首页 > 文章中心 > 小数乘整数

小数乘整数

开篇:润墨网以专业的文秘视角,为您筛选了八篇小数乘整数范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

小数乘整数范文第1篇

《数学课程标准》(2011版)中明确指出:“运算能力主要是指能够根据法则和运算律正确地进行运算的能力。”数学课堂教学中,培养学生的运算能力,有助于他们理解运算的算理,寻求合理简洁的运算途径解决问题。下面,以“小数整数”一课的教学,谈谈自己的做法和体会。

教学片断一:创设情境,导入新课

师:星期天,小朋友们都到海滨公园的广场上放风筝,冬冬、小雪和雯雯三个小朋友也相约来到公园,他们想买同样的风筝。大家仔细观察商店门前黑板上公布的风筝单价,分别是4元、5元、7元、8元,他们可能要花多少钱呢?

生1:如果买单价是4元的风筝,买3个应付4×3=12(元)。

生2:如果买单价是5元的风筝,买3个应付5×3=15(元)。

生3:如果买单价是7元的风筝,买3个应付7×3=21(元)。

师:商店老板为了提高风筝的销量,决定进行降价促销。降价后的价格分别是3.5元(原价4元)、4.6元(原价5元)、6.4元(原价7元)、7.8元(原价8元),现在买3个同样的风筝要多少钱?(师根据学生的回答,板书:3.5×3、4.6×3、6.4×3、7.8×3)

师:比较一下,这四道算式和前面的算式有什么不同?本节课,我们学习“小数乘整数”。(板书课题:小数乘整数)

【评析:课始,教师创设情境,让学生运用已学过的整数乘法来进行计算解答,并利用商店搞促销这一活动,把原来风筝的价格往下降价,自然过渡到新课的学习。这一环节的设计,既巩固了学生已学的整数乘法的计算方法,又让学生明白了乘法的意义,从而有效调动了学生学习的主动性,使他们兴趣盎然地参与学习。】

教学片断二:借助旧知,寻求算法

师:如果三位小朋友买了3个单价是3.5元的风筝,应该付多少钱?(学生尝试计算)

生1:3.5+3.5+3.5=10.5(元)。

生2:可以化成元、角计算,先算整元,再算整角,最后相加,即3×3=9(元)、5×3=15(角)=1元5角、9元+1元5角=10元5角、10元5角=10.5元。

生3:先把3.5元当作4元计算,再减去多算的部分,即4×3=12(元)、5×3=15(角)=1元5角、12元-1元5角=10元5角。

生4:3.5元=35角,35×3=105(角),105角=10.5元。

师:同学们的方法可真多啊!在这些算法中,你认为哪种算法比较简单?这种算法的关键是什么?(学生分析、比较后认为生4的方法比较简单,并且认识到这种算法的关键是把小数转化成整数)

【评析:学生运用已经掌握的知识,积极探求3个3.5的和:生1是利用小数的加法求出答案;生2是把3.5元化成元和角进行计算,算出答案后再把元和角合并起来,这种方法要让学生注意在统一单位名称时,元、角、分相邻两个单位间的进率是10;生3是先把3.5元当作4元来计算,再减去多算的部分;生4是先把元化成角,再把角化成元,经历了两次的单位转换。学生从多个角度去分析思考同一个问题,但是最后的答案却一致,真可谓“殊途同归”。学生在探究过程中发现可以先把小数转化成整数来计算,然后再还原,为后续学习打下了坚实的基础。】

教学片断三:运用迁移,探究算理

(师引导学生列出生4的竖式,如下)

师:把3.5转化成35,相当于小数点怎样移动?因数扩大到原来的多少倍?

生1:小数点向右移动一位,因数扩大到原来的10倍。

师:另一个因数变化了没有?

生2:没有变化。

师:积发生了怎样的变化?

生3:积扩大到原来的10倍。

师:要想得到原来的积,小数点应该怎样移动?

生4:把105缩小到原来的1/10,即从105的右边起,向左边数出一位小数,点上小数点,原来的积是10.5。

师:你能用自己的话说一说,小数和整数相乘时是怎样计算的吗?(学生在小组内交流讨论)

【评析:探索算理时,教师借助题目中的单位加以说明,帮助学生理解。学生在比较因数的变化时,发现其中有一个因数扩大到它的10倍,另一个因数不变,这样小数乘法就转化成了整数乘法,此时积也随之发生了变化,扩大到原来积的10倍。学生在比较中发现,要想得到正确的答案,需要把积缩小到它的十分之一。学生在初次接触小数乘整数后,会得出小数乘整数的一般计算方法:可以先按照整数乘法计算,再看因数中的小数位数,确定积里面的小数位数。这样教学,使学生经历了算理探究的全过程,既引导学生归纳总结算法,又提高了学生归纳和抽象的思维能力。】

教学片断四:利用算理,尝试计算

师(出示0.72×5):同学们,0.72不是钱数了,没有元、角、分的单位了,又该怎样计算?

生1:可以用加法计算或直接用乘法计算。

师:乘法计算比较简便。用乘法计算时,要先把小数乘整数当作整数乘法进行计算。如把0.72当作72,其中一个因数扩大了100倍,另一个因数不变,积会有怎样的变化?

生2:积也会同时扩大100倍,要想得到正确的积,就要把算出的积再缩小100倍。

(师根据学生的回答,板书竖式的计算过程,如下)

师:当我们算出72×5的积是360后,是先确定小数点的位置,还是先化简再确定小数点的位置呢?

生3:我认为是先确定小数乘整数的小数点位置。因为我们是把其中的一个因数(小数)看作整数来计算的,此时的积是整数的积,不能先运用小数的性质把积的末尾进行化简。

生4:我觉得是先确定小数点的位置,如果先化简就是把乘得的积变小了,然后再点上小数点,结果会变得更小。

师:没错,先确定小数点的位置。360缩小到它的1/10后是3.60,小数的末尾有0时可以进行化简,把小数末尾的0去掉,最后的积就是3.6。

【评析:上述教学,在学生初步学会小数乘整数的方法后,教师提出问题让学生进行争辩,使学生明白小数(一位小数)乘整数时算出的积要从右边起向左数出一位小数并点上小数点。同理可知,小数(两位小数)乘整数时,要从积的右边起向左数出两位小数,再点上积的小数点;积的末尾有0时,要及时进行化简;在积的末尾没有0的情况下,因数中有几位小数,积的里面就有相应的几位小数。】

教学片断五:辨析错误,强化算理

师:同学们现在已经学会了小数乘整数的一般计算方法,现在请大家仔细观察下面几道竖式计算,看看有没有出错的地方。

生1:第一题,先将4.6×3当作整数乘法46×3来计算,算出积后,由于因数中的小数当作整数后扩大了10倍,这样积也扩大了10倍,要想得到正确的积,就必须把138再缩小10倍,而这里的积忘记点上小数点了,结果应是13.8。

生2:第二题,因数中有两位小数,而积的里面却只有一位小数,正确的答案应该是20.4。

生3:第三题出错的原因是积的里面忘记点上小数点,积应是57.6。

生4:第四题中积的小数点点错位置了,积应是两位小数,即6.12。

小数乘整数范文第2篇

小数乘法

第四节

整数乘法运算定律推广到小数

同步测试A卷

姓名:________

班级:________

成绩:________

小朋友们,经过一段时间的学习,你们一定进步不少吧,今天就让我们来检验一下!

一、填空题

(共7题;共18分)

1.

(1分)

在横线上填上“>”“

5.02÷0.99________5.02

(1.25+0.5)×8________10

7.2×a________7.2÷a(0

2.

(1分)

(3.7×4)×2.5=3.7×(4×2.5)应用了________定律.

3.

(3分)

计算(能简算的要简算).

99×5.7=________

4.

(4分)

做表中的乘法题,尽可能灵活地计算.

________

5.

(1分)

甲乙两列火车同时从A、B两地相对开出,甲车每小时行123.5千米,乙车每小时行126.5千米,4小时相遇,A、B两地相距________千米?(用两种方法计算,体会一下乘法分配律能使运算简便)

6.

(4分)

1.25×2.5×8×0.4

7.

(4分)

小红要买13对杯子,她需要花( ________   )元。

参考答案

一、填空题

(共7题;共18分)

1-1、

2-1、

3-1、

4-1、

5-1、

小数乘整数范文第3篇

1 、整数加法

把两个数合并成一个数的运算叫做加法。 在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

【公式】

加数+加数=和

一个加数=和-另一个加数

2 、整数减法

已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

加法和减法互为逆运算。

3、 整数乘法

求几个相同加数的和的简便运算叫做乘法。

在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。

在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。

【公式】

一个因数× 一个因数 =积

一个因数=积÷另一个因数

4 、整数除法

已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

乘法和除法互为逆运算。

在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

【公式】

被除数÷除数=商

除数=被除数÷商

被除数=商×除数

二、小数四则运算

1、小数加法

小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

2、小数减法

小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.

3、小数乘法

小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

4、小数除法

小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

5、乘方

求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32

三、分数四则运算

1. 分数加法

分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。

2. 分数减法

分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。

3. 分数乘法

分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

4. 乘积是1的两个数叫做互为倒数。

小数乘整数范文第4篇

教学回放:

在一次磨课活动中,我执教“小数乘整数”一课,第一次试教时创设以下情境:“明明早晨要买三个饼子,一个3.5元,一共需要多少钱?”学生列式为3.5×3。我追问:“这个乘法算式和我们之前学过的乘法算式有什么不同?”生:“这是小数乘整数。”我再问:“你有什么办法解决这个问题?”学生给出了三种解答方法:(1)3.5+3.5+3.5=10.5(元);(2)3.5元=35角,35×3=105(角),105角=10.5元;(3)竖式计算3.5×3,得出结果为10.5(元)。

针对第(3)种方法,我和学生展开探究:“可以先把3.5×3看作整数乘法35×3,得到积为105,但为什么要点上小数点呢?”学生面对问题一筹莫展,于是我从方法(1)和方法(2)入手进行引导,学生才将思维转移到元、角、分的知识上来。整个教学过程开展得还算顺利,大部分学生都会用第(3)种方法解决问题,但在课快要结束时,学生对为什么要将积点上小数点依然困惑不已。这让我认识到,这一节课的教学完全是失败的。那么,到底是哪儿出现问题呢?带着疑惑,我拿起教材,认真研读。

教材编排了两道例题,例1是先让学生从元、角、分的单位换算入手,完成小数乘整数与整数乘整数的转化,即3.5元就是35角,3个35角就是105角,也就是10元5角,写成小数就是10.5元。在这个基础上,教材又安排一道习题作为巩固练习,使学生熟练掌握这种转化策略。然后教材安排了例2,让学生深入探讨规律:“0.72×5,你怎么计算?能不能将0.72化成整数?如何化成整数?那么,积如何才能保持不变呢?”学生通过观察竖式,发现可以将0.72扩大100倍转换成为整数72,这样一来积就被扩大了100倍,为了保持不变,因此积也要缩小到它的百分之一,由此得出计算结果,即0.72×5=72×5÷100=3.6。原来我的教学有两方面的问题:一是对本课的教学难点没有准确把握;二是没有顺应学生的学情,高估了学生的认知起点,想当然地认为学生能够根据积的变化规律来理解算理。梳理教材的教学思路后,我不禁思考:“学生的学情是什么?如何突破教学难点?”于是,在第二次磨课中,我进行了两个层次的教学。

层次一:

先让学生理解为什么要将3.5元转化为35角的原因,然后让他们说说这样转化有什么好处。学生根据自己的生活经验,很快就从直观的感知过渡到抽象的思考:3.5元转化为35角,能够将小数乘整数转化为整数乘整数。“3个35角是105角,就是10.5元,为什么积要点出一位小数呢?”“因为3.5元转化为35角扩大了十倍,所以积要缩小十倍。”为了让学生对这个算理深入理解,我又出示这样一道题:“一个鱼风筝要5.21元,买5个要多少钱?”学生列式为5.21×5,并说出计算的过程:5.21元转化为521分,这样5个521分就是2605分,即26.05元,此时的小数点发生变化,是因为5.21转化为521时扩大了100倍,因此积要缩小到它的百分之一。

层次二:

通过元、角、分的转换,学生发现一个因数扩大100倍,积就要缩小到它的百分之一,也就是将小数点向左移动两位,这样才能保持积不变。于是我让学生继续探究0.72×5,要求不用元、角、分的知识来理解算理,学生很快就有了计算的方法。

教学思考:

数学教学是有规律可循的,每一步都不能操之过急。在小学阶段,学生的思维特点以感性思维为主,过渡到抽象思维需要一个循序渐进的过程,不能一蹴而就。因此,课堂教学中,教师要善于给学生学习新知搭建“脚手架”。那么,如何做呢?

1.把握学情,找准起点

把握学情,才能为课堂教学打好基础。在第一次试教中,我忽略了学生对小数乘整数的算理理解需要用元、角、分来进行过渡,急于求成,主观拔高学生的抽象思维能力,让学生对数学规律的理解和把握变成无本之木、无源之水,背离了学生的认知需求,使学生失去了探究的动力。可见,教师只有顺应学生的认知规律,掌握学情,才能把握课堂教学行进的方向。

2.深研教材,确定难点

深研教材是课堂教学的根本。教材是根据学生的年龄特点、认知规律和知识体系的内在关联进行编写的,所以教师应深入钻研教材,明晰各知识点在整个知识系统中的作用,以此确定教学难点,并根据教学难点为学生搭建好学习新知的“脚手架”。“小数乘整数”一课的教学重点是让学生掌握小数乘整数的算理,即找到将小数乘整数转换为整数乘整数的计算依据,但教学难点是让学生通过理解积的变化规律来掌握算理。教材这样安排大有深意,例1的设置是让学生直观理解小数乘整数的算理,为下一步抽象出数学规律搭建好“脚手架”。例1是学习例2的知识储备,两个例题互相依存,有着内在的关联。所以,教师要训练学生熟练元、角、分之间的转化,这样才能引导学生将整数乘法顺利迁移到积的变化规律上来,使学生获得新知。

小数乘整数范文第5篇

本册教材包括小数乘法、小数除法、小数四则混合运算和应用题、土地面积计算和简易方程。本册教材的重点是小数乘除法计算和简易方程,难点是小数除法和列方程解应用题。

小数乘法是整数乘法的扩展和延伸。当第二个因数是整数时,小数乘法的意义和整数乘法的意义相同;当第二个因数是纯小数时,小数乘法的意义有了扩展,就是求一个数的十分之几,百分之几,千分之几…….小数乘法的计算方法与整数乘法的计***算方法类似,只要掌握了积的小数点的定位方法,小数乘法的计算方法,应刃而解,为此教材应用积的变化规律,把小数乘法转化为整数乘法进行计算。

小数除法的意义与整数除法的意义相同,都是已知两个因数的积和其中的一个因数,求另一个因数的运算,小数除法的计算方法相对于小数乘法的计算方法则较为复杂。教材安排了两个层次进行教学:一是当除数是整数时,计算方法与整数计算方法相同,只要弄清商里小数点的定位问题即可。二是当除数是小数时,则根据商不变的性质,把它转化为除数是、整数的除法进行计算。

小数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同,通过教学和训练,提高学生计算的准确性和熟练程度,培养学生灵活***应用规律,简便合理的进行计算的能力。本册教材的应用题主要是整、小数的三步计算应用题。通过教学,让学生掌握分析应用题数量关系的基本方法,学会列综合式解答应用题,提高学生分析问题和解决问题的能力。

土地面积计算,教材主要安排了直线的测定、测量和土地面积单位的认识、土地面积的计算等内容。通过实践操作,使学生掌握测量和的方法。

简易方程是让学生掌握一些简单的代数知识,学会用字母表示数,表示常见的数量关系、运算定律、平面图形的面积和周长计算公式等,理解方程的意义,学会接需两、三不计算的 方程,并能列方程解应用题。通过两种方法的比较,体会到用方程解应用题的优越性,渗透数学思想。

二、学生情况的分析

本年级有300名学生。从能力上看,大部分学生能够较好的接受课本上的新知识,勇于发表自己的意见,听取和尊重别人的意见,独立思考,掌握学法,大胆实践,并能自评、自检和自改。也有少数同学在解法上表现出自己独到的见解,但存在的问题也有不少,如个别同学接受能力差或主动性不强,需要在教学中加以引导。还有个别学生比较聪明,但学习不勤奋,成绩不理想。此外,在创造性方面也还需要进一步加强。

三、教学目标G

1、掌握小数乘除法的计算方法,能比较熟练地进行计算。会用四舍五入法取积和商的近似数。

2、掌握小数四则混合运算的运算顺序,并能正确地进行计算。

3、会用分步列式或列综合式解答整数、小数的三步计算应用题。

4、会用简单的测量工具或步测、目测测定直线,认识土地面积单位,并能进行简单的土地面积计算。

5、能够用字母表示数,表示常见的数量关系,运算定律和公式,初步理解方程的意义,会解简易方程,会列方程解应用题。

6、会使用计算器。

四、教学措施

在教学中不仅要使学生扎实的掌握每一个知识点,同时还要注重学生情感的发展,把数学自身的特点和学生的学习规律有机的结合起来,必须做到以下几点:

1、加强学习目的性教育,充分挖掘学生的潜能,发挥学生的主体作用。

2、增强学生的动手实践能力,培养学生的空间观念。

3、加强个别辅导,提高学困生的成绩。对学困生要付出更多的关心和爱心,作业适当降低要求。

4、多创设学习情景,大胆放手让学生自学,解疑问难,发展学生的个性特长。

5、注意加强数学与实际生活的联系,让学生在生活中解决数学问题,感受、体验、理解数学。

五、教学进度表

周次起讫

小数乘整数范文第6篇

人教版四年级上册数学小数乘法教学教案

【设计理念】

小数乘整数是在学生学习了整数乘法的意义和计算方法,整数乘法运算定律,因数与积的变化规律,小数的意义和性质,小数加、减法的基础上进行学习的。以上已习得的知识、经验对本节课知识的构建非常有必要 ,因此我们在课的设计上力求沟通新旧知识点的联系,实现新旧知识的迁移和转化。 教材以三峡工程——三峡发电了为素材引入课题,以“因数的变化引起积的变化规律”为着力点,把教学重点放在理解算理和方法上。引导学生在小数乘法到整数乘法的转化过程中逐步达成“理解小数乘整数”算理这一目标,最终归纳出“小数乘整数”的一般计算方法。

【教学目标】

1.经历小数乘整数算理的理解和计算方法的探索过程,交流算法的过程中学生能说出算理,明白计算方法,并体验算法的多样性。

2.通过独立思考、小组合作等环节引导学生能进行有序的自主探索中,培养学生的分工合作意识,。

3.在对算理的学习交流时,沟通知识的内在联系体会转化思想,培养数学推理能力 ,规范数学表达。

4.在解决实际问题的数学活动中,感悟数学来源于生活,体会小数乘整数在生活中的价值。在学习过程中感受主动参与、合作交流的乐趣,培养自主探索的学习习惯。

【教学重点】

理解小数乘整数的算理及算法。

【教学难点】

1、理解小数乘整数的算理及算法。

2、在数学活动中引导学生在独立思考和合作交流中运用数学思维方法探索新知。

【教学用具】多媒体课件、教学视频、音乐、自制答题板。

【教学学法】主要采用了自主探索,观察发现,合作交流等活动方式,使学生生动活泼、主动的、和富有个性的学习。

【教学手段】学生通过独立思考、小组合作等等数学活动及多媒体辅助教学,让学生经历知识的发生、发展过程,通过判断、比较、归纳、总结等方式达到帮助学生主动获得知识的目的。

课例前测

班级: 姓名: 等级:

1.直接写出得数。

0.8×10= 25.6÷100= 0.37×100=

37.5÷100= 59.7÷1000= 0.37×1000=

缩小它的 ( )

2.按要求填一填。

0.568 扩大到它的10倍是( ),0.568缩小到它的100倍是( )

56.48扩大到它的100倍是( ), 56.48缩小到它的十分之一是 ( )。

430.6扩大它的1000倍是( ) ,430.6缩小到它的一千分之一是 ( ).

3.列竖式计算

25×7= 48×16 =

一、 复习导入:

师:同学们,这节我们上什么课?数学课。数学离不开算数这一关,快想想到现在你都学过哪些计算技能?口算是一种吧,……横式]竖式、简算。

让我们做个课前小热身,快速抢答得数!

21×9=

210×9=

2100×9=

我们之所以答得这么快,是因为这几道题之间是有规律可循的。

再仔细观察这组题目及得数,这个规律是什么?

生:增加0,也就是把原数扩大到它的10倍,一个因数不变,另一个因数扩大到原来的10倍,积也扩大到原来的10倍

师: 21×9= 2100×9= 那这两道呢?

生:一个因数不变,另一个因数扩大到原来的100倍,积也扩大到原来的100倍.

生:也就是说:从上往下观察,一个因数不变,另一个因数扩大到原来的几倍,积也扩大到原来的几倍.

师:说的很好,咱我们再换一个角度想一想!从下往上观察,你又能发现什么规律?

生:一个因数不变,另一个因数缩小到原来的几分之一,积也缩小到原来的几分之一。

师: 对,小小计算也存有大智慧!因数与积的变化规律,对我们的学习会有很大的帮助!让我们齐读一下:

【设计意图:导入复习部分的创设意在唤起学生已有的旧知,激活学生的思维,为学习新知识做思维方式和知识上的铺垫。】学生探索一下因数与积之间的变化规律,对后面的学习探索留下一点经验储备。

二、提出问题

师:智慧能够创造奇迹。2009年,当今世界上最大的水电站——三峡水利枢纽工程竣工,它在工程规模、科学技术和综合效益等诸多方面都闻名于世界。想不想亲自目睹下他的风采?(想)请看! [放录像]

师:谁来继续介绍一下三峡电厂的具体情况!

师:知道了哪些数学信息?

师:根据这些信息,你能提出哪些乘法问题?(根据学生的回答老师板书了一些有代表性的问题)

【设计意图:入情入境的教学设计一方面想激发学生继续研究的兴趣,另一方面把数学知识镶嵌在真实的问题情境中,意在密切数学与生活的联系】

师小结:刚才,大家提出了这么多有价值的问题,我们先来看第一个问题可以吗?6台发电机组每小时能发电多少万千瓦时?谁来列式?

58.6×6

三、解决问题:

1、估算

师:这个算式和我们以前学的有什么不一样?这就是我们今天要研究的课题(板书课题:小数乘整数)

师:我们以前学过整数乘法,用以前的方法先来估一估这个算式的结果大约是多少?

生:58.6≈60,60×6=360,58.6×6≈360(万千瓦时)

(设计意图:新课标指出:“加强口算、重视估算,提倡算法多样化”,估算意识的培养要渗透在计算教学中,从而为后面学生计算精确值提供依据。)

2.精确计算

师:那么58.6×6?的准确结果是多少呢?想一想,能不能利用学过的各种计算知识,来算出58.6×6的准确结果呢?(给点思考时间)

师:谁来继续介绍一下三峡电厂的具体情况!

生:(读信息)

师:根据这些信息,你能提出一个用乘法解决的问题吗?(根据学生的回答老师板书了一些有代表性的问题)

【评析:形象的情景教学,使学生如入其境,可见可闻。同时把数学知识镶嵌在真实的问题情境中,也有助于学生意识到所学知识的相关性和有意义性。】

师:刚才,大家提出了这么多有价值的问题,我们先来看第一个问题:6台发电机组每小时能发电多少万千瓦时?谁来列式?

生1:58.6×6

三、 解决问题:

1、独立思考

师:这个算式和我们以前学的有什么不同?

生2:有一个因数是小数!

师:对!我们以前学过整数乘法,可今天遇到了小数乘法。动脑想想,怎样计算58.6×6?

(生独立思考)

2、小组合作

师:有同学已经有了自己的想法!下面进行小组合作!注意:第一,把自己的想法在组内交流;第二,小组长记录下你们小组讨论出来的方法。第三,每组选出两名同学准备在班内交流。开始活动!

【评析:当学生发现了对“小数乘法”这个新知识还不理解时,就会产生求知的渴望,都希望自己成为“探索者”,把做题的方法弄个明白,于是他们就会去思考、去联系自己已有的知识和经验来寻求答案。在这个过程中,学生已有的知识就象种子一样,生长成新的知识,并且这些新知识的“根”就扎在自己已有的知识和经验这片“沃土”上。】

3、交流方法:

师:哪位同学向代表你们小组来交流?

第一种:连加

生1:我们小组是这样做的:58.6+58.6+58.6+58.6+58.6+58.6= 351.6 我们的做法怎么样?

生2:我觉得有些麻烦,如果乘300多,你是不是就把300多个58.6相加啊?

师:确实太麻烦了。你不但理解了他们的方法,而且还有了更深入的分析。不过,这个小组小数乘法不会做,就想到用小数加法来解决,也动脑思考了!

【评析:“交流”不仅仅意味着让学生讲出不同的算法给他人听,更要在理解他人的算法中做出分析和判断,达到互相沟通的目的。我们在这里看到了学生之间真正的交流、真正的沟通,我们还听到教师的评价不但对生2的质疑予以了肯定,同时也表扬了生1开动脑筋努力探索的解题方法。】

第二种:先×10,后÷10

师:还有哪个组想交流?(指生交流)咱们注意听,有疑问就问!

生1:×10就是把58.6变成586,按照586×6算出结果,还要再把得数÷10,这就能得到58.6×6的积。

师:对于这种方法,你能不能提出自己的疑问?

生2:你们为什么要先×10,最后又÷10?

师:你的问题很有价值,看来你是用心思考了。

生1:(做了一个形象的比喻)这就象我们小组加减分一样,早晨加了一分,可又被一位同学扣掉一分,互相抵消了,既没加也没减。

师:多形象的比喻!这样解释明白吗?还有问题吗?

生3:为什么要把58.6×10变成586?

生1:58.6×6不会做,变成586×6,这是整数乘法,我们熟悉、好算!

生3:噢!明白了!

师:真是个好主意!这个方法很巧妙。你们组不但会思考,而且能很好的表达出自己的想法。

【评析:“学贵生疑”。“能不能提出自己的疑问?”,“还有问题吗?”——教会学生善于质疑问难,为实现生生互动创造基础。同时将这些问题直接抛给了学生,拓展了学生与学生直接交流的空间,让学生与学生直接对话。】

第三种:58×6+06. ×6

师:你们小组有什么好方法?

生1:我们把58.6分成58和0.6两部份,分别和6相乘:58×6=348 0.6×6=3.6 3.6+348=351.6

师:大家明白了他们的方法吗?谁来说说他们是怎样想的?

(生2把这种方法又介绍了一遍)

师:你知道为什么0.6×6得3.6,他们怎么算的?

生2:6×6=36,0.6×6=3.6。

师:哦!也是把0.6看成整数来计算!

【评析:学生的交流让其知无不言,言无不尽。他们从同学身上学到的许多东西是教科书上所没有的。】

第四种:竖式

师:还有不同的方法吗?来看看你们小组的方法!

生1:我们列了一个竖式。遮住小数点,不看。直接算586×6=3516,最后把小数点加上去。

师:注意到没有,他刚才做了一个很形象的动作是什么?

生2:遮住小数点!

师:哎!把小数点遮住,他们先算什么?

生3:586×6

师:这个小组也是先把小数变成整数来做的。

【评析:“遮住”虽然学生的语言是稚嫩的,但不难发现,学生对小数乘法的算法更接近了转化的思想。教师就是要做一个发现者,随时注意学生所传达出来的信息,适时点拨,点燃学生想说、想表现的欲望。】

师: (把第二种方法和最后一种方法同时展示,进行对比分析。)哎?那大家看一下,这两个小组的解体思路就是不谋而合的?

生:(恍然大悟)都是变成整数来计算的。

师:(指一生)来!咱俩一起合作!把你们思考的过程记录下来。

他们都是,先把58.6扩大到原来的10倍成为586。

再用586和6相乘得到3516,3516是谁的得数?

怎样才能得到原来58.6×6的积呢?

生:把3516再缩小到原来的1/10

师:这句话很重要我把它记下来。

小数点点在哪?

生:点在6的前面。

师:这个小数点可不是随便点上去的。是把3516缩小到原来的1/10,小数点向左移动一位。这就得到了351.6

(指生完整的介绍一遍竖式方法的思路。)

【评析:在这里,你不但看到了多种观点的分享、沟通和理解,更多的是多种观点的分析、比较、归纳和整合的互动过程,最终在教师的引导下,学生对小数乘法的计算方法有了更深刻理解。】

4、总结思想

师:多清晰的思路!同学们,你知道吗?刚才咱们在这整个的研究过程中,不知不觉地运用了一种很重要的数学方法——转化:把不熟悉的小数乘法转化成小数加法,或者转化成整数乘法来计算。在以后的学习中,我们还会用到这种方法,把新问题转化成我们旧知识来解决。

【评析:思想是数学的灵魂。方法如果没有思想的引领,方法也只能是一种笨拙的工具。在此,学生在经历了一个数学家发现的过程后,感受到了比数学知识更重要的“转化”的数学思想方法。】

师:这是我们思考的过程,实际计算时不用写出来。只需像这样列竖式计算。

四:巩固练习

师:我这里还有一道题,你会算吗? 13.2×4

学生独立完成,找一名同学讲讲计算过程!后同桌互相检查看看对不对!

师:再看这个问题,“26台发电机组每小时发电多少万千瓦时?”列出算式!观察这个算式与上面的有什么不同?

生:刚才我们做的是小数乘一位整数,这是小数乘两位整数。

师:试试看!写在题板上。如果有问题可以和同桌商量一下!

师:(出示错题)刚才,老师发现有位同学是这样做的!你对他的计算过程有什么看法?

生:因为这次是乘两位整数,其实这都是计算过程,都要按照整数乘法计算,不用点小数点。到了最后的结果我们再缩小到原来的1/10。

师:其实呀!我们还要好好感谢这位同学,给我们提了个醒。如果还有错的也不要着急。就像这样,先仔细找找原因,再改过来!

【评析:理解小数乘整数的算理及算法是难点,学生出错很正常。老师抓住学生出现的错误,让学生通过交流找到错误原因,再次感受知识的形成过程。】

师生共同归纳:计算一位小数乘整数时,先把一位小数扩大到原来的10倍,转化成整数,按照整数乘法的方法来计算,然后把结果缩小到原来得1/10,就得到最后的得数。

五、实际应用:

师:小数乘法在生活中的作用很大。最 后老师还给同学们带来一段有趣的小故事,一起来看!

(故事内容:老爷爷在卖苹果,1.5元一斤。小姑娘过来讲价:“太贵了,5元钱3斤卖不卖?”,老爷爷说:“不卖!不卖!”)

师:看到有的同学笑了,能不能说说你笑什么?

生1:3斤只有4.5元。如果卖5元钱3斤能多赚5角,老爷爷居然还不卖!

生2:小姑娘不会讲价,5元钱3斤,越讲越高!哪有这样讲价的?

师:看来不学会小数乘法的知识是不行的。刚才大家都认为老爷爷傻,其实呀,换一个角度想,老爷爷可能并不傻,他不贪图眼前的小利,讲究的是诚信经营。

【评析:摆脱了唯知识的教学,才是以人为本的教学。小故事在本节课里起到了联系实际,重视应用的作用。最后那句平时无华的话,拥有着一种大教学的观念,为学生形成正确的世界观、人生观铺垫着点滴基础。可以想象,学生在这样辩证思想的长期熏陶下,他们学会从不同的角度思考问题,就会获得不一样的收获。同时,认识世界、评价他人时不会那么狭隘。】

师:这节课,还有几个有关小数乘法的问题,以后继续研究。今天咱们就上到这儿!下课!

堂堂清后测

班级: 姓名: 等级:

1.直接写出得数。

0.73×10 = 0.73×100 = 0.73×1000=

1.3×3= 1.3×30= 0.13×300 =

2.使用竖式计算。

13×2.5= 0.35×47= 2.48×60=

3.解决问题

1. 一头山羊每天产奶19.6千克,照这样计算,这头山羊10月份可以产奶多少千克?

2.2003年著名的旅游景点孔孟之乡——曲阜“三孔”平均每月接待游客9.8万人。2003年曲阜“三孔”全年接待游客约多少万人?

看了四年级上册数学小数乘法教学教案的人还看:

1.苏教版七年级数学上册教案

2.七年级数学上册教案人教版

3.人教版初中一年级数学教案

小数乘整数范文第7篇

1、十进制转八进制,有两种方法:直接法与间接法,先看直接的方法,与十进制转成二进制相同,咱们还是分整数部分转换和小数部分转换。

2、整数部分,除8取余法,每次将整数部分除以8,余数为该位权上的数,商继续除以8,余数又为上一个位权上的数,然后以此类推一直下去,直到商为零,最后从最后一个余数向前排列就可以了,

3、再看小数部分,与转二进制相同,这里是乘八取整法,也就是说小数部分乘以8,然后取整数部分,再让剩下的小数部分再乘以8,再取整数部分,……以此类推,一直乘到小数部分为零为止。

(来源:文章屋网 )

小数乘整数范文第8篇

错误一:乘除法混淆;

如口算 4.5×0.01= 4.5÷0.01= 这两题时,常常有学生将答案写反了。我想出现这样的错误,是因为学生对于小数乘、除法的算法不太明确:小数乘法是先看成整数乘法计算,最后根据因数中小数的位数点小数点;小数除法,先根据商不变的规律将除数变成整数,再进行计算。还有的学生在计算一个小数除以整数时,在竖式上杠掉了被除数的小数点。这些都是因为没有很好的理解商不变规律对计算小数除法的作用。

错误二:商中间有0;

在让学生计算3.66÷1.2时,不少学生得数网为3.5,观察他们的竖式计算过程,发现原来是个位上商3后,同时落下6和0两个数字。其实,这个算法与前面研究的整数除法中商中间有0的情况是相似的。数学学习是循序渐进的过程,每一个前期所学的知识都会对后续学习产生影响。