首页 > 文章中心 > 凝聚态物理

凝聚态物理

开篇:润墨网以专业的文秘视角,为您筛选了八篇凝聚态物理范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

凝聚态物理范文第1篇

场论提供的许多工具都在凝聚态问题中得以采用。反之,一些凝聚态模型往往成为实用新技术的玩具模型(“Toy Model”),提供了在普遍现象中研究和理解场论中的一些新的概念和技巧的一种框架。凝聚态物理对于场论发展的重要性早在上一世纪50年代就由Landau和Feynman深刻地指出了。

本书是在作者从1989年秋季开始在伊利诺伊大学讲授“强关联系统物理学”的讲稿基础上发展起来的。其指导思想是以量子场论作为理解凝聚态物理问题的概念框架,阐述一些最感兴趣的问题。

这里评介的是2013年出版的该书第2版。与1990年第1版相比,本书发生了许多新的变化。比如量子霍尔效应发展成了理解物质拓扑相的完全成熟的框架,高温超导的发展促进理论家们产生了寻找解决这一问题的新的概念和方法的努力,在这当中量子场论起着核心作用。这些新的进展成为修改第1版的动机。在第1版基础上,新增加了7章,纳入了反映最新进展的新材料。因此可以说,它已经变成了一部新书。作者希望这些新内容不仅对于凝聚态领域的相关读者而且对于范围更广泛的读者都会是有用的。

凝聚态物理范文第2篇

人类生存的世界,是一个物质的世界.过去,人们只知道物质有三态,即气态、液态和固态.20世纪中期,科学家确认物质有第四态,即等离子体态(Plasma),另外,科学巨匠爱因斯坦在70多年前预言的一种新物态,后来在l995年,被美国标准技术研究院和美国科罗拉多大学的科学家组成的联合研究小组,研究创造出物质的第五态,叫做“玻色一爱因斯坦凝聚态”,2004年1月29日,还是这个研究小组又宣布,他们创造出了物质的第六种形态:费米子凝聚态(Fermionic Condensate),神奇的凝聚态物质如图1所示.

除此之外,还有一种物质有八态的说法:第四态还是等离子态、物质第五态:超密态、物质第六态:辐射场态、物质第七态:反物质和有“物质第八态之谜”称号的:暗物质.

2物质新态引发社会变迁

首先,我们来看等离子态,他是1879年英国物理学家克鲁克斯在研究阴极射线时,发现了具有独特性质的等离子体,从而发现了物质的第四态.

现在等离子态在日常生活中已经有了广泛的认识和应用:闪电作为一种自然现象,其实是由于空气放电形成了等离子体的缘故.在地球上,等离子态的物质并不多见,但在整个宇宙中恰好相反.由于高温或强烈的辐射,物质极易电离,宇宙空间中的许多弥漫星云以及某些恒星大气,都处于等离子态.作为恒星的太阳,其实就是一个高温的等离子火球.太阳的强烈辐射,使高空大气层呈等离子态.这一层大气由等离子体组成,称为电离层.远距离无线电通讯就是依靠电离层反射电磁波,传递信息.五光十色的霓虹灯就是氖或氩的等离子体在发光.把各种不同的惰性气体分别充入不同的灯管,通电时可以发出各种不同颜色的光.等离子态的研究,对于人工控制热核反应,磁流体发电等尖端科学技术具有十分重要的意义.

其次,美国的联合研究小组1995年研究创造出“玻色一爱因斯坦凝聚态”后,负责该项研究的三位科学家获得了2001年度诺贝尔物理学奖.2004年他们研究创造出物质的第六种形态:费米子凝聚态后,国际物理学界认为,这一成果为人类认识物质世界打开了又一扇大门,具有重大的理论和实践意义,将成为年度重大科技成果之一.

这项成果有助于下一代超导体的诞生.而下一代超导体技术可在电能输送、超导磁悬浮列车、超导计算机、地球物理勘探、生物磁学、高能物理研究等众多领域和学科中大显身手.

再看超密态物质:在通常状况下,铁的密度是每立方厘米7.9克,为普通岩石密度的的两倍多.铂的密度是每立方厘米21.5克,约为铁的密度的2.8倍,其密度在地球上可谓大矣.然而,在宇宙中有些天体的密度却大得惊人.如白矮星,按地球引力计算,其中心密度为每立方厘米一百吨左右;根据地球引力计算,中子星的密度每立方厘米达十亿吨左右,相当于,一粒小桃核那么小的中子星物质,需要十万艘万吨级巨轮才能拖动它.了解了其密度如此之大的原因是电子全部被压进原子内层或者被压进原子核,并且认识到宇宙中已发现的中子星就有300多颗,如果航天技术及其他技术都发展到了相当的程度,能够把中子星上的超密态物质取回到地球上来为人类所用,那将是一个什么样的概念呢?

凝聚态物理范文第3篇

关键词:纳米涂层;场发射;电子强关联;软凝聚态物质

2003年在国际和中国都发生了具有突发性的灾难事件,但中国的GDP仍以9.1%的高速度在增长,达到了人民币11.6万亿元,其中第二产业贡献4万多亿元。中国现今的第二产业主要领域是冶金、制造和信息,在世界的地位是大加工厂,也是大市场。在国际竞争中所以有优势是中国的劳动力廉价,这个优势我们能保持多久?我们还注意到与化工有关的产品中,我们的生产效率是国际发达国家的5%,能耗是3倍,环境的破坏是9倍。这就是我们所付出的代价。不论形势如何严峻,21世纪是中华民族振兴的机遇期,制造业绝对是一个极其重要的领域,是个急速发展变化的领域。2003年3月国际真空学会执委会在北京举行,会议上讨论了将原来的冶金专委会改名为“表面工程专委会”,当时也考虑了另一个名字“涂层专委会”,我想用涂层材料更合适,含有继承性和变革性。20世纪70年代曾经说成是塑料年代,此后塑料科技和工业迅速崛起,极大地改变了人类社会。继而是信息时代,通信网、计算机网、万维网、智能网,信息流,日新月异地改变着人类的生活和观念。我们这个时代是高速发展的时代,技术和观念都在与时俱进地改变着。

本世纪初兴起了纳米科技,促进其到来的是由于微电子小型化的发展趋势,推动科技发展进入纳米时代[1],不仅电子学将进入纳电子学领域,物理学进入介观物理领域,各类科技,包括生物医学等都在探索纳米结构与特性。涂层和表面改性越来越多地增加了纳米科技的内容,这是一种低维材料的制造和加工科技,将是制造技术的主流,将迅速地改变传统制造技术的方法、理论和观念,作为现今国际上的制造大国,世界加工厂,我们更应该注意研究制造技术的发展和未来。

1 突破传统制造技术的观念

纳米科技研究的内容主要是在原子、分子尺度上构造材料和器件,测量表征其结构和特性,探索、发现新现象、新规律和应用领域。与我们熟悉传统的相比,纳米材料和器件具有显著的维数效应和尺寸效应。近几年来,在纳米材料制造方面做了大量的研究工作,在纳米粒子粉材的制造,以及材料结构和特性测量、表征上取得了显著成果[2~7]。接下来深入到纳米线、纳米管和纳米带的研究[8~14],出现了一些成功有效的制造方法,发现了一些惊人的结构和特性。在此基础上,发展了纳米复合材料的研究,展现了非常有希望的应用前景[15~17]。近来人们在纳米科技初期成果的基础上挑战某些产品的传统加工技术,比如Al组件的快速加工。

T.B.Sercombe等人报道了快速加工铝(Al)组件的新方法[18],这个方法的主要特征是用快速成型技术先形成树脂键合件,然后在氮气氛中分解其键和第二次渗入铝合金。在热处理过程中,铝与氮反应形成氮化铝骨架,在渗透过程中得到刚体结构。与传统制造工艺相比,这个过程是简单的快速的,可以制造任何复杂组件,包括聚合物、陶瓷、金属。图1是过程示意和原型样品,(a)是尼龙巾镶嵌铝粒子的SEM像,中心有结构细节的是Mg粒子,白色是Al粒子,加入少量的Mg是为还原氧化铝,它将不是铸件中的成分。在尼龙被烧去时,这个结构基本保持不变。(b)是氮化物骨架,围绕Al粒子的一些环状结构的光学显微镜像,再渗入Al时将形成密实结构。(c)是烧结的氮化铝和渗铝组件,小柱的厚为0.5 mm 其密度和强度都达到了传统铸造技术的水平。他们还制作了公斤重量多种结构的样品。这是一种冶金技术的探索,开辟了一种新的冶金和制造技术途径。

2 纳米材料的完美定律

描述材料结构的常用术语是原子结构和电子结构。原子结构的主要参量是晶格常数、键长、键角;电子结构的主要参量是能带、量子态、分布函数。对于我们熟悉的宏观体系,这些参量多是确定的常数,但对于纳米体系,多数参量随着原子数量的改变而变化。这是纳米材料和器件的典型特征,它决定了纳米材料的多样性。其中有个重要规律,我们称之为纳米材料的完美定律,用简单语言表述:“存在是完美的,完美的才能存在”。它包括了纳米晶粒的魔数规则,即含有13、55、147…等数量原子的原子团是稳定的,对于富勒烯碳60和碳70存在的几率最大,而对于碳59或碳71等结构体系根本不存在。这就是为什么斯莫利(Smmolley)他们当初能在大量的富勒烯中首先发现碳60和碳70,从而获得了诺贝尔奖。对于一维纳米结构,包括纳米管和纳米线,存在类似的规则。可以模型上认为是由壳层构成的,每个壳层中更精细的结构称为股,每一股是一条原子链,中心为1股包裹壳层为7股的表示为7-1结构,再外壳层为11股的,表示为11-7-1结构,等等,构成最稳定的结构,这是一维纳米结构的魔数规则。对二维纳米膜存在类似的缺陷熔化规则,即不容许存在很多缺陷,一旦超过临界值,缺陷自发产生,完全破坏二维晶态结构。上述这些低维结构特征是完美定律的具体表述,进步普遍表述理论是正在研究中的课题。

完美定律是我们讨论涂层材料的出发点,因为纳米材料有更多的人造品格,是大自然很少存在或者不存在的,需要人工大量制造。在制造过程中,方法简单、产额高、成本低是最有竞争力的。可以想象,制造成本很高的材料和器件能有市场,一定是不计成本的特殊需要,有政治背景或短期的社会需求。因此在我们探索纳米材料制造时,首先考虑的应是满足完美定律的技术,如用甲烷电弧法制备纳米金刚石粉技术[1],电化学沉积法制备金属纳米线阵列技术[19],以及电炉烧结法制造氧化物纳米带技术[20]等等。

3 涂层纳米材料将给我们带来什么?

涂层纳米材料是纳米科技领域具有代表的材料,或是低维纳米材料的有序堆积结构,或者是低维纳米材料填充的复合结构。两者都比传统材料有惊人的结构和特性。如新型高效光电池[21]、各向异性结构材料[19]、新型面光源材料[22]等,这里举例介绍基于热电效应的新型纳米热电变换材料。

热电效应器件的代表是热电偶,即利用不同导体接触的温差电现象进行温度测量的器件。基于热电效应可以制成两类器件:热产生电和电产生温差。前者可以用于制造焦电器件,即用热直接发电,如将焦电材料涂于内燃机缸表面,利用缸体温度高于环境几百度的温差发电,将余热变作电能回收。后者可以做成电致冷器件。这类的直接热电变换器件具有无污染,没有活动部件,长寿命,高可靠性等优点,但块体材料制成器件的效率低,限制了它的应用。纳米科技兴起以后,人们探索利用纳米晶或纳米线结构能否解决热电效应的效率问题。认为用量子点超晶格材料有希望显著提高热电器件的效率,这是由于纳米材料显著的能级分裂,有利于载流子的共振输运和降低晶格热传导,从而提高了器件的效率。T.C.Harman等人[23]报告了量子点超晶格结构的热-电效应器件,他们制备了PbSeTe/PbTe量子点超晶格(QDSL)结构,用其制造了热电器件(Thermo-electrics,TE),图2(a)是纳米超晶格TE致冷器件的结构和电路图,(b)电流-温度曲线。将TE超晶格材料,其宽11 mm,长5 mm,厚0.104 mm,n-型的TE片,一端置于热槽,另一端置于冷槽,为了减小冷槽热传导而形成这同结接触,用一根细金属线与热槽连接。当如图2(a)所示加电流源时,将致冷降温。对于这种纳米线超晶格结构,由于量子限制效应,发生间隔很大的能级分裂,从而得到很高的热电转换效率。图2(b)是TE器件的电流-温度曲线,实验点标明为热与冷端温差(T )与电流(I )关系,电流坐标表示相应通过器件的电流。■为热端温度Th与电流I 的关系,其温度对于流过器件的电流不敏感。为冷端温度Tc与电流I 的关系,其温度对于电流是敏感的。图中A是测得的最大温差,43.7 K,B是块体(Bi,Sb)2(Se,Te)3固溶合金TE材料最大温差,30.8 K。从图中可以看出,在较大电流时,冷端温度趋于饱和。采用这种致冷器件由室温降至一般冰箱的冷冻温度是可能的。

电热效应的逆过程的应用就是焦电器件,即利用热源与环境的温差发电。对于内燃机、锅炉、致冷器高温热端等设备的热壁,涂上超晶格纳米结构涂层,利用剩余热能发电,将是人们利用纳米材料和组装技术研究的重要课题。

类似面致冷、取暖,面光源,面环境监测等涂层功能材料,将给家电产业带来革命性的影响,将会极大地改变人类的生活方式和观念。

转贴于

4 含铁碳纳米管薄膜场发射

碳纳米管阵列或含碳纳米管涂层场发射被广泛研究,以其为场发射阴极做成了平板显示器。研究结果表明碳管的前端有较强的场发射能力,因此碳管涂层膜中多数碳管是平放在基底上的,场电子发射能力很差。我们制备了含有铁(Fe)纳米粒子的碳纳米管,它的侧向有更大的场发射能力,有利于用涂层法制造平板场发射阴极。图3(a)是含铁粒子碳纳米的TEM像,碳管外形发生显著改变。(b)是碳管场发射I-V特性曲线,I是CVD生长的竖直排列碳纳米管的场发射曲线,II是含铁粒子碳纳米管竖直阵列的场发射曲线,III是含粒子碳纳米管躺在基底上的场发射曲线,有最强的场发射能力。根据此结果,将含铁的碳纳米管用作涂层场发射阴极,有利于研制平板显示器。

5 电子强关联体系和软凝聚态物质

上面所讲到的涂层纳米功能材料和器件是当今国际上研究的热门课题,会很快取得重要成果,甚至有新产品进入市场。当我们在讨论这个纳米科技中的重要方向时,不能不考虑更深层的理论问题和更长远的发展前景。这就涉及到物理学的重要理论问题,即电子强关联体系(electron strong correlation system)与软凝聚态物质(soft condensation matter)。

在量子力学出现之前,金属材料电导的来源是个谜,20世纪初量子力学诞生后,解决了金属导电问题。基于Bloch假设:晶体中原子的外层电子,适应晶格周期调整它们的波长,在整个晶体中传播;电子-电子间没有相互作用。这是量子力学的简化模型,没有考虑电子间的相互作用,特别是在局域态电子的强相互作用。2003年又有人提出了金属导电问题,Phillips和他的同事以“难以琢磨的Bose金属”为题重新讨论了金属导电问题[24]。当计入电子间的相互作用时,可能产生的多体态,超导和巨磁阻就是这种状态。晶体中的缺陷破坏了完善导体,导致电子局域化。电子与核作用的等效结果表现为电子间的吸引作用,导致电荷载流子为Cooper对。但这个对的形成,不是超导的充分条件。当所有Cooper对都成为单量子态时,才能观察到超导性。这样,对于费米子由于包利(Paulii)不相容原则,不可能产生宏观上的单量子态。Cooper对的旋转半径小于通常两个电子相互作用的空间,成为Bose子。宏观上呈现单量子态,Bose子的相干防止了局域量子化。在局域化电子范围内,超导性可能认为是玻色-爱因斯坦凝聚,这个观点现今被很多人接受。从20世纪初至今,对于基本粒子的量子统计有两种,一是Fermi统计,遵从Paulii不相容原理,即每个能量量子态上只能容纳自旋不同的2个电子,而Bose子则不受这个限制。在凝聚态物质中有两个基态:即共有化Bose子呈现超导态,局域化Bose子呈现绝缘态。然而,在几个薄合金膜的实验中,观察到金属相,破坏了超导体和绝缘体之间直接转换。经分析认为这是玻色金属态,参与导电的是Bose子。推断这个金属相可能是涡流玻璃态,这个现象在铜氧化物超导体中得到了验证。

软凝聚态物质研究的对象是原子、分子间不仅存在短程作用力,而且存在长程作用力,表观上呈现的粘稠物质形态,称为软凝聚态。至今,人类对于晶体和原子存在强相互作用的固体已经知道得相当透彻了,但对软凝聚态的很多科学问题还没有深入研究,21世纪以来,引起了科学家的极大兴趣。软凝聚态物质包括流体、离子液体、复合流体、液晶、固体电解、离子导体、有机粘稠体、有机柔性材料、有机复合体,以及生物活体功能材料等。这其中的液晶由于在显示器件上的很大市场需求,是被研究得相当清楚的一种。其他软凝聚态结构和特性的科学问题和应用前景是目前被关注的研究课题。这其中主要有:微流体阀和泵、纳米模板、纳米阵列透镜、有机半导体、有机陶瓷、流体类导体、表面敏感材料、亲水疏水表面、有机晶体、生物材料(人造骨和牙齿)、柔性集成器件,以及他们的复合,统称为分子调控材料(materials of molecular manipulation)。其主要特征是原子结构的多变性和柔性,研究材料的设计、制造、结构和特性的测量、表征,追求特殊功能;理论上探讨原子结构的稳定体系,光、电、热、机械特性,以及载流子及其输运。关于软凝聚态物质,有些早已为人类所用,电解液、液晶等,但对其理论研究处于初期阶段。科学的发展和应用的需求促进深入的理论研究,判断体系稳定存在的依据是自由能最小,体系自由能可表示为F=E-TS,其中S是熵。对于软凝聚态物质体系,S是重要参量。其中更多的缺陷,原子、分子运动的复杂行为,更多的电子强关联,不再是单粒子统计所能描述,需要研究粒子间存在相互作用的统计理论。多样性是这个体系的突出特征,因此其理论涉及广泛、复杂问题。

物理学是探索物态结构与特性的基础学科,是认识自然和发展科技的基础,其中以原子间有较强作用的稠密物质体系为主要研究对象的凝聚态物理近些年有了迅速进展,研究范围不断扩大,从固体结构、相变、光电磁特性扩展到液晶、复杂流体、聚合物和生物体结构等。几乎每一二十年就有新物质状态被发现,促进了人类对自然的认识和对其规律把握能力,推动了科学和技术的发展。21世纪仍有一些老的科学问题需要深入研究,一些新科学问题已提到人们的面前。特别是低维量子限域体系和极端条件下的基本物理问题。20世纪80年代出现的介观物理,后来发展成为纳米科技所涉及的学科领域。与宏观体系和原子体系相比,低维量子限域体系,还有很多物理问题有待解决,人们熟悉的宏观体系得到的规则和结论有些不再有效,适用于低维量子限域体系的处理方法和理论需要探索,特别是将涉及到多层次多系统问题的描述和表征,将会有更多的新现象、新效应、新规律被发现。在纳米尺度,研究原子、分子组装、测量、表征,涉及有机材料、无机/有机复合材料和生物材料,这将大大的扩展了物理学研究的范围和深度。涉及的重大科学前沿问题和重点发展方向有①强关联和软凝聚态物质,及其他新奇特性凝聚态物质;②低维量子限域体系的结构和量子特性,包括纳米尺度功能材料和器件结构和特性;③粒子物理,描述物质微观结构和基本相互作用的粒子物理标准模型和有关问题,以及复杂系统物理;④极端条件下的物理问题,探索高能过程、核结构、等离子体、新物理现象和核物质新形态等;⑤生命活动中的物理问题,物理学的基本规律、概念、技术引入生命科学中,研究生物大分子体系特征、DNA、蛋白质结构和功能等,其研究关键将在于定量化和系统性,必然是多学科的交叉发展,成为未来科学的重要领域。

6 结论

本文讨论了纳米线涂层的结构和特性,重点是纳米线的复合涂层和其电学特性、光电特性。其中包括制造技术新观念,纳米材料的完美定律,纳米涂层的热-电效应,碳纳米管的侧向场发射,以及电子强关联体系和软凝聚态物质,展示了涂层科学与技术的发展前景。

参考文献:

[1]薛增泉,纳米科技探索[M].北京:清华大学出版社,2002.

[2]Pavlova-Verevkina OB,Kul’kova NV,Politova ED,et al.COLLLOID J+2003,65(2):226.

[3]Datta MS,T INDIAN I METALS 2002,55(6):531.

[4]Yamaguchi Y,J JPN SOC TRIBOLOGIS 2003,48(5):363.

[5]Hayashi N,Sakamoto I,Toriyama T,et al.SURF COAT TECH 2003,169:540.

[6]Pocsik I,Veres M,Fule M,et a1.VACUUM 2003,7l(1-2):171.

[7]Fan QP,Wang X,Li YD,CHINESE J INORG CHEM 2003,19(5):521.

[8]Araki H,Fukuoka A,Sakamoto Y,et al. J MOLCATAL A-CHEM 2003,199(1-2):95.

[9]Botti S,Ciardi R,CHEM PHYS LETT 2003,37l(3-4):394.

[10]Tian ML,Wang JU,Kurtz J,et al.NANO LETT 2003,3(7):919.

[11]Rajesh B,Thampi KR,Bonard JM,et al.J PHYS CHEM B 2003,107(12):2701.

[12]Fu RW,Dresselhaus Ms,Dresselhaus G,et al. J NONCRYST SOLIDS 2003,318(3):223.

[13]Kim TW,Kawazoe T,SOLID STATE COMMUN 2003,127(1):24.

[14]Nguyen P,Ng HT,Kong J,et al.NANO LETT 2003,3(7):925.

[15]Li Q,Wang CR,APPL PHYS.LETT 2003,83(2):359.

[16]Chen YF,Ko HJ,Hong SK,Yao T,APPLlED PHYSICS LETTERS,2000, 76(5):559.

[17]Jin BJ,Bae SH,Lee SY,Im S,MATERIALS SCIENCE AND ENGINEERING B,2000,(71):301.

[18]T.B.Sercombe and G.B.Schaffer,SCIENCE,2003,301:1225.

[19]薛增泉,等.新型纳米功能材料[J].真空,2004,41(1):1-7.

[20]Z.W.Pan,Z.R.Dai,Z.L.Wang,SCIENCE,200l,(291):1947.

[21]W.U.Huynh,J.J.Dittmer,A.P.Alivisatos,SCIENCE,2000,(295):2425.

[22]P.Nguyen,H.T.Kong et al.NANO.LETT.2003,(3):925.

凝聚态物理范文第4篇

提到这里,参与这一课题的清华大学物理系教授王亚愚还是会有些小兴奋。

什么是量子反常霍尔效应

对于一般人来说,量子霍尔效应听起来过于专业高深,但是作为凝聚态物理领域中一个重要的量子效应,量子霍尔效应可能离我们的生活并不遥远,科学家们期待着它能在未来电子器件中发挥特殊的作用。

提到量子霍尔效应,这位留着一头卷发的年轻人开始滔滔不绝。“比如说这就是一个一般的金属材料或者半导体材料。”王亚愚随手拿起一本教科书形象地比划起来,“里面电子的运动是非常无序的,它们杂乱无章、互相碰撞,这不仅会引起整个电子器件的速度降低,而且会增大能耗并产生热量。但如果我们能加一个非常强的磁场,这时候电子运动就变得有规律了,它们在材料的两端,像高速公路上的汽车一样,有规则地运动,这时候的电子运动不仅速度加快,相互之间也互不干扰,从而使能耗大大降低,这就是一个量子霍尔效应态。”

然而,量子霍尔效应的产生需要非常强的磁场,不适合个人电脑和便携式计算机。而量子反常霍尔效应的美妙之处是不需要任何外加磁场,在零磁场中就可以实现量子霍尔态,更容易应用到电子器件中。

1879年,美国物理学家霍尔发现了霍尔效应和反常霍尔效应,在过去的30年间曾有两次诺贝尔奖颁给了量子霍尔效应领域的物理学家。近年来,斯坦福大学的张首晟等理论物理学家预言在磁性掺杂的拓扑绝缘体中会出现量子反常霍尔效应,此后,在实验中观测到量子反常霍尔效应成为很多凝聚态物理学家梦寐以求的目标,并引起了一场世界范围的角逐。在美国攻读学位期间,王亚愚就在高温超导的输运研究方面做出过出色的工作。而进入清华大学物理系的第二个年头,他就选择加入薛其坤院士的团队,开始了对量子反常霍尔效应的探索。

青年团队攻克世界难题

科学研究没有坦途,这是一场长达四年的征程。王亚愚在项目组主要负责反常霍尔效应的测量,作为一个三十几岁的年轻人,能参与如此重大的研究课题他感到十分兴奋,然而这种兴奋很快就遭遇了实验的瓶颈期。

“最开始的时候不要说量子化的反常霍尔效应,就连这些材料在离开超高真空的生长环境后,我们能否获得可靠的输运数据都没有把握。”王亚愚说。由于这些材料的复杂性,课题组遭遇了长达1年多的平台期,反常霍尔效应的数值也始终在极低值徘徊,这让负责测量工作的王亚愚有些沮丧。但他明白,科学研究从来都急不得,特别是面对这样一个艰深的科学难题,更要沉得住气,要有耐心。

在王亚愚身上,看不出一丝我们对于实验室科研人员的刻板标签——他既不木讷,也不会无趣。在他的实验室里,学生能带去各种生活用品甚至零食打造自己的小窝,会在记录板中画上每个人的卡通恶搞头像,也会在工作中互相调侃鼓励。

他几乎每天都去实验室与学生交流实验结果,这个实验室是王亚愚刚来清华后一手搭建的。在两间高达3.9米的实验室里,他和学生们一起挖好了实验室里装强磁场磁铁的深坑,一起布置好实验室里复杂的线路,一起组装好一台台精密实验仪器,一起对实验设备作调试……不到两年,一个极低温强磁场实验室和一个超高真空扫描隧道显微镜实验室就建成了。王亚愚毫无保留地将自己所掌握的各种相关技术以及物理背景传授给学生,与他们并肩探索科研难题。

“我们很幸运拥有一批国内顶尖的研究生。”王亚愚提起他的学生们总会露出不自觉的自豪感,“他们不仅工作勤奋,而且由于思维没有受到束缚,实验的很多关键步骤,都是学生们在具体的工作和相互的讨论中摸索出来的。”

有的学生胆子大,有的心细,有的手巧,王亚愚就会尽量给他们最适合的工作,每隔一段时间,整个研究组会坐在一起进行深入的讨论。这是一群极客思想碰撞的交流,大家一起分析实验的所有细节,制定详尽的下一步计划。在不断的磨合交流中,这些有不同专长、不同性格、不同思路的研究人员为了一个共同的目标努力着。

就这样,在薛其坤院士的带领下,王亚愚和其团队成员在过去的4年里共生长和测量了超过1000个样品,在无数次的生长、测量、反馈、调整中,最终获取了最理想的实验结果。

许多人都会问,为什么这样一项重要的发现会在中国获得成功?也许事后太多的回溯会显得有些牵强,但毫无疑问的是有两个重要因素,一是优越的研究环境,二就是团队中的人。

这个攻关世界课题的中国科学家团队,平均年龄只有30多岁,先后有20多名研究生参与其中。王亚愚说,“我们有一批志同道合的青年学者,跟着这个领域里最顶尖的学者薛其坤院士。与学生们一起并肩作战,这不完全是指导和被指导的关系,在这个过程中我们共同成长。”

探索之路永无止境

然而,荣誉只是暂时的,学术研究之路没有止境。“我们下一步明确有两个方向。首先,目前观测到量子反常霍尔效应需要在极低温的情况下,如果想要在电子器件里应用起来,我们需要在更高的温度实现这一量子效应。其次,现在的材料包含了四种元素,这四种元素要经过精确的配比才能达到理想的实验效果,从应用的角度来看过于复杂了,我们还希望能在尽可能简单的材料里也找到这种效应。”王亚愚说,就像大型计算机变身为笔记本的过程一样,要想每一个人都能享受到科学进步带来的便捷,还有很长的路要走。

凝聚态物理范文第5篇

据介绍,凝聚态物理国家实验室(筹)先进材料与结构分析实验室“纳米材料与介观物理”研究小组一直致力于各种纳米材料的研究。他们制备出了宏观尺度的碳纳米管薄膜及纤维,并利用这种连续的力电传递载体制备了高性能的新型碳纳米管复合纤维、复合薄膜及卷绕式电化学超级电容器。最近,在这些工作的基础上,中科院院士解思深指导的博士生李金柱等人对碳纳米管薄膜基人工肌肉致动器进行了研究。

很多材料在光、电、热、磁等作用下会产生弯曲、伸缩等类似自然肌肉的力学形变,被称为智能材料或人工肌肉,可广泛用于仿生机器人、开关、传感器等。传统的智能材料包括压电陶瓷材料、记忆合金等,很多新型的聚合物材料也有类似的性能,但却拥有更小的密度、更低的价格。

其中,离子型电致动聚合物是一种能将电能直接转化成机械能的材料,包括导电聚合物、碳纳米管、离子聚合物凝胶等。其工作电压通常只有几个伏特,这使得它们成为轻质仿生系统运动部件的首选材料。

但是离子迁移通常要在溶液中进行,并且需要克服阻力做功,所以使得这种电致动器件响应较慢(秒至分钟)、频率使用范围很窄(通常小于1赫兹)、力学输出能力也相对较弱。

针对这些难题,物理所的研究人员采用连续的碳纳米管薄膜作为电极层及力学增强体,用灌注了离子液体的天然聚合物凝胶作为电解质层,热压组装成三明治结构的电致动聚合物器件。对这样的悬臂梁式器件两电极层间施加一个交流电场,它就会发生快速的往复摆动。

据介绍,与之前的离子型聚合物致动器相比,这种新型致动器可以长期稳定地在空气环境中工作,其电力学性能也有一到两个数量级的进步,如18毫秒的超快的电力学响应、几十至上百赫兹的相当宽的频率使用范围以及惊人的力学输出能力。

凝聚态物理范文第6篇

量子力学的建立始于对原子物理实验给出解释,其基本概念是从上世纪20年展起来的,并于30年代和40年代取得了快速而巨大的进展。特别是对全同粒子体系的深入研究最终导致现代基本粒子概念的诞生和量子场论的突破性进展,促进了人们对于宇宙的深刻理解。从更为实用的方面讲,量子力学理论体系的建立特别为固体物理与凝聚态物理的发展奠定了基础,它的广泛应用导致了在不同领域大量丰富多彩的人造量子系统的出现。尤其是近20年来,各种类型的纳米尺度的量子设备被成功地制造出来,它们在处理量子信息和制备纳米电路等高新技术方面具有引人注目的应用前景,从而受到广泛的关注。大多数学生希望了解量子力学理论应用于解决现实生活中的问题的解决方案。他们对于深入理解各种实用领域的量子理论基础方面的浓厚兴趣,远大于对现代超弦理论和宇宙学的或所谓的终极理论的兴趣。本书所针对的主要对象正是这类学生,作者期望将学生们的这些实际需求作为高等量子力学课程所涵盖的主要内容。

本书是作者在荷兰代尔夫特理工大学(Delft University of Technology)讲授高等量子力学课程内容的基础上撰写的。这所大学是研究诸如半导体量子点、超导量子计算设备、分子电子学等量子力学应用方面世界一流的中心之一。学校开设的很多理论课都是围绕更有效地支持这类研究而设计的。其中的高等量子力学作为研究生的必修理论课就是典型的代表。本书在开始仍然对初等量子力学做了简明扼要的介绍,然后很快将重点转移到应用这些理论来理解量子设备的实质性内容上来。作者力求使本书在理论技巧和数学知识方面的基础更加扎实,只要涉及到理论工具,一定会给出一些如何使用这些工具的实例。这些实例取自许多不同的领域,使得本书适应更为宽泛的读者群,特别是那些非粒子物理专业的学生。

全书内容分成5个部分,共计13章:第1部分 二次量子化,含第1-3章:1.初等量子力学;2.全同粒子;3.二次量子化。第2部分 例子,含第4-6章: 4.磁性; 5.超导; 6.超流。第3部分 场与辐射,含第7-10章:7.经典场; 8.场的量子化;9.辐射与物质; 10.相干态。 第4部分 耗散量子系统,含第11-12章:11.耗散量子力学;12.跃迁和耗散。第5部分 相对论量子力学,含第13章:13.相对论量子力学。

作为一部教科书,本书充分考虑了教学需要,叙述清晰、透彻,推导详尽。每一小节都有一些“控制问题”,帮助理解课文内容,并可用于课堂讨论。每一章末都给出了一些练习题,其中部分题目给出了详细解答。本书重点突出,特别适合于凝聚态物理相关专业的研究生选做高等量子力学的教材。

凝聚态物理范文第7篇

如果对该定理的证明成立的话,对于今后以超越目前标准模型来解释物理现象的尝试,将很可能具有引导的作用,而且一定可以运用在大型强子对撞机未来可能发现的任何未知粒子的研究上。大型强子对撞机位于瑞士日内瓦附近的粒子物理实验室,该实验室简称CERN(European Organization for NuclearResearch,欧洲核子研究中心)。

卡迪是英国牛津大学的理论物理学家,他表示:“我很高兴。如果这个证明是对的,那我1988年提出的假说能够成立。”

卡迪的假说称为“a定理”,认为以能量激发量子场的方式,在高能状态时比在低能状态时为多。

位于以色列雷霍沃特的魏茨曼科学研究所的学者左哈·寇马高斯基和亚当·施维默,在2011年7月对卡迪的假说提出了证明。在经过其他理论物理学家的检验之后,他们的论证如今渐渐获得接受。

美国新泽西州普林斯顿高等研究院的理论物理学家奈森·塞博格说:“我认为这个论证正确的可能性很高。”

统一原理

由于很多量子场理论尚未被完全解答,所以无法对粒子的活动做综合性的预测,量子色动力学即为一例。这个描述夸克和胶子之间交互作用的强核力理论,其尚未完全解答的部分,让物理学家无法把对高能量、近距离尺度的夸克和远距离、低能量尺度的粒子,例如质子和中子等的研究连接起来。

罗伯特·麦尔斯是加拿大滑铁卢皮瑞米特研究所的理论物理学家。他表示,虽然有许多研究试图把近距离与远距离尺度的量子场理论联系起来,但实际上,其中能够适用于所有理论的通则很少。

不过,卡迪的a定理有可能成为这样的一种通则。a定理的一个版本在二维的情形中已经被证实,但卡迪认为在四维的情形下也会成立,譬如我们现在生活的这个三维空间加上时间。不幸的是,该定理在2008年时似乎被了,因为当时有两位物理学家提出了反例:一个违反卡迪a定理规则的量子场理论。

之后,塞博格和他的同事于2010年重新检验这个反例,并发现了其中的瑕疵。此举为其他学者检验卡迪的假说以及施维默和寇马高斯基提出证明铺了一条路。

虽然施维默和寇马高斯基的证明未臻完善,尚有需要厘清的部分和详细检查的步骤,但麦尔斯认为该证明是对的。他说:“如果这个证明全面完成了,将成为一个威力强大的原理,如果不够完整,也仍然是大多数情况下可成立的通则。”

肯·印德利盖特是加利福尼亚州圣地亚哥大学的理论物理学家。他对这一说法表示同意,并补充说明:数学家要求证明一定要毫无破绽,但是物理学家通常只要这个证明在大多数情况下是对的,就可以了,并且对于任何进一步深入的探究都非常感兴趣。

麦特·斯特瑞斯勒是位于新伯朗斯威的新泽西州罗格斯大学的理论物理学家。在其博客中,他认为这个证明成就非凡,因为一旦有一个精巧的想法确立了之后,整个论证就会水到渠成。

基础日益稳固

现在卡迪的假说得到了有力的支持,很可能会被更加广泛地运用。其中成果最丰富的将会是量子场研究领域中众多企图超越标准模型而提出的统一物理学理论,包括超对称理论。根据超对称理论,所有已知的粒子都有一个尚未发现且超重的对应粒子。a定理的用处是可以根据一个理论在低能量范畴所做出的预测来帮忙缩小在高能量状态时预测的范围,反之亦然。

物理学家希望大型强子对撞机可以找到超对称现象的证据或其他标准模型以外的粒子,到时候理论物理学家会需要所有可用的方法来解释这些发现。麦尔斯预言a定理“将会是理论物理学家理解物理现象的指导工具”。

凝聚态物理范文第8篇

英文名称:Journal of Atomic and Molecular Physics

主管单位:四川省科学与技术协会

主办单位:中国物理学会;原子与分子物理专业委员会

出版周期:双月刊

出版地址:四川省成都市

种:中文

本:大16开

国际刊号:1000-0364

国内刊号:51-1199/O4

邮发代号:62-54

发行范围:国内外统一发行

创刊时间:1984

期刊收录:

CA 化学文摘(美)(2009)

CBST 科学技术文献速报(日)(2009)

Pж(AJ) 文摘杂志(俄)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊荣誉:

Caj-cd规范获奖期刊

联系方式

期刊简介

《原子与分子物理学报》是全国原子与分子物理领域内唯一的专业性刊物,在整个东南亚也是唯一的。她是由中国物理学会原子与分子物理专业委员会,四川省物理学会和四川大学联合主办的全国性学术刊物。该期刊一直被评为全国物理领域知名的中文期刊。