首页 > 文章中心 > 开关电源设计

开关电源设计

开篇:润墨网以专业的文秘视角,为您筛选了八篇开关电源设计范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

开关电源设计范文第1篇

【关键词】开关电源 可靠性 三防设计

随着科学技术的进步,开关电源已经应用于人们生活的方方面面,人们对开关电源的的可靠性要求也在不断的提高,开关电源的可靠性是保证设备正常运行的关键。为此如何设计出可靠性性能高的开关电源成为相关研究者重点研究的方向。

1 开关电源可靠性设计

1.1 供电方式的选择

集中式供电系统和分布式供电系统是开关电源主要两种供电方式,其中集中式供电系统会由于输出间和传输距离不同的偏差,容易造成压差,给整个供电的质量造成影响,另外,集中式供电系统采用一台电源集中供电,一旦该电源发生故障就会影响整个供电系统,分布式供电系统相比集中式供电系统供电质量具有一定的优势,其供电电源和负载距离比较近,能够有效改善动态响应特性,除此之外,还具有能源损耗小,传输效率高,节约能源的优点,因此分布式供电星相比集中式供电具有一定的可靠性。在设计开关电源时,出于可靠性的考虑,通常都应用分布式供电系统,

1.2 电路拓扑选择

开关电源的拓扑的结构非常多,有推挽式、半桥、全桥、单端正激式,单段反激式,双管正激式,双单端正激式、双正激式等八种拓扑结构,双桥或者半桥正激式电路开关能够满足电源最大的输入电压,所以在选择开关管时比较容易,单端反激式、单端正激式、推挽式双端正激式、电路拓扑,其开关管的承受电压大约是2倍的输入电压,给开关管选择带来很大的困难。全桥拓扑结构和推挽式拓扑结构容易出现单向偏磁饱和现象,容易造成开关管损坏,半桥电路本身具有自动抗不平衡的特点,可以有效改善开关管损坏的现象。所以根据拓扑结构的特点,为了保证开关电源的可靠性通常选用双管正激式电路或者半桥电路。

1.3 控制策略

电流型PWM控制主要是中小功率电源中应用的方法,其在电压控制方面具有以下优势:

(1)比电压型控制速度快,并且不出出现电流过大损坏开关管的现象,降低了短路故障和过载现象;

(2)比电压型纹波稳定;

(3)容易补偿,环路稳定;

(4)快速的瞬态响应和优良的电网电压调整率。经过实践证明50W开关电源采用电流控制,输出纹波大约为25mV,远远比电压控制型优良。

硬开关技术往往会受到开关损耗的影响,一般情况下,其开关频率都在350kHZ之下,利用谐振原理的软开关技术,可以将开关的损耗降低到零。软开关技术具有谐振变换器和PWM变换器的优点,可以应用于大功率带能源中。

1.4 元器件

元器件能够直接影响开关电源的可靠性,通常开关电源中元器件失效主要有以下几种原因。

1.4.1 质量问题

制造质量出现问题,解决的方法只有一个就是严格的选择元器件,避免不成熟、劣质的元器件投入使用,选择有知名度的厂家,最大限度的避免因元器件质量问题影响开关电源的可靠性。

1.4.2 器件可靠性问题

器件可靠性是常见的基本失效问题,主要和元器件的工作应力水平有关,因此需要选择可靠性良好的元器件,在选择元器件时将早期失效。密封性能不合格。稳定性差、电参数不合格、外观不合格的元器件剔除。在应用元器件之前进行非破坏性试验进行筛选,通过非破坏性试验可以明显降低元器件可靠性的问题,在进行非破坏性试验时需要让普通电容器和电阻在室温条件下,严格按照技术要求进行测试。

1.4.3 设计问题

为了有效降低设计问题导致的元器件失效,因此在选择元器件时最好选用硅半导体,尽量少用褚半导体或者避免使用褚半导体,;最好使用集成电路,尽可能降低分离器件的数目;尽量使用玻璃封装或者金属封装、陶瓷封装的器件,杜绝使用塑料封装的器件;设计的原则一般是不使用电位器,但是如果无法避免,就需要对电位器最好封装措施,对于在恶劣环境下。例如潮湿、烟雾等,在设计时不要选用率电解电容,由于铝电解电容自身的特性,导致其容易在恶劣的环境中发生腐蚀,进而影响设备的正常运行。在航天设备中应用的元器件因为常常受到空间粒子的影响,容易导致铝电解电容发生分解。因此在选择时尽量不要选用率电解电容。

1.4.4 能源损耗问题

能源损耗问题和元器件的工作应力没有关系,主要和元器件的工作的时间有关,例如铝电解容易如果长时间运行,铝电解电容的电容液就会会被破坏,相应的电电容容量就会降低,电解液没损失40%,电容量就会下降20%。如果点容易的芯子出现干涸,就无法在继续运行,因此为了避免这种情况的发生,在设计开关电源时,最好注明率电解电容的更换时间,在使用达到更换时间时,强制对其进行跟换。

1.5 安全设计和三防设计

安全性是开关电源重要的一项性能指标,如果开关电源不具有安全性就不可能实现预定的功能,还特别容易发生安全事故,从而导致发生无法挽回的重大损失。因此开关电源必须要具有很高的安全性,那么在设计开关电源时,需做好防止触电烧伤的措施,对于防触电可以将输出端设计为空,对于防烧伤控制其暴露在外面的机壳以及散热性等零件不要让去其温度超过60度。在开关设计时,密封的要求也非常高,因此对于要求密封的器件做好相应的密封措施了对于暴露在空气中的结构,不要设计凹陷的结构,做好防潮防腐蚀措施,对于开关的电源结构可以应用密封或者半密封的形势隔绝不利的因素,在组建表面涂覆准用的防潮、防霉菌、防盐雾氢气,避免任何对开关电源不利的因素,保证开关电源的可靠性。

2 结束语

开关电源的可靠性和开关电源设备的性能息息相关,因此保证开关电源的可靠性保证开关电源的设备的正常运行,选择合适的元器件,合适的拓扑电路没做好安全设计和三防设计可以有效提高开关电源的可靠性。

参考文献

[1]姚洪平,刘亿文,薛晨光.开关电源可靠性设计研究[J].电子制作,2013,17:39.

[2]刘志雄.开关电源可靠性设计探讨[J].现代商贸工业,2010,09:325-326.

[3]黄永俊,张居敏,胡月来.开关电源可靠性的设计[J].农机化研究,2005,02:147-148.

开关电源设计范文第2篇

关键词 电力工程;开关电源;反馈控制

中图分类号TM 591 文献标识码A 文章编号 1674-6708(2012)69-0106-02

开关电源我们可认为是由功率级和控制电路所组成,功率级是功率变换的主体,主要通过开关器件、电感、电容等器件来实现功率变换的。开关电源的主体是开关型DC-DC变换器,它是开关电源整个变换核心。非隔离式和隔离式为DC-DC变换器的两种基本拓扑。在非隔离式变换器中,输入到输出之间是没有电气隔离的,非隔离式拓扑结构形式主要有:Buck, Boost ,Buck-Boost, Cuk''等。

首先介绍开关电源的控制方法:

根据DC-DC变换器工作方式,DC-DC变换器可分为下面几种:PWM变换器、谐振变换器、软开关PWM变换器等。

1脉宽调制技术

脉宽调制PWM技术由于其电路简单、控制也相对方便而得到广泛的应用。目前,应用PWM技术的变换器的运行最佳频率范围为30kHz~50kHz(使用MOSFET做开关管),在该范围内,整个系统不论体积、重量、可靠性或是价格都基本上实现了最佳。但是,常规的PWM技术的固有缺陷也在一定程度上限制了其高频化,这样人们另想办法,围绕着减小开关的损耗,消除或缓解其电路中寄生参数所造成的影响提出了谐振变换技术。

2谐振变换技术

谐振变换技术可以描述为开关器件在零压或零电流条件下可进行开关状态的转换。这样可以在一定程度上降低了开关损耗。谐振变换电路主要由串联谐振、并联谐振、准谐振、E类谐振和多谐振等。这类变换器主要利用谐振原理使开关管的两端电压或流过开关管的电流能够在一个周期内在某一时间段呈正弦规律变换,电压和电流的波形会错开,这样可实现零电压开关(ZVS)或零电流开关(ZCS)条件,使得开关管自然得到导通或关断。零电流开关的特点:能保证运行中的开关器件在关断信号来到之前,流经开关管的电流就已经下降为零,这样就保证了器件在零电流的条件下能断开;零电压开关的特点是能够保证运行中的器件在开通信号来到之前,开关管的端电压就已经下降为零了,从而能使开关管在零电压下导通。谐振式变换器有这样的缺点:1)功率电路拓扑较复杂,在不同负载条件下,存在不同工作模式;2)QRC, MRC都是变频控制,所以控制电路较复杂;3)谐振波形使开关管电压或其电流应力比PWM变换器还要大得多。针对以上局限性,人们提出了其他的软开关技术。

3软开关技术

软开关变换器为QRC和PWM开关变换器组合在一起的综合:在QRC变换器中若增加一个辅助开关,以控制谐振为网络工作,使变换器在整个周期内,一部分时间是按ZVS或ZCS准谐振变换器来工作,另一部分时间则按PVYM变换器来工作。因此它兼具有谐振变换技术或PWM变换技术共有的特点.

下面再来介绍控制电路:

控制电路我们采用ON Semiconductor(安森美)公司所生产的NCP1200芯片。NCP1200是种新型的高频开关电源芯片,它将开关电源中最为重要的两个部分即PWM控制集成电路和功率开关管MOSFET电路集成在一个芯片上,构成PWM/MOSFET二合为一的集成芯片,能使外部电路得到简化,让工作频率可达100kHz,交流输入电压为100V~250V,AC/DC转换效率可达到90%。对70W 以下开关电源,主功率器件采用NCP1200,与其他电路相比,重量轻、体积小、自我保护的又功能齐全,从而降低了开关电源在设计过程中的复杂性。特别适合于中小功率AC-DC电源、各类充电适配器、DVD电压等的设计。

4 EMI滤波器

EMI信号滤波器是可以滤除导线上各种工作时不需要的高频干扰成份,其可用在各种信号线(包括直流电源线)上当低通滤波器。最有效的接收和辐射天线是线路板上的导线,由于导线存在,这样会使线路板产生强电磁辐射。与此,这些导线还能接收外部来的电磁干扰,使电路相对干扰很是敏感。解决高频电磁的干扰辐射和接收最有效的办法是在导线上使用信号滤波器, 如不用信号滤波器时,脉冲信号的高频成份就很丰富,这些高频成份还可借助导线辐射,这样线路板的辐射就会超标。所以使用了滤波器以后,脉冲信号的高频成份就会消弱很多,正因为高频信号的辐射效率非常高,随着高频成份的减少,线路板的辐射会改善很多。按安装方式和外形信号滤波器可分为: 贯通滤波器、有线路板安装滤波器、连接器滤波器等。通常使用线路板安装滤波器较多,其具有经济性高、安装方便等优点。

5 TL431反馈电路

反馈的概念,是指将放大电路的输出量(电压或电流信号)一部分或全部,通过一定的方式(元件或网络)输送到输入回路,完成输出量与输入端回送的电路就称为反馈元件或反馈支路,具有反馈回路的放大电路即称反馈放大电路。

随着电子技术的不断高速发展,电源技术也跟着不断完善和提高。像自激型的开关稳压电源,在过去其输出的功率只能达到大概50W,而现在可以达到100W以上。这些变化是源于电路技术的进一步成熟和采用新型元器件的结果。

最后设计开关电源整体系统图:

电路如图所示:电源适配器由NCP1200构成6.5V、0.6A,它可为随身听、电动玩具或一般家电提供电源。该适配器对全部85~265V的交流电源均适用。交流电压经过桥式整流器(BR)、电磁干扰滤波器(L1、L2、R4、R5)和滤波电容(C1、C2),得到直流高压U1,分别连到NCP1200的HV端、高频变压器初级的一端。在刚获得电源时能降低输入滤波电容上的冲击电流。吸收电路由R6、C5、VD1组成的钳位电路和R7和C6构成,可吸收尖峰电压,这样就可降低电磁干扰。外部功率开关管是采用MTDIN60E型M0SFET管,最大漏极电流为IDM=1A,漏源击穿电压为U(BR)DS=600V,管子最大功耗为PDM=1.75W。输出整流滤波器是由VD2、C3、C4组成。光耦反馈电路是由限流电阻R1、光耦合器IC2(PC817A)和5.1V稳压管(1N5993B)组成的。输出电压是这3个元器件上的电压降之和。因IC2中LED的正向压降ULED≈1V,工作电流ILED设定为0.85mA, Rl=220Ω,故Uo=URl+UrrD+UDZ=(0.85×10-3×220)+1+5.1≈6.5V。高频变压器采用E16型磁芯,初级绕组的电感量Lp=2.9mH,漏感Lpo=80us,匝数比n=Np/Ns=12.5。

开关电源整体电路原理图

电源技术发展的趋势是开关电源高频化,高频化带来的优势是使开关电源装置空前微型化,并使开关电源应用领域更加广泛,特别是应用在高新技术领域,推动了高新技术产品的微型化、轻便化。另外开关电源在节约资源及保护环境方面的发展与应用更具有深远意义。

参考文献

[1]刘胜利.高频开关电源实用技术[M],2003,5.

[2]蔡宣三,龚绍文.高频功率电子学直流直流变换部分[M],科学出版社,1993,6.

[3]苏玉刚,陈渝光.电力电子技术[M].重庆大学出版社,2003,4.

[4]叶慧贞,杨兴洲.开关稳压电源[M].国防工业出版社,1993,4.

[5]沙占友,王彦朋,孟志永.单片开关电源最新应用技术[M].机械工业出版社,2002,9.

[6]沙占友.新型单片开关电源的设计-5应用[M].电子工业出版社2001,6.

[7]赵负图.电源集成电路手册[M].化学工业出版社,2003,1.

[8]何希才.新型半导体器件及其应用实例[M].电子工业出版社,2004,6.

[9]王港元.电子技能基础[M].四川大学出版社,2001,9.

[10]赵修科.实用电源技术手册— 磁性元件分册.沈阳:辽宁科学技术出版社,2002.

开关电源设计范文第3篇

摘要:根据高可靠性LED主要性能要求,分别从防浪涌设计、EMC设计、高频变压器设计、主IC选择等方面提出满足LED高可靠开关电源的解决方案,根据VIPER22A设计LED开关电源的运用线路图,绘制PCB版图,并对关键工艺提出解决办法,最后通过主要参数的测量验证该产品满足要求。

关键词:高可靠性;开关电源;节能

中图分类号:TN312+.8文献标识码:B

12V18W LED Switch Power Design

CHEN Tian-rong

(Xiamen Hualian Eiectronics Co.ltd ,Xiamen361006,China)

Abstract: Based on the main driver LED power performance requirements and design from against surge, EMC design, high frequency transformers, IC design, selection of high reliable drive LED switch solutions, according to VIPER22A design the switch power for the LED by the circuit diagram and draw the PCB layout, and the key technology solutions, and finally the main parameters through measuring the products meet the requirements.

Keywords:high reliability;switch power;energy saving

前言

随着人们生活水平的不断提高,人们对生存环境质量要求也越来越高,对电器照明产品提出了更高的要求。LED半导体照明产品由于绿色节能,近几年得到迅速发展,尤其在能源电力紧缺的当前形势下,高效节能已成为目前各行业发展的追求目标。LED半导体照明已在交通信号、显示屏等领域广泛应用,也在背光源、夜景装饰照明、汽车警示等领域得到迅速发展,特别是近两年来LED在民用照明领域也开始大有作为。

本产品设计主要为LED夜景装饰产品设计,作为室外LED夜景产品的电源驱动,且能高可靠地运行,成本低。

1主要技术性能指标要求

额定输入电压频率:180VAC~240VAC 50Hz/60Hz

额定输出电流:1.5A

额定功率:18W

输出电压:12VDC

防水等级:IP65

转换效率:输出大于1A时不低于80%

2系统设计与实现

为实现上述技术指标,本项目采用了新型高智能化元器件,减小二次整流器件的损耗,并选用高效功率铁氧体(Mn-Zn)材料,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,从而实现高频化。同时采用先进电路技术、防水环氧灌封等技术,使得本项目产品能实现稳定、高可靠、高质量。

2.1防浪涌设计

浪涌对所有的电子设备和数据系统都有潜在的危害。它是隐伏的,不可见的,不可预测的,极端危险并且后果不可想象。实际浪涌的幅值一般较雷击电流小,但前者可能会造成和后者同样的损坏。考虑到本产品所处场合为中等暴露程度,选择瞬变抑制器件。

2.2EMC的设计

(1)滤波器

滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器,可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。电源滤波器作为抑制电源线传导干扰的重要单元,在系统的电磁兼容设计中具有极其重要的作用。它不仅可抑制传输线上的传导干扰,同时对传输线上的辐射发射也具有显著的抑制效果。在滤波电路中,选用穿心电容、三端电容、铁氧体磁环,能够改善电路的滤波特性。适当的设计或选择合适的滤波器,并正确地安装滤波器是抗干扰技术的重要组成部分,具体措施如下:

在交流电输入端加装电源滤波器,其电路如图1所示。图中Ld、Cd用于抑制差模噪声,一般取Ld为100~ 700μH, Cd取1~10μF。Lc、Cc用于抑制共模噪声,可根据实际情况加以调整。

所有电源滤波器都必须接地,因为滤波器的共模旁路电容必须在接地时才起作用。接地方法是除了将滤波器与金属外壳相接之外,还要用较粗的导线将滤波器外壳与设备的接地点相连。接地阻抗越低滤波效果越好。

滤波器尽量安装在靠近电源入口处。滤波器的输入及输出端要尽量远离,避免干扰信号从输入端直接耦合到输出端。

在电源输出端加输出滤波器。加装高频电容,加大输出滤波电感的电感量及滤波电容的容量,可以抑制差模噪声。

(2)变压器高频防护

在高频变压器的原边、副边、开关管的C、E极间以及在输出整流二极管上加装RC吸收网络。

3控制IC的选择

开关电源使用的IC中设计时选用DIP封装的VIPER22A,在单电源电压180~265VAC范围内,功率处理能力可以达到20W,能满足设计要求。图2为VIPER22A内部结构示意图,采用ST 的IPOWER M0-3 高压专利技术,利用一个P 型掩埋层的方法,在同一颗芯片上整合了一个专用电流式PWM 控制器和一个高压功率场效应MOS 晶体管。这种方法可以减少IC元器件的数量,简化电路板设计,降低系统成本。其一般特性有:(1)自动热关断;(2)高压启动电流源;(3)防止输出短路导致击穿故障的HICCUP模式;(4)保证低负载条件下低功耗的突发模式。

通过图2可以看出,功率级是由含有一个快速比较器的电流式结构驱动的,驱动电流来自 NMOS sense 和feed-back (FB) 两个引脚。比较器输出连接到消隐时间模块,以确保导通时间最短。只需一个外部振荡器,即可将开关频率固定在60kHz,从而不再需要其它的外部组件。其它的内部模块是内部电源稳压器和过热检测器,前者在VDD 引脚上能够支持45V,后者在170°C (典型值)时提供热关断功能。

该产品的系统控制是一个电流模式结构,在这个结构中,N-MOS 感应电流和FB 电流汇合在电阻器R2 上。电阻R2上的电压取决于这个电流值的大小,然后,这个电压值与一个内部固定的参考电压 (0.23V)比较。比较器的输出用于驱动场效应MOS 晶体管,因此,开关频率取决于反馈电流和Id 电流值的大小。在这个应用中,反馈回路的实现方法是通过一个光耦合器利用输出电压驱动这个FB 引脚,以保证输入与输出之间的绝缘。监视VDD 电压的是一个磁滞比较器,它能够管理启动电流生成器。事实上,只要VDD 电压值大于VDDON 的电压值,比较器就会导通,并给VDD 电容器充电。一旦达到这个条件,功率场效应MOS 晶体管就立即开始开关操作。突发模式工作原理是跳过相同的开关周期,以便在负载减弱时降低功耗。

4高频变压器的设计

根据线路要求设计反激型脉冲变压器:

5LED开关电源运用线路图

根据上述考虑要素以及VIPER22A结构性能,而设计的LED使用开关电源的线路图如图4所示。本电路根据需要一个12V电压1.5A电流输出,最大功率处理能力是18W。该解决方案的二次侧反馈是一个隔离式的逆向拓扑结构。输出经过TL431(可控分流基准)反馈并将误差放大,TL431驱动光耦PC817,并通过光耦感应得到反馈电压,调整电流模式的PWM控制器的开关时间,从而得到稳定的直流电压输出,并确保输入和输出完全隔离。

6设计PCB板图

PCB制作时采用单面阻燃纸板,丝印在元件面,如图5所示。焊点面采用镀金工艺。尺寸大小:130mm*37mm*1.6mm。

7关键工艺的解决

7.1爬电距离设计

为了有效解决由于PCB小型化而造成输入级间爬电距离不足问题,设计时当爬电距离小于2mm时应加大于1mm镂空刻槽。如图6 所示。

7.2散热

由于本机在考虑设计成本、产品结构以及户外使用特点。电路中整流二级管需外焊接10mm×20mm×0.6mm铜片加大散热面积,如图7所示。主芯片VIPER22A外加8mm×20mm铝散热片加大散热面积,如图8所示。

7.3灌 封

根据本开关电源的使用室外环境满足IP65防水等级及内部结构的要求,选用常温固化8002A/B双组份环氧树脂,使用时混合比例A:B=100:20(重量比)。常温25℃条件下,24hr固化或60℃条件下2hr固化。该环氧树脂满足以下要求:(1)能承受冷热环境交变产生的应力;(2)能承受线路运行时的温度;(3)能承受短路时的热应力;(4)树脂固化时放热小,适用于浇注。灌注工艺好,灌封后具有粘接性高,收缩率低于0.66%,耐热性好,价格低廉。体积电阻大在常温25℃下大于4.6×1014ohm-cm3,表面电阻在常温25℃下大于1.7×1013ohm,耐电压在常温25℃下16~18kV/mm。灌封后,起到防水、防腐蚀、防震等作用,提高整机使用性能和稳定参数。

8参数性能的测试结果

8.1本机产品在额定电压范围不同输入电压情况下,输出电流的变化效率的测量结果,如图9所示。

结论:产品要求本机在正常电流输出大于1.0A时电源的效率大于80%,本设计满足要求。

8.2本机产品温升测试结果如图10所示。

结论:在25℃下, 本开关电源的温升为55.5℃-25.0℃=30.5℃,符合要求。

8.3电源端子骚扰电压测试(检验依据:GB17743-1999)

结论:检验结果符合GB17743-1999要求。见图11。

9结束语

本产品经过样品到大批量生产,中间经过多次优化改进,生产效率高,生产合格率水平达到99%以上,质量稳定。在夜景工程上运用性能稳定,质量可靠性,失效率在千分之二以下,满足高可靠、节能、防水的设计目标。

参考文献

[1]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,2006.

[2][日]长谷川 彰 著, 何希才 译. 开关电源的设计与应用[M].北京:科学出版社,2006.

[3][美]Keith billings 著, 张占松、汪仁煌 谢丽萍 译.开关电源手册[M].北京:人民邮电出版社,2006.

[4][美]Abraham I.Pressman著,王志强等译.开关电源设计[M]. 北京:电子工业出版社,2005.

[5]徐士佐 主编.中小型电源变压器和电抗器(第二版)[M].上海:全国电子变压器行业协会,2007.

[6] 何可人 周小竞 徐士佐编著.开关电源变压器设计工艺和实例[M]. 上海:全国电子变压器行业协会,2008.

开关电源设计范文第4篇

关键词:开关电源;过压保护;过流保护;M51995A电源芯片

中图分类号:TM13 文献标识码:A 文章编号:2095-1302(2016)11-0-02

0 引 言

随着时代的前进与社会的发展,开关电源已逐渐代替传统的铁心变压器电源。开关电源的集成化与小型化正逐步成为发展趋势[1-3],开关电源更是在计算机、通信、电器等领域得到广泛应用[4]。但开关电源系统若无性能良好的保护电路便很容易导致仪器寿命的缩短甚至使仪器受到损坏。由此可见,为了能够让开关电源在恶劣环境以及突发故障的情况下安全稳定的工作,保护电路的设计就显得尤为重要。开关电源的基本结构框图如图1所示。

1 M51935AFP开关稳压芯片简介

M51995A是一款开关电源初级PWM 控制芯片,专为AC/DC变换设计,芯片功能如表1所列。它主要包括振荡器、PWM比较、反馈电压检测变换、PWM锁存、过压锁存、欠压锁存、断续工作电路、断续方式和振荡控制电路、驱动输出及内部基准电压等。

M51995A既具有快速输出和高频振荡能力,又具有快速响应的电流限制功能[5]。此外,过流时采用断续方式工作可以有效保护二次电路。该芯片的主要特征如下:

(1)工作频率低于500 kHz;

(2)输出电流能够达到±2 A;

(3)输出上升时间为60 s,下降时间为40 s;

(4)起动电流比较小,典型值为90 A;

(5)起动电压为16 V,关闭电压为10 V;

(6)起动电压和关闭电压的压差大;

(7)过流保护采用断续方式工作;

(7)用脉冲方法快速限制电流;

(8)欠压、过压锁存电路。

3 实验仿真分析

为进一步验证所设计的开关电源保护电路的工作性能,我们采用计算机仿真软件MultiSIM对所设计的保护电路做了软件仿真测试。当电源输出电压为60 Hz正弦波、有效值为24 V时,电源保护电路的光耦控制OVP端的信号输出状态如图4所示。

图4中的仿真结果表明,输出电压信号变化控制光耦的导通,从而控制了光耦OVP端的电压输出,当电源输出电压在0 V-24 V期间时,光耦输入端没有电压信号不导通,OVP端电压为0,电路处于保护工作状态;电压在0+24 V期间时,光耦输入端有电压信号作用而导通,OVP端电压为+5 V,电路处于正常工作状态。当输出电压过高时,OVP端电压为0,电路处于保护工作状态。40 V电压信号的状态图如图5所示。

实验仿真结果表明,当电源输出电压范围为0+24 V时,开关电源电路正常工作;当电压为负电压时,光耦中的二极管反向截止,OVP端电压为0,开关电源的保护电路工作,电源输出为0;当输出电压高于+24 V时,OVP端电压为0,开关电源进入保护电路工作状态,电源输出0。

4 结 语

本文基于M51995A电源芯片设计了开关电源的过压和过流保护电路,通过计算机仿真结果表明,该电路设计合理,工作稳定,电路设计可以有效降低电路的复杂程度和成本,能对开关电源电路进行有效保护,从而使电源运行安全可靠,设计完全能满足系统性能的指标要求。

参考文献

[1] 欧浩源,丁志勇.电流控制型脉宽调制器UC3842在开关电源中的应用[J]. 今日电子,2008(C00):88-89.

[2] 王朕,潘孟春,单庆晓.UC3842应用于电压反馈电路中的探讨[J].电源技术应用,2004(8):480-483.

[3] 关振源,张敏.基于电流型PWM控制器的隔离单端反激式开关电源[J].电子元器件应用,2005(2):21-23.

开关电源设计范文第5篇

基于小功率直流传动系统要求驱动电源输出稳定、抗干扰强的特点,设计了一种多路输出型的单端反激式开关电源。主电路采用多路输出单端反激式变换器结构,并采用软启动回路,防止负载电流或电源输入电流的大电流损坏开关电源,同时设计了过压、欠压等保护等辅助电路,完整地构建了开关电源的电路系统。

【关键词】开关电源 驱动系统 反激式

1 引言

工业应用中,经常需要对小功率的直流电机进行精确控制,为保证传动系统的精确定位和传送,提高产品质量或电动机车运行的平顺性。为满足此技术要求,一方面需要对电机实现一定的控制算法,另一方面要求电机驱动电源输出平稳、能耗低、抗干扰能力强。传统的开关电源由于效率低、损耗大、可靠性差而难以胜任。目前,国外的开关电源研制技术较为成熟,并主要应用于工业和军事上。德国西门子,美国GE和日本的一些公司都已经具备比较成熟的研制大功率开关电源的技术并已经实现产品化。开关电源在我国邮电通信部门以及其它领域,受到及其广泛的应用,其中几十到几百千瓦的大电流、高功率的开关电源成为现代工业,国防事业以及大型科研项目的宠儿。开关电源技术不断的发展,具体发展趋势为高频化、非隔离DC/DC技术、数字化、安全性能完善以及低噪声、绿色无污染和智能化。

2 开关电源组成与设计

开关电源由输入电路、有源调整、功率变换、输出电路、控制电路和频率振荡发生器六大部分组成:其中开关电源的核心部分是DC/DC变换器,用以进行功率转换,另外还有启动电路、过流与过压保护电路、噪声滤波电路等。

反激式开关电源广泛用于中小功率变换场合,且具有电路简单、成本低、输入输出电气隔离、稳压范围宽、易于多路输出等优点。反激式变换器有三种模式:一种是在电流断续模式下,导通期间储存在一次绕组的能量,在下个周期开始前从一次绕组传递到次级绕组和负载上;一种是在电流临界连续模式下,在下一个周期开始时,次级的电流归零,这是一种无死区时间的临界状态;另一种是在电流连续模式下,次级仍然有剩余的能量,次级电流没有回零。

2.1 输入回路设计

开关电源输入回路包括低通滤波和桥式整流滤波两大部分。低通滤波回路是开关电源输入的“大门”,它具有防止输入电源的噪声干扰,还抑制了浪涌电压、尖峰电压的进入;同时阻止、限制开关电源所产生的噪声。整流滤波电路主要由整流桥加电容来完成,整流二极管最好选用导通压降(VF)小的二极管,这样可以减少二极管上的损耗,提高电路效率,电容则是一大一小的两个电容,大的为工频滤波,小的电容则用来吸收高频纹波的干扰。

整流滤波回路:开关电源一般采用电容输入型整流滤波回路,整流的方式为全波桥式整流。结合两种输入回路的优缺点,输入回路电路如图1所示。

2.2 驱动回路设计

开关电源功率晶体管有两种驱动方式,一种是直接驱动,另一种是隔离驱动。直接驱动有单管基极驱动、推挽驱动和抗饱和驱动。单管基极驱动适用于对工作速度要求不高或电源功率不大的情况。抗饱和驱动则是在推挽驱动的基础上增加了钳位二极管和稳压二极管,提高了电路的工作速度,也为冲击峰值电压起到了分压保护的作用,如图2所示。

2.3 保护及软起动回路的设计

过流包括电源负载超出规定值和电源输出线路出现零负载,即短路。过压保护的主要的任务是保护负载,其次是保护开关功率管。一般采取的措施是振荡电路停振,关闭驱动脉冲。所以在过压保护动作后,要再次启动电源工作时,必须断开电源才能恢复正常工作。开关电源最简单的过压保护措施是在输入电路中并联压敏电阻。在过压保护中,采用的是稳压二极管,选用稳压二极管应性能稳定、电压漂移非常小的产品,以防止稳压二极管电流随着温度的变化而变化。开关电源的主要热源是开关功率晶体管、高频变压器、整流输出二极管以及滤波用的电解电容。为了防止开关电源过热而发生损坏,选择元器件时应该选用高温特性较好的器件,同时在开关电源设计过程中应有过热保护电路。

图3为保护电路,其中R7是电流取样电压,变压器原边电感电流流经该电阻产生的电压经滤波后送入UC3844的引脚3,再输入到电流比较器。引脚3和电流比较器构成了电流闭环控制。当开关管出现过流现象时,电阻R7上测得的过电流信号,输送到电流测定比较器的同相输入端,只要R7上的电压达到1V,电流测定比较器动作,通过PWM锁存器使得开关管关断,实现了过电流保护。

基于UC3844芯片设计的开关电源总体电路图,其中主电路采用单端反激式变换器结构,开关电源输入回路则采用整流滤波回路以得到直流电压,并利用软启动回路,防止负载电流或电源输入电流产生的大电流损坏开关电源。

3 总结

本文主要针对直流调速系统中,作为小功率控制电机,要求驱动电源输出稳定的特点,分析了开关电源的基本组成以及工作方式,结合设计的各项要求,综合考虑了开关电源控制电路、反馈电路以及保护电路等方面的设计。

参考文献

[1]赵同贺.新型开关电源典型电路设计与应用[M].北京:机械工业出版社,2009(09):1-3.

[2]沙占友,王彦朋,安国臣,孟志永.开关电源设计入门与实例解析[M].北京:中国电力出版社,2009(10):10.

[3]岳鹏.大功率开关电源主电路研究[J].华南理工大学,2010,5:1-2.

[4]付保宗.“十二五”时期我国汽车业需求趋势分析及建议[J].宏观经济管理,2011(05):28.

[5]吕萍.2009年中国电源市场现状与发展趋势[J].电子商务,2009(11):10.

[6]杜承启.国内外电源变换器的新发展[J].电源技术,2004(04):257.

[7]杨颖.一种电动汽车驱动系统开关电源设计[D].嘉兴学院学士学位论文,2012.

开关电源设计范文第6篇

关键词:煤矿;安全开关;电源;设计

煤炭在我国的能源结构中占有重要地位,我国的煤炭产量占世界煤炭总产量的35%以上。但是,在煤炭的生产过程中,由于各种因素的影响,矿井下会产生大量的易燃易爆气体以及粉尘等,极易引发爆炸以及火灾等事故,对煤矿生产以及工人的生命财产安全造成严重影响。近年来,随着科学技术的快速发展,很多检测仪器、通讯设备、监控系统以及报警装置等被广泛运用到煤矿井下生产过程中。这些用电设备在煤矿生产中,由于各种因素的影响,可能会产生短路、漏电以及电火花等事故,煤炭井下用电安全问题已经引起社会的高度关注。

1 煤矿井下安全开关电源电路放电特性分析

在当前我国的能源结构中,煤矿仍然是支撑我国经济社会发展的重要组成部分。在煤矿井下生产过程中,由于各种因素的影响,难免会发生爆炸等危险,造成严重的人员伤亡以及财产损失等。因此,在煤矿井下生产中,应当高度重视安全开关电源设计。根据煤矿井下安全开关电源的要求,应当严格控制电路的火花放电能量,包括电路放电的电流、电压以及放电时间等。同时,煤矿井下安全开关电源还应当具有稳压、限流等功能,并且能够在特殊情况下采取快速切断保护措施,确保满足煤矿安全生产的相关要求。而由于煤矿井下安全开关电源电路中含有很多电容、电感等储能元器件,这些元器件会对电源电流的输出产生直接影响。因此,在对煤矿井下安全开关电源进行设计的时候,首先应当熟悉电容、电感放电等过程,掌握其放电的基本原理,在此基础上,才能设计出符合安全要求的煤矿井下安全开关电源。

1.1 煤矿井下电路产生电火花的规律

在易燃、易爆的环境下,电气设备在运行过程中产生出大量的电火花,在达到爆炸性气体临界值的状态下,会引燃周围爆炸性物质,造成严重的后果。因此,必须要重视研究煤矿井下电路电火花的规律,努力从源头消除其危害。大量研究表明,煤矿井下电路放电主要包括三种类型:电弧放电、辉光放电以及火花放电,或者这三种类型同时出现。一般来说,电弧放电是在电压以及电流都不高的情况下出现的,由于某种不稳定的放电经过转化产生。在电流很小而且处于低电压的状态下,因为开关器件所具有的特殊性质,电路发生切换时会产生电弧放电现象。而辉光放电则是在高电压、小电流的情况下产生的。由于这种情况很特殊,在实际的煤矿井下电路运行中非常少见。由于煤矿井下电源电路在一般情况下带有电容和电感的,电路在导通以及断开的过程中,由于击穿了放电间隙,会发生电火花放电现象,这就是火花放电产生的主要原因。

1.2 电容性电路放电特性

煤矿井下安全开关电源应当充分满足电气设备性能指标的要求,确保电气设备的安全运行。其中,电容、电感的影响较大。如果取值太大,那么相应的输出短路释放出的能量就会显著增加,而如果取值太小,就会增加开关管中的电流应力,导致输出纹波电压变大,严重影响到输出电压的稳定性。所以,在取值过程中,应当充分考虑到电气设备性能指标的要求,合理的取值是影响煤矿井下安全开关电源设计的关键性因素。在一般情况下,煤矿井下安全开关电源的输出端,会存在较大的输出电容,当出现输出短路等问题时,就会对电源安全性能产生较大危害。一般来说,要想在电容性电路放电过程中点燃气体混合物,就必须要同时满足能量、功率等要求,如果仅仅满足单个条件,即使放电时间很长,也无法点燃气体混合物。在很多时候,人们把电容性电路放电过程分为火花放电、放电维持以及极间放电结束等阶段。大量研究成果表明,在电容性电路整个放电过程中,第一阶段的能量变化最大,因而也是最有威胁性的。随着放电间隙的击穿,放电电流以及瞬时功率几乎在同一时达到最大值。可见,由于电容性电路的放电具有电压变化快、电流变化显著以及放电能量集中等特征,因此,放电引爆混合性气体的破坏后果非常严重。

1.3 电感在电容火花放电中的影响

由于煤矿井下安全电源线路回路中同时存在电容、电感这两种储能元器件,而电感的存在会对煤矿井下安全开关电源的设计产生出一定的影响。因此,要高度重视电感及其在电容火花放电中的影响进行研究。研究表明,煤矿井下安全电源电路中的初始电压以及所选取的电感数值的不同,都会对电容火花放电过程中电流的变动情况产生出明显的影响。而由于电阻的存在,会对电容火花放电造成一定的能量损耗,因此,通过串联电感能够在一定程度上减缓电容火花放电的电流增长速率,使其延迟达到电流峰值的时间,从而避免煤矿井下危险环境中可燃气体的爆炸。

2 煤矿井下安全开关电源的设计

由于在煤矿井下的易燃易爆的危险环境下工作,因此,与一般的开关电源相比,安全开关电源具有特殊要求。首先,必须有安全保护电路限制能量。依靠安全保护电路,煤矿井下安全开关电源可以有效限制故障状态下火花放电能量,包括限制放电电压、电流以及放电时间等。在安全开关电源的输出功率小,对电压的稳定性要求不高的时候,可以通过在电源输出端进行串联限流电阻的方式降低放电能量。如果安全开关电源的输出功率较大,就应当加入过流、过压多重保护电路,确保安全开关电源的安全输出。其次,重视电气隔离。电气隔离指的是安全开关电源的输出端与输入端要有电气隔离,防止能量由非本安的输入端传递至输出端,对输出端的安全性能产生不利影响。在多路输出时,一定要进行隔离处理,以限制火花放电的能量,充分满足电源线路的安全运行要求。再次,确保不间断供电。在煤矿井下承担着检测、监控以及报警等职能的电器设备必须能够在电网断电之后可以继续工作。然而,煤矿井下的供电质量比较差,经常会出现电网断电的情况,这就要求安全开关电源能够不间断供电,以确保矿井下电气设备的正常工作与运行,提高煤矿生产安全性能。最后,煤矿井下电源电路能够提供多重化保护。电源的隔离、保护以及可靠性组件的设计要确保安全等级的双重化或多重化,根据相关国家标准,煤矿井下电气设备必须满足ib等级要求,保护电路要进行多重化设计。

2.1 煤矿井下安全开关电源技术指标及结构设计

根据煤矿井下安全开关电源的工作需要,其设计技术指标主要包括:额定输入电压127VAC,频率50HZ;额定输出电压12V;纹波电压小于2%Vo;开关频率200kHZ。煤矿井下安全开关电源将交流电127V转变成直流电12V。电源结构图如图1所示。交流电经过整流、滤波等环节,成为纹波较大的直流电。在Buck-Boost变换器的作用下,经双重过压、过流保护电路之后,输出12V直流电。由于安全开关电源主要是在煤矿井下这种危险性的条件下使用,因此,为了安全的需要,必须要有双重过压、过流保护电路。煤矿井下安全开关电源结构主要包括输入滤波电路、整流滤波电路、备用电源、Buck-Boost变换器、多重过压、过流保护电路等,最终实现安全输出。其总体结构框图如图1所示。

图1 电源总体结构框架图

2.2 电路参数设计及选型分析

电路参数设计的主要内容包括功率器件的选型、备用电源以及控制芯片的选取等

首先,功率器件的选型包括开关管和二极管的选型。开关管在进行选型时,Buck-Boost变换器的开关管S选型必须符合下列要求:首先,开关管输出电流的额定值Ivt>ILp=1.1A;其次,开关管漏极与源极之间所承受的最大电压UDS,max>1.5(Vi,max+Vo)。而Buck-Boost变换器中二极管的选型应当满足下列条件:峰值电流必须大于变换器的输出电流(1A);反向最大耐压值应大于输出电压的最大值1.5 (Vimax+Vo)≈50V。

其次,关于备用电源的选取。对于煤矿井下安全防爆电源来说,备用电源与主电路之间有很多不同的接线方法,备用电源的种类也非常多,比较常见的是锂电池和铅蓄电池。在很多煤矿井下安全开关电源设计中,电路选用的是额定电压为24V,容量2Ah的蓄电池,这种蓄电池在充电完成之后,可达到2小时的工作时长。

最后,在选取控制芯片过程中,通过电压控制技术实现PWM,这只是通过输出电压进行信号反馈,是一个单环控制。在此基础上,通过电流控制型PWM,采用电流控制技术来调节脉宽,在电路结构上增加了电流反馈环,达到控制开关管峰值电流的目的。如果在运行中出现故障,可以限制瞬时峰值电流。由于采用电压和电流两种控制手段,所以,对于电压调整率、负载调整率以及瞬态响应等进行了改善与处理,这是一种比较有效的控制器件。

2.3 电容、电感的选取

在煤矿井下安全开关电源的设计过程中,使用到了很多电容和电感,这些电容电感会对电源的安全稳定运行起到极为重要的作用。因此,要高度重视电容、电感的选取。电容有很多类型,包括安规电容、涤纶电容、云母电容以及电解电容等。不同类型的电容会对煤矿井下安全开关电源的性能产生直接影响。例如,使用滤波电容,将会影响到安全开关电源输出电压的稳定性以及抗干扰能力。因此,应该根据容量、特点以及应用场合等的需要选择不同的电容。在电感的设计中,由于电感是煤矿井下安全开关电源常用的元件,一般用作蓄能元件,或者与电容一起用在滤波电路中。煤矿井下安全开关电源设计,在输入整流滤波电路和输出整流电路中,都会使用到电感元件,主要用于平滑电流,避免产生较大电压。

3 结束语

安全开关电源是煤矿井下生产的关键性设备,其安全、高效以及稳定等特点,成为煤矿井下供电的重要供电电源。因此,在设计煤矿井下安全开关电源时,应当充分考虑到电路放电特性,研究安全开关电源技术指标,分析电路参数,合理选择电容和电感,确保电路安全运行和煤矿的安全生产。

参考文献

[1]周亚夫,许辰雨.矿用本安电源保护电路的优化设计[J].中国煤炭,2015(1).

[2]林引.矿用高可靠性本安型传感器电源电路设计与实现[J].煤炭科学技术,2013(6).

开关电源设计范文第7篇

关键词:开关电源;反激式电路;高频变压器;脉宽调制;AC/DC

引言

随着现代科技的高速发展,功率器件的不断更新,PWM技术的发展日趋完善,开关电源正朝着短、小、轻、薄的方向发展。

本文介绍了一种基于TOPSwith系列芯片设计的小功率多路输出AC/DC开关电源的原理及设计方法。

设计要求

本文设计的开关电源将作为智能仪表的电源,最大功率为10w。为了减少PCB的数量和智能仪表的体积,要求电源尺寸尽量小并能将电源部分与仪表主控部分做在同一个PCB上。

考虑10W的功率以及小体积的因素,电路选用单端反激电路。单端反激电路的特点是:电路简单、体积小巧且成本低。单端反激电路由输入滤波电路、脉宽调制电路、功率传递电路(由开关管和变压器组成)、输出整流滤波电路、误差检测电路(由芯片TL431及周围元件组成)及信号传递电路(由隔离光耦及电阻组成)等组成。本电源设计成表面贴装的模块电源,其具体参数要求如下:

输出最大功率:10W

输入交流电压:85~265V

输出直流电压/电流:+5V,500mA;+12V,150mA;+24V,100mA

纹波电压:≤120mV

单端反激式开关电源的控制原理

所谓单端是指TOPSwitch-II系列器件只有一个脉冲调制信号功率输出端一漏极D。反激式则指当功率MOSFET导通时,就将电能储存在高频变压器的初级绕组上,仅当MOSFET关断时,才向次级输送电能,由于开关频率高达100kHz,使得高频变压器能够快速存储、释放能量,经高频整流滤波后即可获得直流连续输出。这也是反激式电路的基本工作原理。而反馈回路通过控制TOPSwitch器件控制端的电流来调节占空比,以达到稳压的目的。

TOPSwitch-Ⅱ系列

芯片选型及介绍

TOPSwitch-Ⅱ系列芯片的漏极(D)与内部功率开关器件MOSFET相连,外部通过负载电感与主电源相连,在启动状态下通过内部开关式高压电源提供内部偏置电流,并设有电流检测。控制极(C)用于占空比控制的误差放大器和反馈电流的输入引脚,与内部并联稳压器连接,提供正常工作时的内部偏置电流,同时也是提供旁路、自动重起和补偿功能的电容连接点。源极(s)与高压功率回路的MOSFET的源极相连,兼做初级电路的公共点与参考点。内部输出极MOSFET的占空比随控制引脚电流的增加而线性下降,控制电压的典型值为5.7V,极限电压为9V,控制端最大允许电流为100mA。

在设计时还对阈值电压采取了温度补偿措施,以消除因漏源导通电阻随温度变化而引起的漏极电流变化。当芯片结温大于135℃时,过热保护电路就输出高电平,关断输出极,此时控制电压Vc进入滞后调节模式,Vc端波形也变成幅度为4.7V~5.7V的锯齿波.若要重新启动电路,需断电后再接通电路开关,或者将Vc降至3.3 V以下,再利用上电复位电路将内部触发器置零,使MOSFET恢复正常工作。

采用TOPSwitch-II系列设计单片开关电源时所需外接元器件少,而且器件对电路板布局以及输入总线瞬变的敏感性大大减少,故设计十分方便,性能稳定,性价比更高。

对于芯片的选择主要考虑输入电压和功率。由设计要求可知,输入电压为宽范围输入,输出功率不大于10W,故选择TOP222G。

电路设计

本开关电源的原理图如图l所示。

主电路设计

电源主电路为反激式,c1、L1、c2接在交流电源进线端,用于滤除电网干扰,c5接在高压和地之间,用于滤除高频变压器初、次级后和电容产生的共模干扰,在国际标准中被称为“Y电容”。c1跟c5都称作安全电容,但c1专门滤除电网线之间的串模干扰,被称为“x电容”。

为承受可能从电网线窜人的电击,可在交流端并联一个标称电压U1mA为275V的压敏电阻VSR。

鉴于在功率MOSFET关断的瞬间,高频变压器的漏感产生尖峰电压UL,另外,在原边上会产生感应反向电动势UOR,二者叠加在直流输入电压上。典型的情况下,交流输入电压经整流桥整流后,其最高电压UImax=380V,UL≈165V,UOR=135V,则UOR+UL+UOR≈680V。这就要求功率MOSFET至少能承受700V的高压,同时还必须在漏极增加钳位电路,用以吸收尖峰电压,保护TOP222G中的功率MOSFET。本电源的钳位电路由D2、D3组成。其中D2为瞬态电压抑制器(TVS)P6KE200,D3为超快恢复二极管UF4005。当MOSFET导通时,原边电压上端为正,下端为负,使得D3截止,钳位电路不起作用。在MOSFET截止瞬间,原边电压变为下端为正,上端为负,此时D1导通,电压被限制在200V左右。

输出环节设计

以+5V输出环节为例,次级线圈上的高频电压经过UF5401型100V/3A的超快恢复二极管D7,由于+5V输出功率相对较大,于是增加了后级LC滤波器,以减少输出纹波电压。滤波电感L2选用被称作“磁珠”的3.3μH穿心电感,可滤除D7在反向恢复过程中产生的开关噪声。

对于其他两路输出,只需在输出端分别加上滤波电容。其中R3、R4分别为输出的假负载,它们能降低各自输出端的空载和轻载电压。

反馈环节设计

反馈回路主要由PC817和TL431及若干电容、电阻构成。其中u2为TL431,它为可调试精密并联稳压器,利用电阻R5、R6分压获得基准电压值。通过调节R5、R6的值可以调节输出电压的稳压值。C8 为TL431的频率补偿电容,可以提高TL431的瞬态频率响应。C7为软启动电容,取C7=22μF时可增加4ms的软启动时间,在加上TOP222G本身已有的10ms软启动时间,则总共为14ms。

U3为PC817型线性光耦合器,其电流传输比(CTR)范围为80%~160%,能够较好地满足反馈回路的设计要求,而目前国内常用的4N25、4N26属于非线性光耦合器,不宜采用。反馈绕组上产生的电压经D4、C9整流滤波,获得非隔离式+12V输出,为PC817接收管的集电极供电。由于反馈绕组输出电流较小,次级采用D4硅高速开关管1N4148。光耦PC817能将+5V输出与电网隔离,其发射极电流送至TOP222G的控制端,用来调节占空比。

c3为控制端旁路电容,它能对控制回路进行补偿并设定自动重启频率。当C3=47μF时,自动重启频.率为1.2Hz,即每隔0.83s检测一次调节失控故障是否已经被排除,若确认已被排除,就自动重启开关电源恢复正常工作。

R2为PC817中LED的外部限流电阻。实际上除了限流保护作用外,他对控制回路的增益也具有重要影响。当R2改变时,会依次影响到下列参数值:IFICDUo,也就相当于改变了控制回路的电流放大倍数。

下面简要分析一下反馈回路实现稳压的工作原理。当输出电压uo发生波动且变化量为uo时,通过取样电阻R5、R6分压后,就使TL431的输出电压uk也产生相应的变化,进而使PC817中LED的工作电流IF改变,最后通过控制端电流Ic的变化量来调节占空比D,使uo产生相反的变化,从而抵消uo的波动。上述稳压过程可归纳为:

其余各路输出未加反馈,输出电压均由高频变压器的匝数来确定。

变压器设计

变压器的设计是整个电源设计的关键,它的好坏直接影响电源性能。

磁芯及骨架的确定

次级绕组采用堆叠式绕法,这也是变压器生产厂家经常采用的方法,其特点是由5V绕组给12V绕组提供部分匝数,而24V绕组中则包含了5V、12V的绕组和新增加的匝数。堆叠式绕法技术先进,不仅可以节省导线,减小线圈体积,还可以增加绕组之间的互感量,加强耦合程度。以本电源为例,当5V输出满载而12V和24V输出轻载时,由于5V绕组兼作12V、24V绕组的一部分,因此能减小这些绕组的漏感,可以避免因漏感使12V、24V输出电路中的滤波电容被尖峰电压充电到峰值,即产生所谓的峰值充电效应,从而引起输出电压不稳定。这里将5V绕组作为次级的始端。

对于多输出高频变压器,各输出绕组的匝数可以取相同的每伏匝数。每伏匝数n0可以由下式确定:

试验数据

该开关电源的输入特性数据见表1,在u=85~245V的宽范围内变化时,主路输出u01=5V(负载为65Ω)的电压调整率Sv=±0.2%,输出纹波电压最大值约为67mV;辅助输出u02=24V(负载为250Ω),输出纹波电压最大值约为98mV;辅助输出u03=12V(负载为100Ω),输出纹波电压最大值约为84mV。

同时,实验测得,主路输出u01的最大输出电流可达700mA,辅助输出u02的最大输出电流可达120mA,辅助输出U03的最大输出电流可达170 mA,电源功率可达8.4W,完全满足设计要求。

开关电源设计范文第8篇

3.1 基本理论

常用的开关电压电源未补偿的开环传递函数Tu可分为单极点和双极点两种,对于单极点一般采用PI(比例积分)补偿,双极点一般采用PID(比例积分微分)补偿。也可以大致理解为电流型控制的采用PI补偿,电压型控制的采用PID补偿。

PI补偿可以用如下电路实现:

WL=1/(R2C2) Wp=1/(R2C1) Gc=R2/R1 (C2>>C1)

Gc是比例因子;零点WL引入积分,当频率小于WL,增益增加,直流增益提高,意味着稳压精度提高;极点Wp使高频的干扰信号迅速衰减。需要注意的是上面的等式是在C2>>C1的假设下得到的,实际选择反馈参数时要注意满足这个条件。

PID补偿可以采用如下方式:

若R1>>R3,C2>>C1,有:

为在fc点获得θ的超前补偿,有:

fL使低频增益加大,提高稳压精度;fz引入相位超前补偿,增加相位裕度;fp1、fp2使高频干扰衰减。注意满足:R1>>R3,C2>>C1。

3.2补偿网络设计实例

画出Tu的Bode图之后,就可以设计补偿网络了。下面对几个实际电路进行分析。

3.2.1 非隔离的电压型BUCK(TPS40007)

输入5.5V,输出3.3V/5A,开关频率fs=300kHz。按照TPS40007的内部结构,锯齿波的幅值是Vm=0.9V,所以控制电压Vc到占空比D的传递函数Gain=1/Vm。补偿网络的设计步骤如下:

/psimu/ZXTJ/TJ6700/small signal 3V

第一步:去掉补偿网络,对控制电压Vc(即补偿网络的输出)进行直流扫描,找到使Vo=3.3V时的Vc值,将Vc的直流分量设为次值,即设置了电路的静态工作点。

第二步:对Vc进行交流扫描,得到未补偿的Vc到Vo的传递函数Tu。Tu的直流增益为15.7dB,交越频率为10.5kHz。

第三步:设计补偿网络参数。由于是电压型控制,所以采用PID补偿。设补偿后的交越频率fc=20kHz,在fc处得到60°的相位补偿;而Tu在fc处的增益是dbGc=-12.38;设置极点fp2=180kHz以抑制高频干扰;R1=36K。按上述参数得到补偿网络的反馈参数:R2=40K(取39k), C2=7.4nF(取4.7nF),C1=53pF(取47pF),R3=1k, C3=820pF(取1nF)。

仿真结果:fc=24.7kHz, 相位裕度φm=43°。下面是实测的环路BODE 图。

实测的交越频率及相位裕度都比仿真的大些,这是由于频率高了以后,电路的分布参数影响的结果。

3.2.2 隔离的电流型BUCK(TDA16888)

输入400Vdc,输出54V/5A,开关频率fs=100kHz。

/psimu/zx500W/main/small signal1

为便于补偿网络的设计,将光藕部分也归入未补偿的传递函数Tu,即:只将补偿网络分开。那么Tu是光藕的输入Vc(补偿网络运放的输出)到输出Vo的传递函数。

补偿斜率mva的计算:芯片15脚的外接电容100pF,通过内部的10K电阻充电,时间常数只有1us,电源的开关频率是100kHz,在电流信号与Vc比较的瞬间,外接电容已经基本充满了电,对斜率补偿没有多大影响,实际上此处电容的作用只是消除电流检测波形前端的尖峰。对环路特性有影响的斜率是指锯齿波与Vc比较时的斜率。TDA16888芯片内部是将电流检测信号放大了5倍,即加在电流锯齿波信号上的补偿斜率是电流信号本身斜率的4倍。根据实际电路结构,可以算出在变压器原边检流电阻上的电流信号(实际是电压信号)的斜率:

输入电压Vi=400V,变压器变比n=2.875,输出电感Lo=200uH,输出电压Vo=54V,输出电感电流的上升斜率mi=(Vi/n-Vo)/Lo=0.425A/us,折合到原边,电流上升斜率mip=mi/n=0.148A/us,在检流电阻上的电压上升率mv=mip*Rs(0.22)=0.0325V/us=32.5K V/s,也可以通过仿真直接得到电流斜率。由此得到补偿斜率mva=4*mv=130K V/s。

V9是芯片内部的压降。

第一步:先得到Vc到Vo的传递函数Tu。方法是对Vc进行DC扫描,得到使输出电压为Vo时的Vc值,从而确定了电路的工作点(Bias point)。设定Vc的直流分量为工作点的值,然后进行AC扫描,得到Tu:DC增益32.84dB、转折频率fo=23.6Hz。

第二步:确定补偿网络的形式。因为是电流型控制,可以采用PI补偿。补偿前Tu的直流增益dbTuo=32.84dB,Tu的转折频率fo=23.57Hz,Tu的交越频率fc’=1kHz。为提高系统的动态响应,将补偿后的fc提高到2kHz(由于光藕的带宽只有10kHz左右,所以在有光藕隔离的场合,很难将交越频率提得很高);为提高稳压精度,加入零点fL=fc/10;为抑制高频干扰,加入极点fp=10*fc;在确定R1=33k后,可以算出反馈网络的参数:R2=64k C2=12nF C1=120pF

第三步:将补偿网络加入环路中,此时得到的电路就和实际的一样了。进行偏置点扫描(biaos point swip),得到电路各点的电压,与实际的测试结果比较,保证电路的参数设计合适,比如可以看看光藕的If是否合适。将环路中各器件设计到合适的工作点是保证电路在各种环境下稳定工作及长的工作寿命的前提。注意:补偿网络的参数不会影响电路的静态工作点。确定环路的静态工作点后,加入Lf、Cf及Vsti进行AC扫描,得到整个系统补偿后的开环传递函数T。

在上述仿真电路中,电感Lf很大,对直流信号相当于短路,所以不会影响整个环路的静态工作点,Lf对交流信号来说相当于开路,所以仿真出的T是开环传递函数;Cf也很大,对激励源Vsti来说相当于短路,从而引入激励信号,Cf对直流信号相当于开路,Vsti的任何直流分量不会影响环路的静态工作点。

从仿真结果可以看出,交越频率fc处的相位裕度φm=66°,且频率低于fc的最低相位裕度也有36°,所以系统是稳定的。下面是实测的开环Bode图。

3.2.3 带前馈的电压型隔离BUCK(LM5025)

输入48V,输出3.3V/40A,LM5025控制器,开关频率fs=280kHz,下图是实际电路参数,可以看出测试结果与仿真结果很相似,表示所建的仿真模型准确度是可以信赖的!

LM5025-2

下面对此电路按上面的方法重新设计补偿网络。

首先,将补偿网络移出,画出从光藕输入到Vo的未补偿传递函数Tu。C8、C9、C6、R12不要,R6及Vr1是芯片内部参数,需保留。

从仿真结果可以看出,Tu的直流增益很小,只有-0.44dB。原因是光藕的电阻R5接到了输出Vo,从而降低了Vo对Vc的增益。若将R5接到一个固定电平VCC上,则整个增益增加了,Tu的直流增益增加到25.6dB!以此为基础进行补偿网络设计。由于是电压型控制,所以采用PID补偿。由于本电源的开关频率很高,达fs=280kHz,若没有光藕隔离限制,补偿后的交越频率可取fc=0.2*fs=56kHz,但由于光藕的带宽只有10kHz左右,且光藕引入的相位滞后在5kHz 以后急剧增加,所以为了得到尽可能大的带宽,首先应对光藕进行适当补偿以拓展其带宽。此处在光藕的输出加入RC零点。设补偿后的交越频率为fc=20kHz,Tu在fc处的增益dbGc=-8.67dB,希望在fc处得到60°的相位补偿,设置极点fp2=180kHz以抑制高频干扰,R1=100k//56k=35.9k,计算得到补偿网络如下:

补偿后带宽20kHz,相位裕度30°。仿真得到的相位裕度往往小于预期的值,这是由于补偿网络的运放及未完全补偿的光藕造成的。

3.2.4 准谐振Flyback(UCC28600)

220Vac输入、28V/2.3A输出,光藕+TL431反馈。

UCC28600

先把补偿网络去掉,计算未补偿的Vc到Vo的传递函数Tu,由于光藕直接接到输出,所以Tu的直流增益很低。

下面是实测的环路BODE图,可见仿真结果与实测符合得很好。