其中m为主动访问n的风险结点,则对结点n而言,产生的风险为Riskn=Pmn×Pn×Wn。

定义6.风险引入公式:设结点n为非风险结点,该结点成功访问风险结点m的概率为Pm,利用至结点m的有向路径概率为Pnm,由结点n发出至结点m的有用消息权重及概率分别为Unm、pnm,由结点m发出至结点n的有害消息权重及概率分别为Hmn、pmn,则对结点n而言,引入的风险为Riskn=Pnm×Pm×(Unm×pnm+Hmn×pmn)。

定义7.风险网络:借鉴张永铮等对风险网络[4]定义,把一个能够描述各结点风险分布与有向路径的网络称为风险网络。风险分布为网络系统各个设备中结点携带风险的分布情况,为内在风险;有向路径即为各结点之间的访问方向,为外来风险的传出与被引入提供可能。

3.2 风险传播模型

1.主动型风险传播模型:也称为主动型风险传出,即利用风险结点已存在的风险对其直连结点进行主动访问(包括非法攻击或可问,下同),产生风险扩散(即风险传出)。如图1(a)所示,结点A为风险源结点,存在至结点B、C、D、E的四条有向路径,设结点A风险结点,至结点B、C、D、E的有向路径概率为PAJ,(J=B,C,D,E),各结点自身被成功访问的概率为PJ,(J=B,C,D,E)[8],则结点A以概率PAJ×PJ(J=B,C,D,E)引起其出度所连结点发生风险,如图1(b)所示。

在实际网络中,路径传播概率可由两结点的所有可能路径计算得出,而结点被成功攻击的概率则有风险传播推广模型计算得出。

4 最大出度算法

针对最小入度最近邻算法[5]的不足,本文设计了一种能更好反映网络风险动态特征的算法――最大出度算法,又分为针对主动型风险传播模型的最大出度算法和针对被动型风险传播模型的最大出度算法。

4.1 风险源结点最大出度算法

Step1:计算未被处理过的风险结点出度值numofoutdegree。

Step2:优先选择最大出度的结点,利用图1所示算法将其风险值沿其出度传播给相邻结点,风险计算方法见定义5。

Step3:传播风险后将该结点标记为color=red。

Step4:重复Step1、Step2、Step3,直至所有风险结点全部被标记。

4.2 零入度非风险源最大出度算法

严格的讲,零入度的结点是不存在的,因此最小入度最近邻算法关于零入度的概念未指明其时间范畴,在本文中,零入度的结点是指在某时间段内不接受访问的结点。

Step A:将网络结点中所有零入度的非风险源结点标记为color=green。

Step B:计算未被处理过的零入度的非风险源的出度值numofoutdegree。

Step C:优先选择最大出度结点,并判断其出度中有无风险结点,若有则选择其出度所连结点中风险值最大的一个作为引入风险源,以概率引入风险,风险计算方法见定义6,将该结点标记为color=pink,断开与引入风险源的有向链接;若无,则重新选择结点,对该结点不进行任何处理直到再次满足条件。

Step D:引入风险后,该结点已为风险结点,如果满足最大出度的条件,则跳转至最大出度算法的Step2继续风险传播。如果暂不满足最大出度的条件,则跳转至Step A顺序执行。

4.3 一般非风险源风险引入

网络结点的风险在传播最后往往会出现如图3所示的情况:结点A、B、C为非风险源结点,D、E为风险结点且RiskD>RiskE,按照文[5]的理论,则其程序在图3情况下停止运行,为了解决这一问题,引入如下算法:

Step a:计算非风险源结点的出度值numofoutdegree。

Step b:优先选择出度最大的结点,若其出度所连接结点中存在风险结点,则选择风险值最大的一个结点作为风险引入源并断开与该风险引入源的有向链路,该结点被标记为color=pink;若不存在,则重新选择。

Step c:引入风险后,该结点已为风险结点,跳至Step b继续执行,直至又出现图3情况,则跳转至Step a继续执行,直至风险传播完毕。

说明:网络结点被初始化为风险结点(color=pink)和安全可信结点(color=green)后,运行风险源最大出度算法和零入度非风险源最大出度算法时,两者发执行,不存在先后次序,而一般非风险源风险引入只是在出现如图3情况下才使用的算法,是为了防止风险传播中忽略此类风险引入导致风险误差较大的情况。

5 算法性能比较

5.1 风险传播机制比较

最小入度最近邻传播算法[5]虽然能够对网络风险传播给出比较精确的结论,但其在理论上有一定的缺陷,如图4所示,假设结点1、2为风险结点,按照最小入度最近邻传播算法,结点1为入度最小的满足条件的风险结点,则其以概率使结点2、4产生风险,同时将自己标记为已处理,如图5(a)所示,然后结点2又满足传播条件,并以概率使结点3、5、6产生风险,并被标记为已处理,如图5(b)所示,两步共计感染四个结点,但其却是在第二步才将风险传给结点6,因而其时效性欠佳。而按照风险源最大出度算法,则优先选择结点2,使其携带的风险迅速被传播给结点3、5、6,如图6(a)所示,再次结点6满足传播条件,并将风险传播给其出度所连的四个结点,如图6(b)所示,两步共计感染七个结点,多于最小入度最近邻传播算法的新感染结点,并且其时效性优势随着网络结点的复杂化而凸显,更容易满足动态网络风险评估的要求。

此外,零入度的非风险源结点不会传出风险[5],因此应在风险传播之前对其进行处理:断开此类结点的所有出度,如图7所示,结点9被认为不会对结点2及尤其是结点10造成风险传播,因此可以断开其所有出度。但本论文认为结点9虽不会对结点10造成直接的风险传播,但是它可能会从结点2引入风险,从而使自己变为风险结点,进而对结点10造成风险传播,如图8所示。

5.2 实验结果对比

本实验实验环境为Microsoft Windows XP Professional,Intel(R) Pentium(R) CPU 1.8GHz,512M RAM。仿真工具为NetLogo 4.0.4、Matlab 7.0.0.19920(R14)。

共同参数:总结点为200,平均度为10,风险结点不超过所有结点入度之和,结点危害性参数W=1,风险结点初始风险值为1,路径传播概率服从[0,0.5] 上的均匀分布。

本文参数:结点被成功访问概率P可利用推广模型计算,其中推广模型的参数p=0.5,f(d)=δ(d-1),g(d*)=δ(d*-3),采用最大出度算法进行传播。

文[5]参数:概率权p(x)=0.5,采用最小入度最近邻算法进行传播。

6 结 论

实验表明:本文方法则是风险呈非线性变化,并且开始变化较快,最后变化缓慢,即在一定的精确度容许的范围内,对风险进行任意时刻的抽样,本文的风险值更接近真实风险,因而动态性能更好。另外考虑的非风险源结点的风险引入,使风险值被忽略的部分被重新计算在内,提高了风险精确度。

参考文献

[1] 吴金宇.网络安全风险评估关键技术研究[D].北京:北京交通大学,2010.

[2] 肖晓春.基于模型的网络安全风险评估的研究[D].上海:复旦大学,2008.

[3] 李涛.基于免疫的网络安全风险检测[J].中国科学(F辑一信息科学),2005,35(8):798-816.

[4] 刘谦. 网络安全风险评估研究[J]. 硅谷. 2009,(14):65-70.

[5] 史志才.网络风险评估方法研究[J].计算机应用, 2008,10:2471-2473.

[6] 陈锋.基于多目标攻击图的层次化网络安全风险评估方法研究[D].长沙:国防科技大学,2009.

[7] 梁玲,陈庶民,徐孟春,等.基于贝叶斯模型的网络风险动态评估方法[J].信息工程大学学报,2007,(1):53-55.

[8] 付钰,吴晓平,严承华. 基于贝叶斯网络的信息安全风险评估方法[J].武汉大学学报:理学版,2006,52(5):631-634.

[9] 张永铮,方滨兴,迟悦,等.用于评枯网络信息系统的风险传播模型[J].软件学报,2007,18(1): 137-145.

[10]张永铮,田志宏,方滨兴,等.求解网络风险传播问题的近似算法及其性能分析[J].中国科学E辑:信息科学,2008,38(8):1157-1168.

风险评估的定义范文第3篇

摘要:本文分析了火灾风险评估概念的内涵,综述了以某一系统为对象的火灾风险评估的研究及目的,介绍了国内外较新的城市区域火灾风险评估方法。

关键词:城市区域火灾风险评估

一、火灾风险评估的概念

过去,人们往往依靠经验和直观推断来做出决策。随着计算机容量不断扩大和模块技术的发展,风险评估(riskassessment)和风险管理(riskmanagement)技术作为复杂或重大事项决策的必要辅助手段,在过去的二、三十年间,在决策分析、管理科学、运营研究和系统安全等领域得到了广泛的认知和应用[1]。

通常认为风险(risk)的定义为:能够对研究对象产生影响的事件发生的机会,它通过后果和可能性这两个方面来具体体现。风险概念中包括三个因素:对可能发生的事件的认知;该事件发生的可能性;发生的后果[2]。因而,火灾风险(firerisk)包含火灾危险性(发生火灾的可能性)和火灾危害性(一旦发生火灾可能造成的后果)双重含义[3]。

现在,在文献中可以看到的与“火灾风险评估”相关的术语有fireriskanalysis,fireriskestimation,fireriskevaluation,fireriskassessment等,但基本上火灾风险评估都是指:在火灾风险分析的基础上对火灾风险进行估算,通过对所选择的风险抵御措施进行评估,把所收集和估算的数据转化为准确的结论的过程。火灾风险评估与火灾模拟、火灾风险管理和消防工程之间有密切关系,为其提供定性和定量的分析方法,简单地如消防安全设施检查表,复杂的就会涉及到概率分析,在应用方面针对的风险目标的性质和分析人员的经验有各种变化[4]。

较多的人倾向于从工程角度来定义火灾危害性(firehazard)和火灾风险(firerisk)。火灾危害性指:凡是根据已有的资料认为能引起火灾或爆炸,或是能为火灾的强度增大或蔓延持续提供燃料,即对人员或财产安全造成威胁的任何情况、工艺过程、材料或形势。火灾危害性分析在不同的情况下有不同的针对性,目的是确定在一定的条件下有可能发生的可预见性后果。这种设定的条件称为火灾场景,包括建筑物中房间的布局、建材、装修材料及家具、居住者的特征等与相关后果有关的各种具体信息。目前在确定后果方面的趋势是尽可能地利用各种火灾模式,辅以专家判断。此时,危害性分析可以看作是风险评估的一个构成元素,即风险评估是对危害发生的可能性进行权衡的一系列危害性分析。

从系统分析的角度来看,风险具有系统特性和动态特性。风险实际上并非某一单一实体或事物的固有特性,而是属于一个系统的特性。若系统发生变化,很容易就会使事先对风险所做的估算随之发生变化。火灾风险评估模式包括:系统认定,即明确所要评估的具体系统并定义出风险抵御措施的过程;风险估算,即设定关于火灾的发生几率和严重后果及其伴随的不确定性的衡量标准或尺度,计算和量化系统中的指标的过程;风险评估,对该标准或尺度进行分析和估算,确定某一特定风险值的重要性或某一特定风险发生变化的权重[5]。

二、城市区域火灾风险评估的意义及发展概况

在消防方面,随着人们安全意识的提高和建筑设计性能化的发展,对建筑工程的安全评估日益受到重视,比如美国消防协会制定的“NFPA101生命安全法规”是一部关注火灾中的人员安全的消防法规,与之同源的“NFPA101A确保生命安全的选择性方法指南”,分别针对医护场所、监禁场所、办公场所等,给出了一系列安全评估方法,多应用于建筑工程的安全性评估方面[6]。

目前,我国在火灾风险评价方面的研究,大部分是以某一企业,或某一特定建筑物为对象的小系统。例如,由武警学院承担的国家“九五”科技攻关项目“石化企业消防安全评价方法及软件开发研究”,以“石油化工企业防火设计规范”等消防规范和德尔菲专家调查法为基础,设计了石化企业消防安全评价的指标体系,利用层次分析法和道化指数法确定了各指标的权重,采用线性加权模型得出炼油厂的消防安全评价结果[7]。以某一特定建筑物为对象的火灾风险评价也比较多,如中国矿业大学周心权教授,在分析建筑火灾发生原因的基础上,建立了建筑火灾风险评估因素集,并运用模糊评价法对我国的高层民用建筑进行了消防安全评价[8]。

与上述的安全评估不同,城市区域的火灾风险评估的目的是根据不同的火灾风险级别,配置消防救援力量,指导城市消防系统改造,指导城市消防规划。对已建成的城市区域的火灾风险评估必须考虑许多因素,即城市火灾危险性评价指标体系,包括区域内所存在的对生命安全造成危险的情况、火灾频率、气候条件、人口统计等因素,进而评价社区的消防部署和消防能力等抵御风险的因素。除此之外,在评估过程中另一个重要的情况是要关注社区从财政及其他方面为消防规划中所要求的总体消防水平提供支持的能力和意愿。随着城市规模扩大、综合功能增强,在居住区商贸中心、医院、学校、和护理场所增多,评估方法还会相应的改变。现有的城市区域火灾风险评估方法主要出于以下两个目的:

(一)用于保险目的

在火灾保险方面的应用的典型事例为美国保险管理处ISO(InsuranceServicesOffice,ISO)的城市火灾分级法,在美国已经被视为指导社区政府部门对其火灾抵御能力和实际情况进行分类和自我评估的良好方法。ISO方法把社区消防状况分为10个等级,10级最差,1级最好。

ISO是按照一套统一的指标来对每个社区的客观存在的灭火能力进行评估,确定该社区的公共消防级别,这套指标来自于由美国消防协会和美国自来水公司协会所制定的各种国家规范。ISO对城市消防的分级方法主要体现在它的“市政消防分级表(CommercialFireRatingSchedule,CFRS)”上。CFRS把建筑结构、用途、防火间距与公共消防情况(用公共消防分级数目表达)相关联,再以统计数据加以调节后,来确定相应的火险费用。ISO级别仅被保险公司用作确定火险费用的一个成分。ISO分级系统虽然无法反映出消防组织的其他应急救援能力,但实际上也常用于各个区域的公共灭火力量的确定。

市政消防分级表从1974年开始使用,主要考察某城市区域的7个指标情况:供水、消防队、火灾报警、建筑法规、电气法规、消防法规、气候条件。随着技术进步,该表也不断改进。1980年版抽取了CFRS中对公共消防分级的方法,给出了修订后的灭火力量等级表,指标只包括前3项。被删除的指标或者确少区分度,或者在全市范围内进行评估时太过于主观,而且74表格中包含许多评估标准是具体的规定,如果某一社区的情况没有满足这些规定,则归属为差额分,规定降低了表格可使用的弹性范围,无法正确评估情况和技术的变化。故而ISO分级表被视为越来越“性能化”[9]。

(二)用于消防力量的部署

当今的消防组织和地方政府要担负日益加重的安全责任,面对来自公众的对抵御各种风险的更多的期望,以及调整消防机构人员、设备及其他预算方面的压力,迫切需要确认某一给定辖区内的具体风险和危险的等级。

具体地说,城市区域风险评估在消防方面的目的就是:使公众和消防员的生命、财产的预期风险水平与消防安全设施以及火灾和其他应急救援力量的种类和部署达到最佳平衡。

关于火灾风险对于灭火救援力量的影响,美国消防界对此的关注可以说几经反复,其间美国消防学院、NFPA等都做了许多工作。直至20世纪90年代,国际消防局长协会成立了由150名专业人士组成的国际消防组织资质认定委员会(theCommissionofFireAccreditationInternational,CFAI),经过9年的广泛工作,制定了“消防应急救援自我评估方法”,和制定标准的社区消防安全系统。另外,NFPA最终还制定了NFPA1710和1720两个指导消防力量部署的标准,分别帮助职业消防队和志愿消防队和改进为社区提供的消防救援的水平。根据NFPA最近的调查,NFPA1710将在全美30500个消防机构中的3300~3600个得到正式的应用,也推广到加拿大有些地区[10]。

英国对消防救援力量的部署标准是依据内政部批准的“风险指标”,把消防队的辖区划分为“A”、“B”、“C”、“D”四类区域,名为“风险分级”系统。其目的是对消防队的辖区进行风险评估,确定辖区内的各种风险区域,进而确定该风险区域发生火灾后应出动的消防车数量和消防响应时间。1995年,英国的审计委员会了一份题为“消防方针”的考察报告,认为这种方法没有充分考虑建筑设施的占用情况、社区的人口统计情况和社会经济因素,也没有把建筑物内的消防安全设施纳入考核范围。故而由审计委员会报告联合工作组与内政部的消防研究发展办公室一起,设立了一个研究项目。该项目的目的是开发一套供消防机构划分区域的风险等级,对包括灭火在内的所有应急救援力量进行部署,用于消防安全设施的规划并能解决上述问题的风险评估方法,再对开发出的方法进行测试。最后Entec公司开发出了计算软件,并于1999年4月以内政部的名义出台了“风险评估工具箱”测试版[11]。

三、国内外近期的城市区域火灾风险评估方法

(一)国内的城市区域火灾风险评估方法

张一先等采用指数法对苏州古城区的火灾危险性进行分级[15],该方法的指标体系考虑了数量危险性,着火危险性,人员财产损失严重度,消防能力这四个因素。1995年李杰等在建立火灾平均发生率与城市人口密度﹑城区面积﹑建筑面积间的统计关系基础上,选取建筑面积为主导参量,建立了以建筑面积为单一因子的城市火灾危险评价公式[12]。李华军[16]等在1995年提出了城市火灾危险性评价指标体系,该体系中城市火灾危险性评价由危害度﹑危险度和安全度三个指标组成,用以评价现实的风险,不能用来指导城市消防规划。

(二)美国的“风险、危害和经济价值评估”方法[13]

美国国家消防局与CFAI于1999年一起,在“消防局自我评估”及“消防安全标准”的工作的基础上,更突出强调了“火灾科学”的“科学性”,开发出名为“风险、危害和经济价值评估(Risk,HazardandValueEvaluation)”的方法。美国消防局于2001年11月19日了该方案,这是一个计算机软件系统,包含了多种表格、公式、数据库、数据分析方法,主要用于采集相关的信息和数据,以确定和评估辖区内火灾及相关风险情况,供地方公共安全政策决策者使用,有助于消防机构和辖区决策者针对其消防及应急救援部门的需求做出客观的、可量化的决策,更加充分地体现了把消防力量布署与社区火灾风险相结合的原则。

该方法的要点集中于两个方面:1、各种建筑场所火灾隐患评估。其目的是收集各种数据元素,这些数据能够通过高度认可的量度方法,以便提供客观的、定量的决策指导。其中的分值分配系统共包括6类数据元素:建筑设施、建筑物、生命安全、供水需求、经济价值。2、社区人口统计信息。用于收集辖区年度收集的相关数据元素。包括居住人口、年均火灾损失总值、每1000人口中的消防员数目等数据元素。

该方法已在一些消防局的救援响应规划中得到应用。以苏福尔斯消防局为例,它利用该方法把其社区风险定义为高中低三类区域,进而再考察这些区域的火灾风险可能性和后果:高风险区域包括风险可能性和后果都很大的以及可能性低、后果大的区域,主要指人员密集的场所和经济利益较大的场所;中等风险区域是风险可能性大,后果小的区域,如居住区;低风险区域是风险可能性和后果都较低的区域,如绿地、水域等,然后再把这些在消防救援响应规划中体现出来。

(三)英国的“风险评估”方法[14]

英国Entec公司研发“消防风险评估工具箱”,解决了两个问题:一是评估方法的现实性,是否在一定的时限内能达到最初设定的目标。经过对环境、管理、海事安全等部门所使用的各种风险评估方法的进行广泛考察之后,研究人员认为如果对这些方法加以适当转换,就可以通过不同的方法对消防队应该接警响应的不同紧急情况进行评估。二是建立了表达社会对生命安全风险可接受程度的指标。

风险评估的定义范文第4篇

关键词:城市区域火灾风险评估

一、火灾风险评估的概念

过去,人们往往依靠经验和直观推断来做出决策。随着计算机容量不断扩大和模块技术的发展,风险评估(riskassessment)和风险管理(riskmanagement)技术作为复杂或重大事项决策的必要辅助手段,在过去的二、三十年间,在决策分析、管理科学、运营研究和系统安全等领域得到了广泛的认知和应用[1]。

通常认为风险(risk)的定义为:能够对研究对象产生影响的事件发生的机会,它通过后果和可能性这两个方面来具体体现。风险概念中包括三个因素:对可能发生的事件的认知;该事件发生的可能性;发生的后果[2]。因而,火灾风险(firerisk)包含火灾危险性(发生火灾的可能性)和火灾危害性(一旦发生火灾可能造成的后果)双重含义[3]。

现在,在文献中可以看到的与“火灾风险评估”相关的术语有fireriskanalysis,fireriskestimation,fireriskevaluation,fireriskassessment等,但基本上火灾风险评估都是指:在火灾风险分析的基础上对火灾风险进行估算,通过对所选择的风险抵御措施进行评估,把所收集和估算的数据转化为准确的结论的过程。火灾风险评估与火灾模拟、火灾风险管理和消防工程之间有密切关系,为其提供定性和定量的分析方法,简单地如消防安全设施检查表,复杂的就会涉及到概率分析,在应用方面针对的风险目标的性质和分析人员的经验有各种变化[4]。

较多的人倾向于从工程角度来定义火灾危害性(firehazard)和火灾风险(firerisk)。火灾危害性指:凡是根据已有的资料认为能引起火灾或爆炸,或是能为火灾的强度增大或蔓延持续提供燃料,即对人员或财产安全造成威胁的任何情况、工艺过程、材料或形势。火灾危害性分析在不同的情况下有不同的针对性,目的是确定在一定的条件下有可能发生的可预见性后果。这种设定的条件称为火灾场景,包括建筑物中房间的布局、建材、装修材料及家具、居住者的特征等与相关后果有关的各种具体信息。目前在确定后果方面的趋势是尽可能地利用各种火灾模式,辅以专家判断。此时,危害性分析可以看作是风险评估的一个构成元素,即风险评估是对危害发生的可能性进行权衡的一系列危害性分析。

从系统分析的角度来看,风险具有系统特性和动态特性。风险实际上并非某一单一实体或事物的固有特性,而是属于一个系统的特性。若系统发生变化,很容易就会使事先对风险所做的估算随之发生变化。火灾风险评估模式包括:系统认定,即明确所要评估的具体系统并定义出风险抵御措施的过程;风险估算,即设定关于火灾的发生几率和严重后果及其伴随的不确定性的衡量标准或尺度,计算和量化系统中的指标的过程;风险评估,对该标准或尺度进行分析和估算,确定某一特定风险值的重要性或某一特定风险发生变化的权重[5]。

二、城市区域火灾风险评估的意义及发展概况

在消防方面,随着人们安全意识的提高和建筑设计性能化的发展,对建筑工程的安全评估日益受到重视,比如美国消防协会制定的“NFPA101生命安全法规”是一部关注火灾中的人员安全的消防法规,与之同源的“NFPA101A确保生命安全的选择性方法指南”,分别针对医护场所、监禁场所、办公场所等,给出了一系列安全评估方法,多应用于建筑工程的安全性评估方面[6]。

目前,我国在火灾风险评价方面的研究,大部分是以某一企业,或某一特定建筑物为对象的小系统。例如,由武警学院承担的国家“九五”科技攻关项目“石化企业消防安全评价方法及软件开发研究”,以“石油化工企业防火设计规范”等消防规范和德尔菲专家调查法为基础,设计了石化企业消防安全评价的指标体系,利用层次分析法和道化指数法确定了各指标的权重,采用线性加权模型得出炼油厂的消防安全评价结果[7]。以某一特定建筑物为对象的火灾风险评价也比较多,如中国矿业大学周心权教授,在分析建筑火灾发生原因的基础上,建立了建筑火灾风险评估因素集,并运用模糊评价法对我国的高层民用建筑进行了消防安全评价[8]。

与上述的安全评估不同,城市区域的火灾风险评估的目的是根据不同的火灾风险级别,配置消防救援力量,指导城市消防系统改造,指导城市消防规划。对已建成的城市区域的火灾风险评估必须考虑许多因素,即城市火灾危险性评价指标体系,包括区域内所存在的对生命安全造成危险的情况、火灾频率、气候条件、人口统计等因素,进而评价社区的消防部署和消防能力等抵御风险的因素。除此之外,在评估过程中另一个重要的情况是要关注社区从财政及其他方面为消防规划中所要求的总体消防水平提供支持的能力和意愿。随着城市规模扩大、综合功能增强,在居住区商贸中心、医院、学校、和护理场所增多,评估方法还会相应的改变。现有的城市区域火灾风险评估方法主要出于以下两个目的:

(一)用于保险目的

在火灾保险方面的应用的典型事例为美国保险管理处ISO(InsuranceServicesOffice,ISO)的城市火灾分级法,在美国已经被视为指导社区政府部门对其火灾抵御能力和实际情况进行分类和自我评估的良好方法。ISO方法把社区消防状况分为10个等级,10级最差,1级最好。

ISO是按照一套统一的指标来对每个社区的客观存在的灭火能力进行评估,确定该社区的公共消防级别,这套指标来自于由美国消防协会和美国自来水公司协会所制定的各种国家规范。ISO对城市消防的分级方法主要体现在它的“市政消防分级表(CommercialFireRatingSchedule,CFRS)”上。CFRS把建筑结构、用途、防火间距与公共消防情况(用公共消防分级数目表达)相关联,再以统计数据加以调节后,来确定相应的火险费用。ISO级别仅被保险公司用作确定火险费用的一个成分。ISO分级系统虽然无法反映出消防组织的其他应急救援能力,但实际上也常用于各个区域的公共灭火力量的确定。

市政消防分级表从1974年开始使用,主要考察某城市区域的7个指标情况:供水、消防队、火灾报警、建筑法规、电气法规、消防法规、气候条件。随着技术进步,该表也不断改进。1980年版抽取了CFRS中对公共消防分级的方法,给出了修订后的灭火力量等级表,指标只包括前3项。被删除的指标或者确少区分度,或者在全市范围内进行评估时太过于主观,而且74表格中包含许多评估标准是具体的规定,如果某一社区的情况没有满足这些规定,则归属为差额分,规定降低了表格可使用的弹性范围,无法正确评估情况和技术的变化。故而ISO分级表被视为越来越“性能化”[9]。

(二)用于消防力量的部署

当今的消防组织和地方政府要担负日益加重的安全责任,面对来自公众的对抵御各种风险的更多的期望,以及调整消防机构人员、设备及其他预算方面的压力,迫切需要确认某一给定辖区内的具体风险和危险的等级。

具体地说,城市区域风险评估在消防方面的目的就是:使公众和消防员的生命、财产的预期风险水平与消防安全设施以及火灾和其他应急救援力量的种类和部署达到最佳平衡。

关于火灾风险对于灭火救援力量的影响,美国消防界对此的关注可以说几经反复,其间美国消防学院、NFPA等都做了许多工作。直至20世纪90年代,国际消防局长协会成立了由150名专业人士组成的国际消防组织资质认定委员会(theCommissionofFireAccreditationInternational,CFAI),经过9年的广泛工作,制定了“消防应急救援自我评估方法”,和制定标准的社区消防安全系统。另外,NFPA最终还制定了NFPA1710和1720两个指导消防力量部署的标准,分别帮助职业消防队和志愿消防队和改进为社区提供的消防救援的水平。根据NFPA最近的调查,NFPA1710将在全美30500个消防机构中的3300~3600个得到正式的应用,也推广到加拿大有些地区[10]。

英国对消防救援力量的部署标准是依据内政部批准的“风险指标”,把消防队的辖区划分为“A”、“B”、“C”、“D”四类区域,名为“风险分级”系统。其目的是对消防队的辖区进行风险评估,确定辖区内的各种风险区域,进而确定该风险区域发生火灾后应出动的消防车数量和消防响应时间。1995年,英国的审计委员会了一份题为“消防方针”的考察报告,认为这种方法没有充分考虑建筑设施的占用情况、社区的人口统计情况和社会经济因素,也没有把建筑物内的消防安全设施纳入考核范围。故而由审计委员会报告联合工作组与内政部的消防研究发展办公室一起,设立了一个研究项目。该项目的目的是开发一套供消防机构划分区域的风险等级,对包括灭火在内的所有应急救援力量进行部署,用于消防安全设施的规划并能解决上述问题的风险评估方法,再对开发出的方法进行测试。最后Entec公司开发出了计算软件,并于1999年4月以内政部的名义出台了“风险评估工具箱”测试版[11]三、国内外近期的城市区域火灾风险评估方法

(一)国内的城市区域火灾风险评估方法

张一先等采用指数法对苏州古城区的火灾危险性进行分级[15],该方法的指标体系考虑了数量危险性,着火危险性,人员财产损失严重度,消防能力这四个因素。1995年李杰等在建立火灾平均发生率与城市人口密度﹑城区面积﹑建筑面积间的统计关系基础上,选取建筑面积为主导参量,建立了以建筑面积为单一因子的城市火灾危险评价公式[12]。李华军[16]等在1995年提出了城市火灾危险性评价指标体系,该体系中城市火灾危险性评价由危害度﹑危险度和安全度三个指标组成,用以评价现实的风险,不能用来指导城市消防规划。

(二)美国的“风险、危害和经济价值评估”方法[13]

美国国家消防局与CFAI于1999年一起,在“消防局自我评估”及“消防安全标准”的工作的基础上,更突出强调了“火灾科学”的“科学性”,开发出名为“风险、危害和经济价值评估(Risk,HazardandValueEvaluation)”的方法。美国消防局于2001年11月19日了该方案,这是一个计算机软件系统,包含了多种表格、公式、数据库、数据分析方法,主要用于采集相关的信息和数据,以确定和评估辖区内火灾及相关风险情况,供地方公共安全政策决策者使用,有助于消防机构和辖区决策者针对其消防及应急救援部门的需求做出客观的、可量化的决策,更加充分地体现了把消防力量布署与社区火灾风险相结合的原则。

该方法的要点集中于两个方面:1、各种建筑场所火灾隐患评估。其目的是收集各种数据元素,这些数据能够通过高度认可的量度方法,以便提供客观的、定量的决策指导。其中的分值分配系统共包括6类数据元素:建筑设施、建筑物、生命安全、供水需求、经济价值。2、社区人口统计信息。用于收集辖区年度收集的相关数据元素。包括居住人口、年均火灾损失总值、每1000人口中的消防员数目等数据元素。

该方法已在一些消防局的救援响应规划中得到应用。以苏福尔斯消防局为例,它利用该方法把其社区风险定义为高中低三类区域,进而再考察这些区域的火灾风险可能性和后果:高风险区域包括风险可能性和后果都很大的以及可能性低、后果大的区域,主要指人员密集的场所和经济利益较大的场所;中等风险区域是风险可能性大,后果小的区域,如居住区;低风险区域是风险可能性和后果都较低的区域,如绿地、水域等,然后再把这些在消防救援响应规划中体现出来。

(三)英国的“风险评估”方法[14]

英国Entec公司研发“消防风险评估工具箱”,解决了两个问题:一是评估方法的现实性,是否在一定的时限内能达到最初设定的目标。经过对环境、管理、海事安全等部门所使用的各种风险评估方法的进行广泛考察之后,研究人员认为如果对这些方法加以适当转换,就可以通过不同的方法对消防队应该接警响应的不同紧急情况进行评估。二是建立了表达社会对生命安全风险可接受程度的指标。

Entec的方法分为三个阶段。首先应该在全国范围内,对消防队应该接警响应的各类事故和各类建筑设施进行风险评估,这样得到一组关于灭火力量部署和消防安全设施规划的国家指南。对于各类事故和建筑设施而言,由于所采用的分析方法、数据各不相同,所以对于国家水平上的风险评估设定了一个包括四个阶段的通用的程序:对生命和/或财产的风险水平进行估算;把风险水平与可接受指标进行对比;确定降低风险的方法,包括相应的预防和灭火力量的部署;对不同层次的灭火和预防工作的作用进行估算,确定能合理、可行地降低风险的最经济有效的方法。

国家指南确定后,才能提供一套评估工具,各地消防主管部门可以利用这些工具在国家规划要求范围内,对当地的火灾风险进行评估,并对灭火力量进行相应的部署。该项目要求针对以下四类事故制定风险评估工具:住宅火灾;商场、工厂、多用途建筑和民用塔楼这样人员比较密集的建筑的火灾;道路交通事故一类危及生命安全、需要特种救援的事故;船舶失事、飞机坠落这样的重特大事故。

第三个阶段是对使用上述评估工具的区域进行考查,估算其风险水平,与国家风险规划指南对比,并推荐应具备的消防力量和消防安全设施水平。

参考文献:

1、ThomasF.Barry,P.E.Risk-informed,Performance-basedIndustrialFirerotection.

TennesseeValleyPublishing,2002.

&n2、HB142-1999Abasicintroductiontomanagingrisk:AS/NZS4360:1999

3、ISO8421-1:1987(E/F)

4、RichardW.Vukowski,FireHazardAnalysis,FireProtectionHandbook,18thedition,1995.

5、Brannigan,V.,andMeeks,C.,“ComputerizedFireRiskAssessmentModels”,JournalofFireSciences,No.31995.

6、NFPA101AGuideonAlternativeApproachestoLifeSafety.2000edition.

7、赵敏学,吴立志,商靠定,刘义祥,韩冬.石化企业的消防安全评价,安全与环境学报,第3期,2003年

8、李志宪,杨漫红,周心权.建筑火灾风险评价技术初探[J].中国安全科学学报.2002年第12卷第2期:30~34.

9、FireSuppressionRatingSchedule,ISOCommercialRiskServices,1998edition.

10、NFPA1710:ADecisionGuide,InternationalAssociationofFireChiefs,Fairfax,Virginia.2001.

11、Entec,ReviewofHighOccupancyRiskAssessmentToolkit.23August2000.

12、李杰等.城市火灾危险性分析[J].自然灾害学报95年第二期:99~103.

13、InformationontheRisk,HazardandValueEvaluation,USFA,1999.

14、MichaelSWright,DwellingRiskAssessmentToolkit:1999.

风险评估的定义范文第5篇

关键词:战略性新兴产业 上市公司 融资风险 熵值法

我国战略性新兴产业发展方兴未艾,国内对其研究大多数集中在产业融资需求、融资渠道以及相关制度。本文对战略性新兴产业上市公司融资风险的剖析有助于加强战略性新兴产业对自身融资情况、财务状况的了解,促进战略性新兴产业拓展融资渠道,完善融资结构,增强融资效率,为战略性新兴产业优化资源配置、改善融资环境提供基本思路,为战略性新兴产业上市公司的可持续发展奠定坚实的基础。

一、理论分析与研究方法

国内外评估融资风险大小主要采用以下方法:风险价值法、专家调查法、层次分析法以及模糊数学分析法。风险价值法考虑因素的片面性以及专家调查法和层次分析法的主观性并不适合客观以及全方面的评估上市公司融资风险大小。熵值法是一种基于模糊数学的综合方法,把定性评价转化为定量评价,即对受到多种因素制约的事物或对象做出一个总体的评价。熵值法最显著的特点是:一是可用于相互比较,二是可以根据各类评价因素的特征,确定评价值与评价因素值之间的函数关系。本文旨在评估战略性新兴产业上市公司融资风险并对比细分产业之间融资风险大小及其影响因素的差别,因此选用熵值法作为主要研究方法。

二、变量设计与模型构建

(一)变量设计。本文把战略性新兴产业上市公司融资风险评估指标分成债权融资相关指标、股权融资相关指标、资本运营相关指标、新技术投入与产出相关指标、财税优惠相关指标五大类,指这五类行为分别给战略性新兴产业上市公司带来的融资风险要素。债权融资相关指标包括利息保障倍数、现金到期债务比、长期资本负债率。股权融资相关指标包括股本、市净率、股利支付率、第一大股东持股比例。资本运营相关指标包括净资产报酬率、营业费用率、资本积累率、应收账款周转率、存货周转率。新技术投入产出相关指标包括研发投入比、近三年申请专利数。财税政策相关指标为实际所得税税率。

(二)指标分类及标准确定。

1.极大型变量,即指标值越大融资风险越大的变量。包括:长期资本负债率、股利支付率、第一大股东持股比例、营业成本率、实际所得税税率。

2.极小型变量,即指标值越小融资风险越大的变量。包括:利息保障倍数、现金到期债务比、股本、市净率、净资产报酬率、资本积累率、应收账款周转率、存货周转率、研发投入比、近三年申请专利数。其中,样本的股本在处理之前先取自然对数。

(三)模型构建。

1.熵值法的原理。设多指标评价问题的方案集A={A1,A2,…,Am},评价指标集F={f1,f2,…,fn},评价矩阵X=(xij)m×n,其中xij为第i个方案在第j个指标下的属性值。一般来说,某项指标的指标值变异程度越大,信息熵越小,该指标信息量越大,这就是熵值法的应用原理。在有m个评价指标,n个被评价对象(以下简称“(m,n)”)的评估问题中,第i个评价指标的熵定义为:

2.原始数据矩阵标准化。根据评估指标体系,整理各个样本上市公司优化原始数据形成原始数据矩阵。设(m,n)得到的原始数据矩阵为:

3.定义熵。在(m,n)体系中,第i个指标的熵定义为:

4.熵权。在(m,n)的评估问题中,第i个评价指标的熵权wi定义为:

5.熵权综合评估。各样本风险的熵权综合评估值为:

三、数据情况及实证分析

(一)样本选择及数据说明。本文把2010年年底前上市并且连续三年企业主营业务中属于战略性新兴产业的产品以及服务的销售收入达到企业当年总收入50%以上的上市公司认定为战略性新兴产业上市公司。其中,以国家统计局2012年6月出台的《战略性新兴产业分类目录》区分战略性新兴产业产品及服务。根据这个标准,本文选出235家战略性新兴产业上市公司。由于新能源汽车在我国仍处在“襁褓”阶段,无一上市公司在其领域的收入达到50%,所以本文研究的战略性新兴产业的细分产业不包括新能源汽车。剔除数据不全的公司,本文实证部分使用的样本为219家战略性新兴产业上市公司。在战略性新兴产业融资风险评估指标体系中,除了近三年专利数这一个指标选择了2010-2012年这三年的累计量以外,其余十四个指标均选用了2012年的年末数,数据来自国泰安数据中心以及各公司年报。

(二)实证分析。

1.战略性新兴产业上市公司融资风险熵权分析。经过熵权分析法的计算,得出样本公司的每个评估指标熵权如表1。从表中可以看出,样本各个指标所对应熵权最大的指标为长期资本负债率,其次是股利支付率,其余指标对应熵权都比较小。从指标类别来看,战略性新兴产业上市公司融资风险主要受到债权与股权相关融资因素影响,其次是新技术投入产出相关因素和企业资本运营相关因素,而影响程度最弱的是财税优惠政策。

风险评估的定义范文第6篇

关键词:城市区域火灾风险评估

一、火灾风险评估的概念

过去,人们往往依靠经验和直观推断来做出决策。随着计算机容量不断扩大和模块技术的发展,风险评估(riskassessment)和风险管理(riskmanagement)技术作为复杂或重大事项决策的必要辅助手段,在过去的二、三十年间,在决策分析、管理科学、运营研究和系统安全等领域得到了广泛的认知和应用[1]。

通常认为风险(risk)的定义为:能够对研究对象产生影响的事件发生的机会,它通过后果和可能性这两个方面来具体体现。风险概念中包括三个因素:对可能发生的事件的认知;该事件发生的可能性;发生的后果[2]。因而,火灾风险(firerisk)包含火灾危险性(发生火灾的可能性)和火灾危害性(一旦发生火灾可能造成的后果)双重含义[3]。

现在,在文献中可以看到的与“火灾风险评估”相关的术语有fireriskanalysis,fireriskestimation,fireriskevaluation,fireriskassessment等,但基本上火灾风险评估都是指:在火灾风险分析的基础上对火灾风险进行估算,通过对所选择的风险抵御措施进行评估,把所收集和估算的数据转化为准确的结论的过程。火灾风险评估与火灾模拟、火灾风险管理和消防工程之间有密切关系,为其提供定性和定量的分析方法,简单地如消防安全设施检查表,复杂的就会涉及到概率分析,在应用方面针对的风险目标的性质和分析人员的经验有各种变化[4]。

较多的人倾向于从工程角度来定义火灾危害性(firehazard)和火灾风险(firerisk)。火灾危害性指:凡是根据已有的资料认为能引起火灾或爆炸,或是能为火灾的强度增大或蔓延持续提供燃料,即对人员或财产安全造成威胁的任何情况、工艺过程、材料或形势。火灾危害性分析在不同的情况下有不同的针对性,目的是确定在一定的条件下有可能发生的可预见性后果。这种设定的条件称为火灾场景,包括建筑物中房间的布局、建材、装修材料及家具、居住者的特征等与相关后果有关的各种具体信息。目前在确定后果方面的趋势是尽可能地利用各种火灾模式,辅以专家判断。此时,危害性分析可以看作是风险评估的一个构成元素,即风险评估是对危害发生的可能性进行权衡的一系列危害性分析。

从系统分析的角度来看,风险具有系统特性和动态特性。风险实际上并非某一单一实体或事物的固有特性,而是属于一个系统的特性。若系统发生变化,很容易就会使事先对风险所做的估算随之发生变化。火灾风险评估模式包括:系统认定,即明确所要评估的具体系统并定义出风险抵御措施的过程;风险估算,即设定关于火灾的发生几率和严重后果及其伴随的不确定性的衡量标准或尺度,计算和量化系统中的指标的过程;风险评估,对该标准或尺度进行分析和估算,确定某一特定风险值的重要性或某一特定风险发生变化的权重[5]。

二、城市区域火灾风险评估的意义及发展概况

在消防方面,随着人们安全意识的提高和建筑设计性能化的发展,对建筑工程的安全评估日益受到重视,比如美国消防协会制定的“NFPA101生命安全法规”是一部关注火灾中的人员安全的消防法规,与之同源的“NFPA101A确保生命安全的选择性方法指南”,分别针对医护场所、监禁场所、办公场所等,给出了一系列安全评估方法,多应用于建筑工程的安全性评估方面[6]。

目前,我国在火灾风险评价方面的研究,大部分是以某一企业,或某一特定建筑物为对象的小系统。例如,由武警学院承担的国家“九五”科技攻关项目“石化企业消防安全评价方法及软件开发研究”,以“石油化工企业防火设计规范”等消防规范和德尔菲专家调查法为基础,设计了石化企业消防安全评价的指标体系,利用层次分析法和道化指数法确定了各指标的权重,采用线性加权模型得出炼油厂的消防安全评价结果[7]。以某一特定建筑物为对象的火灾风险评价也比较多,如中国矿业大学周心权教授,在分析建筑火灾发生原因的基础上,建立了建筑火灾风险评估因素集,并运用模糊评价法对我国的高层民用建筑进行了消防安全评价[8]。

与上述的安全评估不同,城市区域的火灾风险评估的目的是根据不同的火灾风险级别,配置消防救援力量,指导城市消防系统改造,指导城市消防规划。对已建成的城市区域的火灾风险评估必须考虑许多因素,即城市火灾危险性评价指标体系,包括区域内所存在的对生命安全造成危险的情况、火灾频率、气候条件、人口统计等因素,进而评价社区的消防部署和消防能力等抵御风险的因素。除此之外,在评估过程中另一个重要的情况是要关注社区从财政及其他方面为消防规划中所要求的总体消防水平提供支持的能力和意愿。随着城市规模扩大、综合功能增强,在居住区商贸中心、医院、学校、和护理场所增多,评估方法还会相应的改变。现有的城市区域火灾风险评估方法主要出于以下两个目的:

(一)用于保险目的

在火灾保险方面的应用的典型事例为美国保险管理处ISO(InsuranceServicesOffice,ISO)的城市火灾分级法,在美国已经被视为指导社区政府部门对其火灾抵御能力和实际情况进行分类和自我评估的良好方法。ISO方法把社区消防状况分为10个等级,10级最差,1级最好。

ISO是按照一套统一的指标来对每个社区的客观存在的灭火能力进行评估,确定该社区的公共消防级别,这套指标来自于由美国消防协会和美国自来水公司协会所制定的各种国家规范。ISO对城市消防的分级方法主要体现在它的“市政消防分级表(CommercialFireRatingSchedule,CFRS)”上。CFRS把建筑结构、用途、防火间距与公共消防情况(用公共消防分级数目表达)相关联,再以统计数据加以调节后,来确定相应的火险费用。ISO级别仅被保险公司用作确定火险费用的一个成分。ISO分级系统虽然无法反映出消防组织的其他应急救援能力,但实际上也常用于各个区域的公共灭火力量的确定。

市政消防分级表从年开始使用,主要考察某城市区域的7个指标情况:供水、消防队、火灾报警、建筑法规、电气法规、消防法规、气候条件。随着技术进步,该表也不断改进。年版抽取了CFRS中对公共消防分级的方法,给出了修订后的灭火力量等级表,指标只包括前3项。被删除的指标或者确少区分度,或者在全市范围内进行评估时太过于主观,而且74表格中包含许多评估标准是具体的规定,如果某一社区的情况没有满足这些规定,则归属为差额分,规定降低了表格可使用的弹性范围,无法正确评估情况和技术的变化。故而ISO分级表被视为越来越“性能化”[9]。

(二)用于消防力量的部署

当今的消防组织和地方政府要担负日益加重的安全责任,面对来自公众的对抵御各种风险的更多的期望,以及调整消防机构人员、设备及其他预算方面的压力,迫切需要确认某一给定辖区内的具体风险和危险的等级。

具体地说,城市区域风险评估在消防方面的目的就是:使公众和消防员的生命、财产的预期风险水平与消防安全设施以及火灾和其他应急救援力量的种类和部署达到最佳平衡。

风险评估的定义范文第7篇

【关键词】安全生产风险;作业风险评估;变电专业

0.前言

电力生产活动涉及电网、设备、生产环境、作业及管理等方面的风险。安全生产风险管理体系提出了九大管理单元,对安全生产各个环节进行管理。九大单元(模块)包括:安全管理、风险评估与控制、应急与事故管理、作业环境、生产用具、生产管理、职业健康系统、能力要求与培训、检查与审核。九大单元(模块)又由51个要素、159个管理节点和480条管理子标准组成。这九个单元指出了安全生产需要管理的范围,要素指出了需要具体管理的工作内容,管理节点指出了要素的管理关键点和流程节点,子标准是各个流程节点的工作要求或方法。单元、要素、节点、子标准之间相互关联或链接,形成基于风险的安全生产管理有机整体。[1]其中风险评估与控制管理单元中的作业风险评估是变电运行专业其中一个重要的风险评估工作,是安全生产风险管理体系持续运转的重要环节,也是确保变电运行专业现场作业风险可控、预控的关键。

1.作业风险评估的一般方法

风险评估的一般方法是PES法,就是说在进行风险等级分析时需考虑三个因素:由于危害造成可能事故的后果;暴露于危害因素的频率;完整的事故顺序和发生后果的可能性。

风险评估公式:风险值 =后果(S)×暴露(E)×可能性(P)

在使用公式时,根据现有的基础数据和风险评估人员的判断与经验确定每个因素分配的数字等级或比重。后果、暴露、可能性的定义如下:

后果:指所考虑的风险造成的最可能后果,包括伤害,疾病,财产损坏。事故的后果,从100分的“灾难”到1分的“小割伤或擦伤”,按程度分别赋予相应的数值。

暴露:指危害事件发生的频率,这个危害事件是第一个可能启动事故序列的意外事件。危险事件发生的频率,从10分的“持续通过”到0.5分的“特别的少”按层次分别赋予相应的数值[1]。

2.作业风险评估工作开展的工作方法

电力企业风险评估有三类:a.基准风险评估,即对企业生产作业流程进行全面的风险评估,并作为持续改进的基准。b.基于问题的风险评估,即针对企业基准风险评估中所确定高风险对象,或生产过程中发生事故、事件暴露的高风险问题进行风险评估;c.持续风险评估,即企业开展持续的风险评估,及时、动态修改风险评估内容,并做出相适应的规避风险措施。[1]变电运行专业的作业风险评估属于基准风险评估,每年定期开展。年度作业风险评估开展流程如下:

一是作业风险评估技能回顾,主要是对班组代表开展作业风险评估技能专项培训。重点回顾作业风险评估方法,基准作业风险评估工作的顺利开展。

二是作业风险评估回顾、评估内容更新,主要是对上一年度已完成的作业风险评估、作业风险评估概述,根据最新作业任务清单,结合年度审查中关于作业风险评估所发现的问题,重新运用PES作业风险评估方法,组织人员审查班组有关评估结果。

三是回顾、更新关键任务。运行人员在作业风险评估结果的基础上,回顾各项关键任务,形成关键任务分析,为作业表单修编工作提供依据。

四是是修编作业风险概述。根据作业风险评估结果,形成本班组作业风险概述。

最后是风险评估结果应用。就是说跟据本班组的作业风险概述,审查有关控制风险的管理措施和技术措施的落实情况,制定有关措施的实施工作计划,推进计划的落实。

3.作业风险评估工作在变电运行的运用

在开展变电运行的作业风险工作过程中往往存在以下两个问题:一是全员参与性不足,特别是资历较深的运行人员。这会影响到评估结果的准确性,同时也失去了全面增强全体人员风险意识的机会。二是作业风险评估结果不能应用到作业表单,进而不能有效控制现场风险。

为了解决全员参与性不足的问题,我们采取分组讨论--集中审核的方式,资历较深的运行人员被平均分到小组中讨论,充分发挥他们经验丰富的优点,为作业风险评估提供依据。集中审核时采取交叉审核方式,有利于保证人员参与作业风险评估的完整性。为了解决作业风险评估结果的应用性问题,在执行作业表单时必须对表单中的风险评估结果进行审核,发现作业风险评估结果未能应用到新作业表单中时,应该立即启动安全风险管理体系中的纠正与预防流程,提出修编建议。

下面以500kV某变电站为例,阐述作业风险评估在变电运行中的开展情况:

(1)根据相关作业风险评估工作方案,500kV某变电站选派安全区代表参加局组织的安全风险管理体系知识和作业风险评估培训班,接着在站内开展作业风险评估知识培训,以保证作业风险评估方法的全员掌握。

(2)经过全体人员讨论和梳理,本专业共有作业任务59项。

(3)利用安全活动或交接班的机会,将59项作业任务分成三组开展作业风险评估工作,然后集中交叉审核和讨论,最后汇总成为《区域内作业风险评估填报表》。

(4)最后形成本站的作业风险概述。总结出500kV某变电站日常工作中存在的主要危害有9种。对这9种危害进行评估,得出可接受及低风险主要分布在化学危害、职业健康、物理危害、人机功效、环境危害。中等风险危害有7个,中等风险危害有行为危害、化学危害、职业健康、物理危害、人机功效、环境危害,包括误碰故障设备、错投退压板、合(分)刀闸不到位、受伤的人、开路的CT等等。作业风险结果为修编作业表单提供依据。

(5)根据作业风险评估结果,修编运行专业的作业表单。目前500kV某变电站共有42份通用变电作业表单和8份专用变电作业表单,为变电运行现场工作提供有效可靠的风险预控措施。

4.结语

安全生产风险管理体系是南方电网公司在安全生产管理方面的创新,也是落实南网方略的具体体现。作业风险评估工作是四大风险评估工作之一,对变电运行专业现场风险预控有非常重要的意义。变电专业的作业风险评估已经开展了一段时间,虽然取得了一定的成果但仍存在有发展的空间。这主要是指如何将作业风险评估结果更有效指导现场作业,从而达到现场作业风险可控的目的。在这个问题上我们仍然需要在实践中继续探索。这需要基层变电专业坚持持续改进的原则,为深入践行安全生产风险管理体系继续向前。 [科]

风险评估的定义范文第8篇

关键词:电网;风险评估;作用

中图分类号:TM715 文献标识码:A

随着我国经济的快速发展的脚步,生产生活对电力需求日益增强,电网不仅规模在不断扩大,结构也越来越复杂,电网的安全问题也日益突出。据报道,各地多地区发生电力事故,给大众的生活带来了困扰,也威胁了社会了安定。如今,大众关注的热点就是电力系统的安全问题。所以,为了保证国家社会、经济的稳定,保护人民生命财产的安全,迫切的需要对电网规划的风险评估。它能够估测出事故发生的概率和产生的后果,进而定量出电网的风险指标,进而有效阻止了电网建成后一些事故发生。

一、风险评估的必要性

电网的评估是一项内容繁琐,属性众多,意义非凡的工程。电力系统运行风险评估就是对电网在其规划设计和使用运行中可能存在的隐患进行综合评估。也可以说是对电网系统面临的不确定性、不安定性的因素,给出概率和风险的综合度量,解释运行中的电力系统对于扰动事件的暴露程度,同时挖掘电网元素可靠运行的潜力,或改善其稳定性,来保证系统电网可靠、安全、高效地运行。尤其是风险定量评估,其能够表现出问题事件发生的可能性和这些事件发生后果的严重程度。某些指标能够根据相应的评估体系给出相应分值。风险评估应用于电网的规划设计中,对电网系统事故发生概率和事故记性综合的评估的模型和计算,能够证实电网规划设计的可行性和实用性。

二、风险评估内容和方法

(一)风险评估内容

风险评估的主要内容包括确定电网元件失效停运的模型;当元件失效停运后,选择系统失效的状态,并计算该状态发生的概率;经系统潮流计算的分析,计算该失效状态发生的风险后果;根据风险的定义,综合计算该失效状态下的风险值,并给出系统所处的危险水平。风险评估遵循的原则主要是科学性、可行性、可比性、完备性、发展性和创新性等。

(二)风险评估的方法

电网系统安全的评估方法主要包括三个方面的内容。一是确定行评估方法。其广泛用于电力工业的早期,缺点是保守,只重视最严重、可靠的事故。二是概率评估方法。该方法优于第一方面的方法,部分克服了他的不足。但是在不同事故造成经济损失方面存在着缺陷,即不能根据事故不同区分经济损失的不同。三是风险评估方法。此方法是市场的需要,也是电力发展的必然产物。随着电力方面事故的频繁发生,要求运行人员掌握系统的安全指标和经济要素,需要对电力市场安全进行风险评估。该方法优于前两种,他以风险理论作为基础,定量的找出事故的可能性和严重性,并且还加入了经济因素的风险指标。在任何事情中,绝对的没有风险是不可能的,需要选择合理降低风险的措施。风险评估是可以满足这些问题的。另一方面是风险定量评估,它是决策过程的基础,充分考虑到过去现在的一些风险因素,包括技术、成本、经济、可应率、社会影响以及环境因素等的现代电力系统综合评估。

三、电网风险评估在电网规划建设中的应用

(一)单线单变风险评估

单线单变就是从(高压)母线上引一条线路。一般的都是双线制,特别是井下设备的变压供电。其多用于我国一些经济不发达的地区。如在某地区的主接线路图显示,220kV一个站点,仅有一条220kV的保线与500kV站的主系统连接,110kV的线路所连接的110kV的变电站均小水电源。这种是极易发生风险的。如果220kV的保线发生跳闸,小水电源可能形成孤立的系统,其不稳定性可能直接导致局部的停电事故发生。若是恰逢雷雨天气,则更加危险。在风险评估中,这种单线单变的方式是不可取的。发生事故的概率是相当的高。在风险评估测评测中对于这类给的分值为1,认为风险较高。目前,在电网的安全系统中已经充分认识到了这类的缺陷,多地区已经多地区已经加入了相应的自动装置,完善相应的二次回路,希望来降低风险,避免电网事故事件的发生。

(二)负荷的风险评估

在电网安全中常出现事故的原由多为重过载或者超负荷。重过载或者超负荷,简单的理解就是超过了电力设备自身的承载能力。一般这种情况多发生在两个方面,一方面是变压器,另一方面就是线路。在电力输送的过程中,当线路的输送功率接近或大于导线或者变压器允许的容量上限时,随着输电线路中电流的增加,导线的发热量也会急剧增加(热量与电流的平方成正比),继而引发各种严重的后果。如果线路长时间发热,会使其机械强度下降,甚至会出现熔断现象,损坏电力设备。在特别严重的情况下,还有可能使输电系统解列和崩盘,造成巨大的经济损失。供电企业为了获得高额的利润,往往超负荷运行,存在着很大的安全隐患。因此,在整个电网的风险评估中务必加强对配电网重过载的评估。在变压器上的风险评估不仅表现在定性上,还进行了定量分析。如果供电区域内有电源,安全自动装置按照要求投入,在事故情况下能够保持区域电网单独使用运行,则做减半处理。

(三)人员技能的评估

在任何一项社会工作中,都离不开人类的参与。电网规划中风险评估也包括了人员技能的评估。因为人员的操作错误也是潜在的危险因子,可能引起电网事故,造成经济损失。人员的评估主要是考察技能。具体是在配电过程中线路使用和电力设备掌握程度,进行合理的评估。人员的风险评估也是电网规划中风险评估的不可忽视的因素。合理的评估人员的水平,才能保证后期电网建设的顺利进行。此外,还要考虑一些经济效益的影响。需要对经济效益进行合理的而评估,保证在电网规划过程中,资金的合理使用。

(四)外在因素的评估

在电网的风险评估中不仅需要考虑电网内部的因素影响,还要考虑到电网规划中的一些外部因素的影响。当一个电网规划实施过程中,风险评估需要对设置电网的地址进行评估。如某些地址松动地区,易出现泥石流滑坡地区,地震火山喷发地区,等等。这样的地区是不适合建立电网站点的。此外,还有一些政府政策方面因素,也需要考虑到风险评估中去。

结语

电网的风险评估在电网规划中的具有重要的意义。各单位各部门应该高度重视电网的风险评估。本文就电网风险评估结果(包括单线单变、重过载、负荷半径过长等等)如何融入到电网规划建设中展开充分讨论及论证,使电网规划建设有据可依,项目规划来源依据充分,实现以问题为导向,把有限资金用在解决电网存在的突出问题上。