开篇:润墨网以专业的文秘视角,为您筛选了八篇一个圆柱和一个圆锥范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
1.知识与技能:理解圆锥体积的公式,会运用公式计算圆锥的体积。
2.过程与方法:培养学生初步的空间观念、逻辑思维能力和动手能力。
3.情感、态度与价值观:向学生渗透转化的思想。
教学重点:
圆锥体体积计算公式的推导过程。
教学难点:
正确理解圆锥体积计算公式。
教学过程:
一、复习
1.提问
圆柱的体积公式是什么?求下列圆柱的体积:(1)底面积是7平方厘米,高是6厘米。(2)底面半径是4分米,高是15分米。
投影出示圆锥体,学生说出圆锥的底面和高。
2.导入
同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。
二、探究新知
1.指导探究圆锥体积的计算公式
教师手持一铅锤,问怎样求出它的体积。把它放入水中,看水面升高了多少,这种方法行吗?(不行)这样求每个圆锥的体积太麻烦了,下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了三个圆锥体容器、一个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒入圆锥体(或圆柱体)容器里,倒的时候要注意:把两个容器比一比、量一量,看它们之间有什么关系,并想想通过实验有什么发现?
学生分组实验,并汇报实验结果:
(1)圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土,往圆柱体容器里倒,倒了一次,又倒了一些,才装满。
(2)圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土,往圆柱体容器里倒,倒了两次,又倒了一些,才装满。
(3)圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土,往圆柱体容器里倒,倒了三次,正好装满。
教师演示,并引导学生发现:圆柱体的体积等于和它等底等高的圆锥体体积的三倍,或圆锥的体积是和它等底等高圆柱体积的三分之一。
用字母表示圆锥的体积公式并板书。
思考:要求圆锥的体积,必须知道哪两个条件?
2.运用公式求圆锥的体积
(1)一个圆锥的底面积是6平方分米,高是4分米,求它的体积。
(2)一个圆锥的底面积是12平方米,高是5米,求它的体积。
3.讲解例题
多媒体出示例题:工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子的底面直径是4米,高是1.2米,这堆沙子大约有多少立方米?(得数保留两位小数)
这堆沙子是什么形状?(圆锥)
求这堆沙子的体积,实际上就是求谁的体积?(圆锥)
要求圆锥的体积需要和道哪两个条件?(底面积和高)
哪个条件是已知的?另一个条件怎么求?(高是已知的,底面积可以由底面直径求出。
生独立完成,教师巡视指导,集体订正。
三、巩固练习
1.一个圆柱的体积是75.36立方米,与它等底等高的圆锥的体积是( )立方米。
2.一个圆锥的体积是141.3立方厘米,与它等底等高的圆柱的体积是( )立方厘米。
3.一个圆锥的底面积是13平方分米,高是3分米,它的体积是多少?
4.一个圆锥的底面半径是10厘米,高是8厘米,它的体积是多少?
5.一个圆锥的体积是16立方分米,底面积是2平方分米,高是多少?
1.从圆锥的( )到( )的距离是圆锥的高,圆锥有( )条高。
2.圆柱的体积是( )的圆锥体积的3倍,所以圆锥体积的公式是( )。
3.把4个同样大小的圆柱,熔铸成等底等高的圆锥,能熔铸( )个。
4.一个圆柱的体积是60立方厘米,和它等底等高的圆锥的体积是( )。
5.把一段圆柱形圆木,加工成等底等高的圆锥体,削去部分体积是圆柱体积的( ),是圆锥的( )。
6.用一张长是25.12厘米,宽3.14厘米的长方形厚纸板围成直圆柱,有( )种围法;其中一种围成的圆柱的高是( )厘米,直径是( )厘米;另一种围的圆柱的高是( )厘米,直径是( )厘米。
二、观察思考下面的解题过程和结果,是否正确?
1.一根圆柱形水管,内直径20厘米,水流的速度是每秒4米,这个水管1分钟可以流过多少立方米的水?
解:(1)圆柱形水管的底面积
(2)圆柱形水管的容积(4米相当圆柱的高)
314×400=125600(立方厘米)
(3)1分钟可以流过多少水
125600×60=7536000(立方厘米)
7536000立方厘米=7.536立方米
答:这个水管1分钟可以流过7.536立方米水。
2.有一根长20厘米,半径为2厘米的圆钢,在它的两端各钻了一个深为4厘米,底面半径为2厘米的圆锥形小孔做成一个零件,如图这个零件的体积是多少立方厘米?
解:
(1)圆柱的底面积
2×2×3.14=12.56(平方厘米)
(2)圆柱的体积
12.56×20=251.2(立方厘米)
(3)圆锥形小孔的体积
12.56×4=50.24(立方厘米)
(4)零件的体积
251.2-50.24=200.96(立方厘米)
答:这个零件的体积是200.96立方厘米。
3.一个高3分米,底面直径为20厘米的圆柱形水桶里装满水,水中放着一个底面直径为18厘米,高为15厘米的铁质圆锥体,当这个铁质圆锥体取出后,会发生怎样的变化?结果如何?
解:当这个铁质圆锥体取出后,桶内水面要降低,因为这个物体原来占据了一些空间,结果怎样,就要先求圆锥体的体积,再求变化的结果。
(1)圆锥的底面积
(2)圆柱的底面积
(3)圆锥的体积
(4)水面降低的米数
1271.7÷314=4.05(厘米)
三、综合运用知识解决实际问题。
1.有A、B两个容器,如图,先把A容器装满水,然后将水倒入B容器,B容器中水的深度是多少厘米?
*2.如右图,是一个棱长为4分米的正方体零件,它的上、下、左、右面上各有一个半径为2厘米的圆孔,孔深为1分米,这个零件的表面积是多少?体积是多少?
*3.把一个直径是2分米的圆柱的底面分成许多相等的扇形,然后沿直径把圆切开,拼成一个和它体积相等的长方体,这个长方体表面积比原来圆柱的表面积增加8平方分米,这个长方体的体积是多少?
教学目标:
1.使学生理解和掌握圆锥体积的计算公式,会运用公式计算圆锥的体积并解决简单的实际问题。
2.在推导公式过程中,通过小组合作、动手实验的方法,培养学生分析、推理的能力及抽象概括能力。
3.在探究公式的过程中,向学生渗透“事物之间是相互联系”的,并通过活动,使学生形成良好的合作探究意识。
教学重点:掌握圆锥体积的计算公式。
教学难点:圆锥体积公式的推导过程。
一、提出问题,激发兴趣
师:揭示课题后,让学生自由地说一说用什么方法能求出圆锥的体积。
生1:变成圆柱体。
生2:变成长方体。
生3:放入水中求上涨的水的体积。
生4:把空圆锥装满水倒入量杯或量筒。
…………
师:这些方法都很好,都是把圆锥转化成我们学过的立体图形。今天,我们共同探究一种更为一般的计算圆锥体积的方法。你愿意选择哪一种立体图形来作为研究的工具?
生:圆柱体。
师:为什么呢?
生:因为它和圆锥的共同点很多,都有一个曲面,而且底面都是圆形。
生:我猜想它们的体积之间有一定的联系。
师:请各小组从实验器材(两只圆柱和两只圆锥容器)中选一只圆柱和圆锥,做实验来验证你们的猜想。
二、动手实验,合作探索
师:请小组合作,利用圆柱容器、圆锥容器、水进行实验,共同探究圆柱体积与圆锥体积之间的关系。
6个小组展开合作实验:有的拿着圆柱,有的拿着圆锥,用圆锥装水往圆柱里倒,有的用圆柱装满水再倒入圆锥,有的观察水的高度,有的记录实验数据。必须说明的是,其中三个小组使用的圆柱和圆锥分别是等底等高的,另外三个小组使用的分别是等底不等高、等高不等底、或底高均不相等的。
三、汇报交流,引出冲突
师:通过实验,你们有何发现?
组1:我们实验时,用圆锥三次装满水连续倒在圆柱里,圆柱正好装满。这说明圆锥的体积是圆柱体积的1/3。
组2:我们用圆柱装满水往圆锥里倒,等到圆锥第三次装满水,圆柱里的水也正好倒完。这说明圆柱的体积是圆锥体积的3倍。
组3:我们组实验的结果与前面两组基本一致。
组4:我们用圆锥三次装满水连续往圆柱里倒,圆柱并没有装满,所以,我们认为圆锥的体积不是圆柱体积的1/3。
组5:我们组实验时,用圆锥装满水往圆柱里倒,倒完第二次后圆柱就满了。
组6:我们还要快,圆锥第一次装满水倒入圆柱后,圆柱就满了。
师:根据这些实验组的汇报,把结论分成两大类:1、圆锥的体积是圆柱的三分之一 ;2、圆锥体积不是圆柱的的三分之一 。
师:这是怎么回事呢?同样的实验为什么会得到不同的结果呢?
学生陷入了沉思,开始对整个实验过程进行回顾。
生:是不是我们实验所用的圆柱和圆锥有什么差别呢?
“一语惊醒梦中人”,学生开始用各种方式比较各组所用的圆柱和圆锥,也有的拿起尺开始测量圆柱和圆锥的底和高……
四、柳暗花明,又一春
师:请小组相互间交流一下,找一找结论不一样的原因。
持有两种不同观点的实验小组互换实验器材,进行实验操作。
生再次汇报交流,经过辨析,得出结论:在等底等高的情况下,圆锥的体积是圆柱的1/3。如果不等底不等高,圆锥的体积有可能不是圆柱的1/3。
概括公式V锥=V柱=1/3sh
(等底等高)
五、巩固练习
(一)判断:用手势来回答
1.圆柱的体积是圆锥体积的3倍。( )
2.一个圆柱,底面积是12平方分米,高是5分米,它的体积是20立方分米( )
3.把一个圆柱木块削成一个最大的圆锥,削去的体积是圆柱体积的三分之二。( )
(二)思考题
你能想办法算出你手中圆锥体的体积吗?说说测量和计算的方法。
六、课堂小结:这节课你有什么收获?
板书:圆锥的体积
圆锥的体积=1/3×底面积×高
等底等高V=1/3Sh
七、反思
1.注重体验,引导发现
重视数学学习过程的体验是国家数学课程标准的一项重要指导思想。体验使学习过程不仅成为知识增长的过程,同时也是身心和人格健全、发展的过程。在圆锥体积公式的学习,关键是建构“圆锥的体积是等底等高的圆柱体积的1/3”这一概念。而这一概念的形成,靠文字解释和直观形象的观摩演示,都是苍白无力的,它需要学生发自内心、倾心投入的亲身体验。于是便有了上述实验,学生们借助不同的学具得到了不同的结果。“同样的实验为什么会得到不同的结果呢?”再次发问引发了学生对实验材料的对比与反思。结果可想而知,学生对“等底等高”这一认知重点因充分体验而获得深刻领悟。
2.精心预设、有效指导
《数学课程标准(实验稿)》明确指出:“数学教学活动必须建立在学生认知发展水平和已有的知识经验的基础上。”这就要求教师在教学方案的预设中,必须对学生的直接经验有所估计,使教学成为学生已有的知识和直接经验的逻辑归纳和引申,增加学生学习的体验性和生成性。文中先通过发散性的问题,让学生运用“转化”的数学方法自由地想出求圆锥体积的方法,再加以巧妙引导,使学生自然想到选择“圆柱”作为研究工具。由此看出,我们不但要使学生能够进行某种目的和意义的实验操作,还要使他们懂得为什么要这样操作,这样才真正体现实验操作的价值。
1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。
教学重点和难点
圆锥体体积公式的推导。
教学过程设计
(一)复习准备
1.我们每组桌上都摆着几何形体,哪种形体的体积我们已经学过了?举起来。
这是什么体?(圆锥体)
(板书:圆锥)
上节课我们已经认识了圆锥体,这里有几个画好的几何形体。
(出示幻灯)
一起说,几号图形是圆锥体?(2号)
(指着圆锥体的底面)这部分是圆锥体的什么?(底面)
(指着顶点)这呢?
哪是圆锥体的高?(指名回答。)
(用幻灯出示几个图形。)
在这几个圆锥体中,几号线段是圆锥体的高,就举几号卡片。
(学生举卡片反馈)
你为什么选2号线段呢?为什么不选3号、4号呢?(指名回答)
那么这个圆锥体的高在哪呢?(在幻灯上打出圆锥体的高。)
看来,同学们对于圆锥体的特征掌握得很好,这节课我们就重点研究圆锥的体积。
(板书,在“圆锥”二字的后面写“的体积”。)
(复习内容紧扣重点,由实物到实间图形,采用对比的方法,不断加深学生对形体的认识。)
(二)学习新课
(老师拿出一大一小两个圆锥体问学生)这两个圆锥体哪个体积大,哪个体积小?
(再拿出不等底、不等高,但体积相等的一个圆柱体和一个圆锥体)这两个形体哪个体积大,哪个体积小?(引起学生争论,说法不一。)
看来我们只凭眼睛看是不能准确地得出谁的体积大,谁的体积小,必须通过测量计算出它们的体积。圆柱体的体积我们已经学过了,等我们学完了圆锥的体积再来解决这个问题。
为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底等高)
既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行)
为什么?(因为圆锥体的体积小)
(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)
的大米、水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。注意,用大米做实验的同学不要浪费一粒粮食。
(学生分组做实验。)
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?
(学生发言。)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(不是)
是啊,(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了米,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水或米往圆柱体里倒,倒三次能倒满呢?
(因为是等底等高的圆柱体和圆锥体。)
呢?(在等底等高的情况下。)
(老师在体积公式与“等底等高”四个字上连线。)
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
今后我们求圆锥体体积就用这种方法来计算。
(老师在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。)
(三)巩固反馈
1.口答。
填空:
2.板书例题。
例一个圆锥体,它的底面积10cm2,高6cm,它的体积是多少?
(指名回答,老师板书。)
=20(cm3)
答:它的体积是20cm3。
3.练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
4.我们已经学会了求圆锥体的体积,现在我们会求前面遗留问题中的比大小的圆锥体体积了。
(幻灯出示其中之一)这个圆锥体,直径为10cm,高为12cm,求体积。
(学生在小黑板上只写结果,举黑板反馈。)
你们求出这个圆锥体的体积是314cm3。现在告诉你们另一个圆柱体的体积我已经计算出来了,它的体积也是314cm3。这两个形体体积怎样?(一样)刚才我们留下的问题就解决了,看来判断问题必须要有科学依据。
5.选择题。每道题下面有3个答案,你认为哪个答案正确就举起几号卡片。
(1)一个圆锥体的体积是a(dm3),和它等底等高的圆柱体体积是()(dm3)。
②3a(dm3)
③a3(dm3)
(举卡片反馈,订正。)
(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6cm3,圆锥体体积是()cm3。
(学生举卡片反馈,订正。)
6.刚才都是老师给你们数据,求圆锥体体积,你们能不能直接告诉我你们桌上的圆锥体体积是多少呢?(不能)
为什么?(因为不知道底面积和高。)
需要测量什么?(底面半径和高。)
怎么测量?(小组讨论。)
(指名发言)
今天回家后,把你们测量的数据写在本子上,再计算出体积。
这节课我们学了什么知识?
出思考题:
现在我们比一比谁的空间想象能力强。
看看我们的教室是什么体?(长方体)
要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)
指名发言。当争论不出结果时,老师给数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大。
(四)指导看书,布置作业
(略)
课堂教学设计说明
本节课的主要特点有以下几点:
一是始终注意激发学生的求知欲。新课一开始就让学生观察,猜测两组圆锥的大小,激发学习的欲望。在公式推导过程中又引导学生估计两个等底等高的圆柱和圆锥的体积之间的倍数关系,使学生的学习兴趣进一步高涨。在应用公式的教学中,又把问题转向了课初学生猜测体积大小的两个圆锥,并引导学生边测量,边计算,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。
二是在教学中重视以学生为学习活动的主体,整个公式的推导,是建立在学生分组观察、实验操作、测量的基础上的,学生不仅参与了获取知识的全过程,更重要的是参与了获取知识的思维过程。
每当学到圆柱与圆锥这一单元时,学生就会出现各种问题,而且测试成绩往往不够理想。虽然很多人认为圆柱与圆锥这一单元结合实际演示与操作,应该比较容易理解,但是从理解到综合应用还有很多路要走。根据多年的教学经验,特总结出本单元八个易错点:(1)计算始终是学生的弱点,特别是本单元有“3.14”参与的大量小数计算。(2)圆柱侧面积与体积公式混淆。(3)圆柱与圆锥的三种关系混淆。(4)圆锥体积公式及逆运算不易理解(漏掉三分之一)。(5)圆柱表面积计算(有盖无盖的区分)。(6)圆柱底面积、侧面积、表面积与体积的区分。(7)单位转化问题。(8)等积变形问题。
二、解决的办法
1.在上个学期学习圆的周长和面积的时候,就让学生在反复的计算中记住3.14乘某个数字所得的得数。这一点在学习圆柱和圆锥时尤为重要,并且每天坚持做一些类似于:3.14×1.5,3.14×2.52,3.14×25×40的题目,提高学生的计算能力,让学生熟能生巧。
2.结合实际操作帮学生区分圆柱的侧面积与体积公式。圆柱侧面积公式演示:让学生想象手里拿着一个圆柱,然后用食指尖绕圆柱底面一周,再做火箭发射状,表示底面周长乘高。圆柱体积公式演示:让学生用手面做出摸圆柱底面状再做火箭发射的动作,表示用底面积乘高。
3.数形结合解决圆柱与圆锥的三种关系问题。
(1)等底等体积:因为等底,所以圆锥要想和圆柱等体积,就不能长胖,只能长高,让学生想象在等底等高的基础上,圆锥像竹笋一样“长高”到原来的三倍。
(2)等高等体积:因为等高,所以圆锥要想和圆柱等体积不能长高,只能长胖,让学生想象在等底等高的基础上,圆锥底面积“长胖”到原来的三倍。
4.学生在初步计算圆锥体积时,应严格按照先写公式,后列式的格式书写,而且列式时一定要按照公式的顺序,即先写三分之一,再写乘底面积,最后写乘高,避免学生漏乘三分之一。在已知圆锥体积求高时,一定让学生先写出原来的公式,看着原来的体积公式进行逆运算,即用体积先乘三再除以底面积。
5.应多出一些综合性的题目,提高学生对圆柱不同知识点的区分运用能力。如,一个圆柱形铁皮盒有盖,底面半径2分米,高5分米。
(1)如果在盒子侧面贴一圈商标纸,至少需多少纸?(求侧面积)
(2)某工厂要做1000个这样的盒子,至少需多少铁皮?(求表面积)
(3)如果用一个铁皮盒装水,最多能装多少毫升?(求体积)
6.多练习上题中第三小题这样的问题,让学生养成做题前先检查单位是否统一的习惯。
7.借助橡皮泥帮助学生理解等积变形问题。先让学生捏出圆柱的形状并测量底面直径和高求出体积,再把刚才的圆柱捏成圆锥,测量底面直径和高求出体积,比较圆柱和圆锥的体积是否相等。在做此练习时,可以顺便复习圆柱与圆锥的三种关系问题。
三、取得的效果
这是学生学习“圆锥的体积”的教学片断.
师:这个蛋筒形状像什么?为什么?
生1:像圆锥.
生2:因为它有两个面,一个是底面,一个是曲面,还有一个顶点.
师:如果送给你,你选哪个蛋筒?(出示一个大的、一个小的)
生1:我选大的,因为我喜欢吃大的.
生2:我选小的,因为它小可能更好吃.
师:这两个你选哪个?(出示差不多大的两个蛋筒)
(同学们分不出大小,纷纷议论. )
师:今天我们将学习什么内容?
生:求圆锥的体积.
师:请同学们回忆一下,圆柱体积公式推导中,我们是怎样转换的?
生:把圆柱转换成长方体.
师:你认为圆锥的体积可能和什么图形的体积有联系?
生1:可能与长方体体积有联系.
生2:可能和圆柱体积有关.
师:再猜一猜,和什么样的圆柱体积有关系?
(学生小组讨论、交流后汇报,气氛热烈. )
生:圆锥可能和它等底等高的圆柱体积有关系.
师:再猜一猜,圆锥的体积和等底等高的圆柱体积之间有什么关系?
生1:等底等高的圆锥体积比圆柱的体积小一些.
生2:圆锥的体积是和它等底等高的圆柱体积的
生3:圆锥的体积是和它等底等高的圆柱体积的.
师:你会用什么方法来证明?
生1:用圆锥装水后倒入等底等高的圆柱看倒几次.
生2:用圆柱装土后倒入等底等高的圆锥看可倒几个圆锥.
生3:做实验证明.
(出示实验器材. )
师:好,实验前想提醒大家注意些什么?
生1:认识实验器材.
生2:先读实验报告,再认真填写实验报告.
生3:不要把水弄出来.
生4:注意是等底等高的圆柱和圆锥比.
生5:要把水装满,放平.
生6:可能会有误差.
(学生分组做实验. 同桌讨论实验情况,小组交流实验结果. )
召开实验信息会,各组自由发言,进行答辩.
小结:圆锥的体积是和它等底等高的圆柱体积的.
二、案例引发的思考
1. 给学生足够的探究时间
学生在探究过程中需要认真地观察,反复地观察、比较、揣测、采集信息,独立地思考、归纳、分析和整理. 这一切都需要时间作保证. 本课改变了过去教师先引导学生复习旧知再一步步演示的做法,而是教师给学生足够的探究时间(近15分钟),先让学生猜想圆锥的体积可能和什么图形的体积有联系,再猜一猜和什么样的圆柱体积有关系,这样让学生猜一猜,调动了学生的学习积极性,培养了学生发现问题、提出问题的能力. 接着让学生亲手做一做,验证一下自己的猜测是否正确,再根据实验的结果概括出圆锥体积的计算公式. 由于有足够的探究时间,让学生经历了知识的形成过程.
2. 关注学生的自主探究,努力使学生自己发现解决问题的方法
著名数学教育家波利亚指出:“学习任何知识的最佳途径是自己去发现. 因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系. ”小学生由于受自身能力、发展水平所限,他们的创造可能显得幼稚、粗糙,创造性水平也无法与科学家相提并论,但他们的每一个小发现都凝结着他们的思考、付出和努力;他们同样需要经历和体验与科学家的发现相似的“艰难”过程. 如他们需要大胆的设计与构思,学会与他人合作寻求支持;需要反思自己的思维方式并作出分析与修正等. 在本节课中,首先由现实生活问题引入,复习圆锥的特征,接着选定求“圆锥的体积”这个问题,为解决这个问题,教师先安排了“尝试猜测”这个环节,尝试猜测可以看作解决问题的第一步,即圆锥的体积可能是和它等底等高的圆柱体积的,再让学生讨论、实验,从而受到科学探究方法的熏陶. 在学生独立思考、自主探究的基础上,组织学生进行实验,是本节课的重点环节. 由于问题是学生自己提出的,实验时的注意事项也是学生提出的,因此,学生乐此不疲地去发现、尝试、对比、讨论、交流,在合作交流中互相启发,互相激励,共同发展. 教师最后引导学生及时进行反思、总结,并发现实验中的误差. 这样不仅使学生掌握了圆锥的体积公式,而且在不同观点、创造性思维火花的互相碰撞中,学生发现问题、探索问题、解决问题的能力不断得到增强,合作能力不断提高.
教学目标:
(1)学生在动手操作与小组交流等学习活动中,理解并掌握圆锥的体积计算公式,并能解决有关圆锥体积的简单实际问题。
(2)经历圆锥体积的推导过程,培养学生的观察、动手操作、分析归纳等能力。
(3)在猜想、实验、验证、推理等过程中渗透恒等、模型等数学思想和实践第一的辩证唯物主义思想,发展学生的空间观念。
(4)通过小组实验操作,汇报交流,分享成功的喜悦,增强学习数学的信心。
教学重点:理解圆锥体积的计算公式,能运用公式解决实际问题。
教学难点:圆锥体积计算公式的推导过程及圆锥体积等于等底等高的圆柱体积的三分之一的理解。
教学具准备:
多媒体课件、等底等高的圆柱和圆锥、河沙、提水桶装水、实验报告单等。
教学过程:
一、创设情境,引入新知
1.复习旧知
师:孩子们,今天老师带了两个可爱的朋友想与大家一起学习,你们也欢迎它们吗?(出示圆柱的图片)看看,认识它吗?你了解圆柱吗?都知道些什么呢?
学生畅谈有关圆柱的知识。
师:孩子们对圆柱真是太熟悉了。那这个朋友呢?(出示圆锥图片)你又了解了些什么?
学生大胆交流有关圆锥的知识。
师:孩子们真是太棒了,把鼓励的掌声送给自己!
2.引入新知
师:孩子们喜欢上手工课吗?用橡皮泥做过学具吗?看看在一节手工课上发生了什么?在一节手工课上,小红和小芳用橡皮泥做学具。小红做了一个底面积为15平方厘米,高为6厘米的圆柱;小芳做了一个底面积为15平方厘米,高为18厘米的圆锥。小红说:“你做这么高,用的橡皮泥太多了。”小芳说:“你的圆柱要粗的多,用的橡皮泥更多”她们俩究竟谁用的橡皮泥多呢?学生猜猜看。
师:要比较她们俩谁用的橡皮泥多,可以通过计算圆柱圆锥的什么来判断?
生:体积。
圆柱的体积等于什么?(底面积乘以高),那圆锥的体积也等于底面积乘以高吗?究竟该怎样计算圆锥的体积?这节课我们一起来研究圆锥体积的计算方法。
揭示课题:圆锥的体积
二、小组操作,探究新知
1.提出猜想,大胆质疑
师:大家猜猜看,圆锥的体积与我们以前学过的哪种形体的体积有关?
2.小组合作,动手实验
师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。
在小组探究前,请看清要求:(多媒体出示)
1.六人小组的成员必须分工合作(实验员,填表员,汇报员各司其职),利用提供的器材共同想办法解决问题,找出圆锥的体积的计算方法。
2.根据小组研究的方法填写实验报告单。
温馨提示:装沙的时候,轻轻的把圆锥装满即可,用尺子水平的将多余的沙子轻轻刮掉,再轻轻的倒入圆柱。装水注意装满。
师:明白了吗?请在组长的带领下,开始行动吧!
附:( )组的实验报告单
记录人:
实验方法:我们组是用的是空心圆锥装()的方法实验的。
实验步骤:
(1)用等底等高的( )装满( )倒入( )中。
(2)我们组共倒了( )次,正好装满。
(3)我们的发现:用等底等高的()装满()倒入()中,()次刚好能装满。
实验结论:圆锥的体积等于等底等高的()体积的()
学生小组合作探究,教师巡视指导,参与学生的活动。
3.展示汇报,导出新知
师:哪个小组来交流你们的实验方法和结果?
至少抽三个小组汇报,老师注意引导组员补充与教师的跟进。
结合学生的交流,师板书:圆锥的体积等于等底等高的圆柱的体积的[13]。反过来说,圆柱的体积等于等底等高的圆锥体积的3倍。
4.公式推导,理解新知
师:圆锥的体积=圆柱体积的[13],如果用字母v锥表示圆锥的体积,圆柱的体积用v柱表示,则v锥=[13]v柱,而圆柱的体积v柱=sh,所以v锥=[13] sh。公式中的s表示什么,h表示什么?圆锥的底面是什么形状?怎样计算它的底面积?所以圆锥的体积公式还可以怎样表示?
v锥=[13]π[r2]h学生齐读公式,并记住公式。
5.实验质疑,拓展新知
师 :是不是所有的圆锥的体积都是圆柱体积的三分之一呢?我们来做个实验。
师请两个学生做实验演示:用两个等底不等高的圆柱和圆锥装水,结果没有得到圆锥体积是圆柱体积的三分之一,让学生进一步体会等底等高的含义。
6.问题解决,应用新知
孩子们能用我们自己研究的成果来解决问题吗?
出示例1:一个铅锤高6厘米,底面半径4厘米。这个铅锤的体积是多少立方厘米?
孩子们默读题目后问:能独立解答吗?学生独立解答后抽学生的作业展示汇报。
三、拓展应用,巩固新知
1.填一填
(1)圆柱的体积字母公式是(),圆锥的体积字母公式是()。
(2)等底等高的圆柱的体积是圆锥的体积的()倍。
(3)圆锥的底面积是15平方米,高9米,体积是()。与它等底等高的圆柱的体积是()立方米
2.教科书第42页第一题。(课件出示)
学生独立解答,集体订正。
3.刚才小红和小芳的争议,同学们能帮她们解决了吗?谁用的橡皮泥多?
四、梳理小结,提升新知
[摘 要]数学模型思想是数学教学必须渗透的思想方法之一。以“圆锥的体积”教学为例,让学生经历“猜想—验证—应用”的知识过程,培养学生自主获取知识的能力。
[关键词]模型思想 圆锥的体积 数学模型
[中图分类号] G623.5
[文献标识码] A
[文章编号] 1007-9068(2015)02-92
数学课程标准指出:“模型思想的建立是学生体会和理解数学与外部世界联系的基本途径,建立和求解模型可以提高学习数学的兴趣和应用意识。”由此可见,模型思想是数学教学必须渗透的思想方法之一。因此,在教学时,我们要善于引导学生自主探究、合作交流,力求构建数学模型。下面就以“圆锥的体积”为例,谈谈如何渗透数学模型思想,建构数学模型。
[片段一]创设情境,初步感知数学模型
师(课件出示):小麦丰收了!看,小麦堆得像小山一样(麦堆近似于圆锥),小虎和爷爷笑得合不拢嘴。这时,爷爷用竹子量了量麦堆的高和底面直径,给小虎出了一个难题——你能算出这堆小麦大约有多少立方米吗?这下难住了小虎。今天,我们来研究圆锥的体积。(板书课题:圆锥的体积)圆锥的体积可能与哪种立体图形的体积有关?
生1:可能与圆柱的体积有关。
生2:因为它们都是旋转体。
师:请同学们回忆一下,在学习圆柱的体积推导过程中,应用了哪些数学思想方法?
生3:转化的数学思想方法。
师:你说的很准确!仔细观察,看看又能发现什么?
生4:圆锥的底面和圆柱的底面完全重合。
生5:它们的高相等。
师:也就是说,它们是一组等底等高的圆柱和圆锥。猜想一下,它们的体积会有什么关系?
生6:圆柱的体积可能是圆锥的2倍。
生7:圆柱的体积可能是圆锥的3倍或4倍。
集生活味、数学味、趣味性与挑战性为一体而创设的情境,以学生已有认知为起点,通过猜想圆柱与圆锥的体积关系,激发学生学习动机的同时直奔主题。
[片段二]参与探究,自动建构数学模型
师:各小组根据老师提供的实验器材,开展实验,填写实验报告单,验证猜想。
生1:圆柱和圆锥等底不等高,圆锥容器装满水往圆柱容器里倒,倒了一次,又倒了一些,才装满。
生2:圆柱和圆锥等高不等底,圆锥容器装满水往圆柱容器里倒,倒了两次,又倒了一些,才装满。
生3:圆柱和圆锥等底等高,圆锥容器装满水往圆柱容器里倒,倒了三次,正好装满。
生4:圆柱和圆锥不等底不等高,圆锥容器装满水往圆柱容器里倒,倒了四次多一些……
师:想一想,在什么情况下,圆锥容器装满水往圆柱容器里倒,倒了三次,正好装满?
生5:只有在等底等高的情况下,圆锥容器装满水往圆柱容器里倒,倒了三次,正好装满。
本环节充分发挥了学生的主体作用,让学生自己做、自己想。为了克服实验误差对圆锥体积计算公式的推导造成的影响,教师及时进行课件演示,通过比较、分析、推导出圆锥体积的计算公式,让学生初步学会运用实验的方法探索新知识。
[片段三]解决问题,拓展应用数学模型
1.基础练习:一个圆锥的底面积是19平方厘米,高是12厘米。它的体积是多少?
2.综合练习:麦堆的高为1.2米和底面直径为4米,求麦堆的体积。如果每立方米小麦大约重735千克,这堆小麦大约有多少千克?(得数保留整千克数)
3.拓展练习:有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把削成与它等底等高的圆锥形零件,要削去钢材多少立方厘米?
基础练习是圆锥体积公式的直接应用;综合练习和拓展练习不仅是公式的灵活应用,还让学生经历生活问题数学化的过程,体验学习数学的价值。练习设计突出了实效性、层次性和生活性,力求落实“下要包底,上不封顶”的教学理念。
[教后反思]
本节课学生经历了“猜想——验证——应用”的知识建构过程,渗透了数学模型思想,建构了数学模型。
1.猜想验证——培养自主获取知识的能力
课程标准指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学时,要利用学生已有的知识基础和学习经验,让学生自己猜想、自己验证、自己总结,自主解决问题,培养学生自主获取知识的能力。
2.亲身经历——关注知识的形成过程
课程标准指出:“学习数学知识应从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程。”本节课,引导学生通过实验,自主发现圆锥体积等于和它等底等高的圆柱体积的三分之一,导出公式:V= ■Sh。这样,既发展了学生的空间观念,又培养了学生独立思考和合作交流的能力,让学生享受成功的喜悦。