开篇:润墨网以专业的文秘视角,为您筛选了八篇模具数控范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
模具工业是国家工业发展的基石,为制造加工业提供了工艺装备,同时支撑了国民经济的发展。以模具为基础,对其进行再加工制造,生产出来的产品价值将远远超出模具本身。
随着社会科技技术的不断进步,计算机数控技术的兴起,为模具加工制造实现规模化、自动化提供了可能。数字控制技术是利用数字信号对工艺加工过程进行自动控制的一种先进技术。本文通过阐述了模具加工和数字控制技术的特点,分析了将两者结合的优势及其在工业制造中的应用。
1.模具数控加工制造工业的发展过程
我国模具工业是从上世纪七十年代末发展起来的,大致经历了三个阶段:
第一阶段是1978年到1990年,是模具工业起步初期。在这一时期,我国的模具加工制造的核心硬件主要是靠进口,从国外引进,然后再重新加工制造,加快了国内模具加工业的发展。但是,只是引进国外的器件,并没有实质性地学习其中的制造技术,使得模具数控加工制造并没有得到真正的提升。
第二阶段是1990年到这个世纪初,国内的模具数控加工制造工艺达到了稳定状态。由于数控机床的加入,使得过去不能生产的复杂模具零件,现在能够通过数控机床实现,整个模具制造的装备水平有较大的提升。但是,数控机床的控制系统仍是依靠国外进口,国内的高成本、低性能器件不能满足需求,因此,当时我国的模具数控加工受到了技术限制。
直到2000年后,即模具数控加工发展的第三个阶段,快速发展时期。在短短的十几年,我国已经掌握了自主研发先进数控系统的核心技术。正是数控技术的广泛应用,使得国内的模具加工制造开创了新领域。尽管目前的模具数控技术与发达国家仍存在差距,但是通过不断努力,我国的模具数控加工技术将会取得更大的发展。
2.模具数控加工技术
2.1模具加工制造的要求
模具并不是产业制造的最终产品,它是新产品的基础。模具的加工制造是随着新产品的变动而变动,具有随机性。因此,模具加工要求设计制造的周期短,速度快,而且模具加工的工作员工必须具备扎实的基础知识和经验来应对产品开发的大变动。模具加工制造过程中其结构是不固定的,需要根据最终产品的形状和要素进行不断的更改和试模,从而完成新产品模具的制造。而且在设计模具时,应具有创造性,保证模具能够高度地符合新产品的结构和形状。模具加工制造要求高精确度,进而减小模具与新产品之间的加工误差。影响模具高精确度的因素之一就是模具表面的光洁度,具有一定光洁度的表面能够保证熔体在与模具进行再加工时能够均匀分布,同时有助于注塑和压铸模具。
2.2数控技术
首先,数控加工技术具有良好的工艺加工效率。数控加工是一种数字化控制过程,整个加工生产过程实现了自动化,因此,加工流程具有高速的工作效率。与传统的制造工艺相比,数控技术不仅能保证模具加工制造的质量,更能缩短工艺的生产时间,使得企业获得更高的经济效益。
其次,数控加工技术极大程度地提高了模具加工的质量。数控加工技术的核心是其集成了大量的高科技装置,包括机床和控制软件等,能够确保产品的准确性以及稳定性。
2.3模具数控加工技术的优势
由于模具为单件加工,因此需要不断重新设计制造,而数控加工技术强大的编程能力正好能够满足这一需求,不过要求模具加工人员具有较高的技术知识。模具加工过程中需要的工具很多,工作量非常大。传统的模具加工只有靠人工进行装配,效率极低。采用模具数控加工技术对所有结构部件进行自动成形,既能保证模架、镶块、电极等部件顺利成形,还能提高工作效率。在模具加工过程中精确度的提高是其重要环节。一方面,模具部件的安装应一步到位,合理排序,选择恰当的刀具,避免多工序安装,这样能够减少定位误差。另一方面,模具的加工腔型表面需要达到足够的精确度。由于型腔面决定了新产品的外观,因此采用模具数控加工技术使得整个过程中减少或避免了使用钳工和手工修正抛光工作,提高了模具的精确度。模具加工材料通常都是很硬的钢材,硬度非常大,能达到52-58HRC。因此,采用数控加工技术时要选择更高硬度的加工工具,同时利用数控的高速优势来进行加工,这样对加工材料损耗有很大程度的减弱。
3.模具数控加工技术的应用
模具数控加工是指在数控机床上进行模具零件的加工。模具数控加工技术主要包括计算机制造技术、信息处理技术以及机械制造技术等。
3.1数控机械加工技术
数控机械加工技术包括车削和铣销加工技术,这两种数控加工技术使得模具加工制造工艺具备高速切削能力。其中,车削主要用于标准模具的加工,如顶尖、导柱等各种杆类零件;而铣销加工多用于各种复杂曲面的加工,对平面、孔的加工应用也是十分广泛的。
3.2模具数控电加工技术
模具数控电加工技术主要指电火花线切割数控技术。高速切割是模具加工产业中最有效的手段,它的优势在于能够加速排屑,减少机床振动。电火花加工主要用于复杂形状和特殊材料模具的加工,对于型腔及带异形槽的模具有很好的切割效果;线切割主要用于直壁模具的加工,比如电极、模具中的凹凸模等,应用广泛。
3.3其他模具数控加工技术
随着模具加工制造产业的不断发展,数控技术不断创新,目前比较先进的模具数控加工技术结合了光能、超声波等新技术,扩展了数控技术的应用范围。新的工艺和方法,使得模具的加工制造更加高效,产品质量也有所提高。现在,大多数相关企业,都采用数控技术来进行模具的加工制造,增强了企业的先进性。
4.模具数控加工技术的发展方向
未来的模具数控加工技术会伴随科技的进步,不断深化,其发展趋势包括两个方面:
一方面,模具数控加工工艺将会具有更快的速度。由于模具加工工艺采用数控技术,实现全自动控制过程,通过不断优化主轴转速及分辨率,由主轴转速带动模具加工速度,可有效提高模具加工的效率。
另一方面,模具数控加工工艺将向着更高的准确性发展。数控是由计算机控制整个设备的运行,改进系统的硬件结构,根据产品的需要,可以准确地完成模具的设计与制造,提升了模具数控加工业的可靠性。
5.总结
随着模具加工生产工艺在国内广泛应用,提升模具加工制造技术能够大力推动整个国家的工业发展。数控技术是目前模具加工制造产业中较为先进的控制技术。将数控技术运用到模具加工中确保了模具生产效率以及产品的质量,能够随时处理模具生产过程的不固定因素,迅速应对并进行改进。在当前模具的制造越来越复杂,精度要求越来越高的形势下,模具数控加工技术代替普通机床加工是整个制造工业的发展趋势。本文通过分析模具数控技工技术的特点及优势,并对模具数控技术的发展方向作了概括,为今后的工艺优化提供科学的理论依据。
参考文献:
[1]邱言龙.模具钳工实用技术手册[M].北京:中国电力出版社,2010.01.
[2]王成.浅谈数控技工技术在模具制造中的应用[J].机电信息,2010(18).
关键词:模具制造;数控加工技术;机械制造业
0引言
在机械加工领域,模具生产制造的结构较为复杂,对于各个数据和精度的要求比较高,模具制造要选择硬度高的原材料,同时,整个模具制造和生产的时间较短。因此,在进行模具制造生产时,要严格要求每一个制造环节,每个模具都有不同的结构和特点,对技术水平的要求也存在差异。由于传统的加工方式存在一些不足,比如技术水平不达标、无法精准加工以及加工时间较长,对整个模具制造的工作质量和效率产生了消极的作用和影响。随着数控加工方式的广泛应用,呈现出多元化发展的态势,该加工方式种类繁多,为模具制造和生产奠定了极强的技术基础。其中应用最为广泛的是数控铣床及加工中心。因此,在整个机械加工领域,为了使模具制造和生产得到进一步的发展和壮大,要积极发挥技术优势,利用先进化的数控加工技术,推动整个机械加工领域的进步。
1模具数控加工的显著特征
1.1模具制造具有独特性
每一个模具都是不同的,在结构上都存在一定差异。模具是一件一件生产出来的,基本不会出现二次开模的现象。因此,在模具制造生产过程中,对于数控编程的准确度控制较为严格。针对部分加工程序比较多、工艺较为复杂的模具时,会借助自动化的机械编程软件,再由技术人员进行调整和修正。
1.2模具制造具有随机性
对模具进行设计和开发,主要是为新产品的生产服务,并不是整个生产环节的最终成果。因此,在生产数量、时间、具体结构要求等方面存在不确定的因素,其生产具有极高的随机性。模具相关的设计制造工作人员要具备随机应变的能力,对该生产工作要尽快适应,同时还要有多年的相关工作经验。此外,针对较为复杂的加工,比如模具型腔面,需要提高加工的精度和工艺,避免后期需要二次修整和人工抛光。
1.3模具制造要求高精准
对模具进行加工和制造,需要达到高精准的要求。我们必须要对加工时可能出现的偏差进行控制和避免,以此来确保成型后的模具符合标准,从而避免了产品的误差的产生。一般来说,对于模具的公差要控制在1/5~1/10的范围之内,在产品接合处,精度的要求更高。只有模具的精度达标,才能保证新产品的质量水平。
2数控加工技术在模具制造中的广泛应用
在机械制造领域,我们对模具的数控加工技术进行了深入的分析和研究,对于模具制造来说,其反映出来的显著特征决定了加工技术的高标准。数控加工技术运用现代化的方式和手段,能够满足模具制造的需求,数字化的加工方式能够提高各项工作的精度和准度。对于模具的数控制造过程中运用先进的数控生产技术,在提高生产精准度、有效减少生产时间以及降低生产费用等方面都有着十分积极的作用。此外,随着数控加工技术的不断运用,转变了传统模具生产模式对钳工生产经验的依赖度。由此可见,利用数控技术给模具制造提供了发展机遇,产生了根本性的变革。就目前来说,我国较为先进模具生产制造商主要以数控技术为主进行生产,数控加工技术渗透于整个模具制造全过程。
2.1数控车削加工技术
通常,数控车削加工技术主要应用于中轴类的标准件制造,主要包括形态各异的杆类零部件和回转体的模具制造。其中,回转体模具有以下几类:瓶状或盆状的注塑类模型;轴类的零件等等。由于数控车床只能进行平面的加工,因此,在具体应用中数控车削加工技术主要对模具中一部分零部件进行加工和制造。
2.2数控铣削加工技术
数控铣削加工技术主要用于模具中的凹凸型面或者曲面的加工,采用该技术能够将复杂的外形轮廓进行深度加工,对曲面的模具也有较多的应用。举例来说,该技术的应用,能够利用电极等方式进行加工,使电火花成形。数控加工技术在我国机械加工领域的广泛应用,一些规模较大的数铣加工中心普遍利用数控铣削加工技术进行加工和生产。
2.3数控电火花加工技术
为了满足模具的快速成形,要使用数控电火花加工技术。与编程相比,该技术加工手段相对较低。其中,模具加工中的线切割主要利用的是直壁状的模具加工。比如在冲压模具中,出现的凹凸模以及电火花加工技术中利用的电极等。
3结语
随着机械加工领域的不断发展,数控加工技术以其自身的技术优势大范围的应用于模具制造的实际生产过程中,特别是为家用电器、汽车制造等领域提供了良好的技术保障。近些年,国际上一些领先的数控加工技术在不同程度上为环保能源、航天以及运输领域进行运用。在机械加工领域,模具生产制造的结构较为复杂,对于各个数据和精度的要求比较高,模具制造要选择硬度较高的原材料,还有就是整个模具制造和生产的时间和周期较短。由此可见,模具制造有其独特性,比一般的机械产品在技术加工方面有更高的要求和标准,在高标准严要求的基础上推动整个机械加工业的长足发展。
作者:王盛 单位:江苏省常州技师学院
参考文献:
[1].数控加工技术的现状和发展趋势[J].金属加工(冷加工),2010(20).
关键词:数控加工;模具制造;作用
随着数字化信息技术的不断发展,数控加工突破传统技术的局限,使生产领域的很多高技术难题得到了有效解决。数控加工技术主要是指在数字化信息下采用的一种技术,具有数字化、自动化的特点。数控加工技术应用在模具制造中,实现了机械的自动化控制,实现了模具制造的高效率、高精度生产。
1数控加工技术的简介
数控加工技术主要是数字化信息下采用的一种技术,具有数字化、自动化的特点。数控加工技术具有自动化的特点,可以使模具生产实现对机械设备的自动化控制,同时在很多方面也被广泛应用。随着社会的不断进步,人们的生活水平得到很大改善,对多样化的产品消费需求也在不断增加。传统的加工设备和制造方法很难满足于这种多样化的产品需求。正因如此,才能不断推动着模具生产企业对加工技术的革新。为了适应越来越激烈的市场竞争环境,数控加工技术的出现无疑为模具的生产带来了一场新的革命。数控加工技术涉及两个方面的应用,即数控机床加工技术和数控编程技术。这两个技术在模具的制造过程中相互配合,发挥着各自的作用。数控机床是数控加工的硬件基础,可以提高模具生产的效率和精度。数控编程是实现数控加工的重要环节。在模具的加工生产中,为了更有效地实现零件加工的质量,最大限度地发挥数控机床的性能,人们一直在追求数控加工技术的高速高效发展。
2数控技术在模具制造中的主要应用
在模具制造的生产过程中,选择适当的加工方式非常重要。要根据不同模具制造的要求和不同类型的模具,选择适当的加工方式进行生产。而在数控加工技术中有非常多的加工技术都能适应模具的多样化生产,且被广泛使用。(1)选择合适的数控机床。数控机床的种类繁多,在模具的制造中也有很多数控机床运用。例如,数控电火花加工、数控电火花线切割、数控铣加工等,这些数控机床在模具的生产中被经常应用。在模具加工之前,要合理地对要进行加工的模具进行分类,然后再选择合适的数控机床进行加工,才能按照生产的要求降低生产成本,达到最有效的生产。(2)改进数控加工技术。随着当今市场竞争的越来越激烈,模具制造业也在这个激烈的竞争环境中得到了发展,数控加工技术的发展也要不断满足模具发展的需求。因此,数控加工技术要不断改进,企业要在数控加工技术的研发方面加大投入,并不断采用新的材料。要采用具有良好经济效果的材料,保证提高模具产品的制造质量。同时,还可以加快模具生产的速度。在选择良好材料的同时,也要不断对数控加工技术进行改进改良。随着技术的不断革新,数控加工技术的不断发展,很多模具生产上的难题迎刃而解。例如,对于比较复杂的曲面模具的制造生产,可以采用数控铣加工和数控电火花线切割加工相结合的方法,保证模具加工的顺利完成。(3)优化加工程序。数控编程是实现数控加工的重要环节。数控编程技术是数控加工技术水平高低的一种体现。在模具的加工生产中,为了提高零件加工的质量,要最大限度地发挥数控机床的性能。编程技术主要与三个因素有关,分别是加工的质量、时间和程序方面的内容。在模具的制造中,运用编程技术来减少加工过程中的时间,可实现高速度的生产。
3数控加工在模具制造中的作用
(1)可以满足高精度制造的要求和形状的复杂变化。目前,大部分的模具主要是由铣削、车削、磨削等机加工方法完成。传统的机械加工方法主要是依靠技术人员操作普通的机床来进行工件的加工,效率低且精确度不高,技术人员的操作劳动强度也较大。而随着数控加工技术的迅速发展,模具加工中引进了很多数控加工设备,主要有数控车床、数控铣床、数控线切割机床等数控加工技术设备。三轴或者多轴联动的数控铣床和加工中心可以方便地解决带有大量空间曲面的型腔模具的加工难题。数控电加工类数控机床可以加工加工难度较大的模具,如贵重金属的模具等,同时还可以提高模具的精度。随着数控加工技术的不断发展,很多高精度的数控机床也得到了相应发展。在模具制造中应用高精度的数控机床进行加工,可以满足模具制造对模具的高精度需求,从而为模具产品的改型换代提供有力保证。(2)可以进行高速切削,提高生产效率和产品的竞争力。随着市场竞争环境的日益激烈,企业要谋求生存必须提高自身的竞争力。科学技术的高速发展使产品的制造技术要求提高。目前,模具企业之间的竞争和企业获取更多的经济利益取决于模具的生产周期。因此,企业要在模具制造生产过程中不断提高生产效率,缩短生产周期,才能提高企业的竞争力和获取更多的经济利益。在研发新产品时,要尽量缩短产品的生产周期,让新产品能在最短的时间内投放到市场,从而使企业在竞争中占据巨大优势。而目前应用最广泛的一种工艺技术就是数控加工中的高速切削技术。高速切削技术具有工件温升低、切削力小、加工平稳等优点,在模具加工中不但可以保证加工质量,还可以提高模具生产的效率。(3)可以实现模具生产的网络化和智能化。随着模具制造业的不断发展,模具生产网络化就是在模具生产制造中使用网络来进行虚拟设计、敏捷制造技术。实现数控设备的网络化不仅可以满足生产线、制造系统、制造企业对信息集成的需求,同时也为新技术的研发提供了基础。数控加工网络化和智能化将给模具制造业带来新的历史变革。通过网络传输给数控机床的加工下达工作指令,不仅可以提高模具生产的精准率,同时也能提高模具的质量和生产效率。网络化系统还可以对数控机床进行异地实时操作和控制,实现动态调试和监控机床运转情况的目的,对模具制造有一定的实用性。数控机床智能化的发展,可以实现在加工过程中随时随地根据实际加工的变量进行自动选择和调节的功能,从而提高基础加工的精密度和效率。可见,数控技术的应用使模具制造实现生产的网络化和智能化,为模具的制造业发展提供了有力保证。
4小结
综上所述,随着数控技术和高新信息的不断发展,数控加工技术在模具生产中具有重大作用和不可代替的地位,也是模具制造产业中的重点技术。数据加工技术在模具制造中的应用,可以满足高精度制造的要求和形状的复杂变化,可以进行高速切削,提高生产效率和产品的竞争力,还能实现模具生产的网络化和智能化,为模具制造产业的发展提供有力的保证。
参考文献
[1]刘宏军.模具数控加工技术[M].大连:大连理工大学出版社,2014.
[2]王成.浅谈数控加工技术在模具制造中的应用[J].现代制造,2010,(18):66.
关键词:模塑公司;模具;加工质量;工艺;软件
成都航天模塑股份有限公司是从事模具及汽车内外饰件制造的专业化公司,公司拥有一支高素质的研发、设计队伍,以国际最先进的软件将六十余台工作站相连接,以 CAD/CAM/CAE 技术及数十台数控加工设备和数控注塑设备组成具有国际水平的产品研发体系和强大的模具制造、注塑能力。公司从引进数控加工中心至今,已有了近二十年的数控设备使用经验,深刻体会到模具制造发展到现阶段已经越来越离不开数控设备,数控加工向着高精度、高质量、高速度、高自动化方向发展!数控加工已经成为模具制造不可缺少的工艺方法,并且将越来越重要,数控设备的多少和数控设备先进性程度已经成为一个模具制造企业赢得市场、赢得竞争的关键性因素之一。
现代模具制造业中,型腔型面设计日趋复杂,尤其是汽车模具中自由曲面所占比例不断增加及产品质量要求不断提高,都对曲面的制造精度提出了更高的要求。因此,模具制造工艺系统的精度、数控系统的精度和模具制造的 CAM 技术都会对曲面加工质量产生影响。而包含自由曲面模具基本上都是借助各种 CAM 软件进行自动编程,利用数控机床加工完成的。
模塑公司大部分数控加工中心已经有了较长的使用时间,虽然有严格的数控机床操作规范,良好的机床维护保养,但是其本身的精度损失是不可避免的。为了控制产品的加工质量,我们定期对数控设备进行检测维修,明确每台设备的加工精度,明确每台设备的加工任务。严格区分粗、精加工的设备使用,因为粗加工时追求的是高速度、高的去除率、低的加工精度,而粗加工时对设备的精度损害是最严重的,因此我们将使用年限较长精度最差的设备定为专用的粗加工设备,新设备和精度好的设备定为精加工设备,做到了对现有设备资源的合理搭配、明确分工,将机床对加工质量的影响降到了最低,同时又保护了昂贵的数控设备,延长了设备的寿命。当我们的机床不可改变时,与机床相关的刀柄、刀具对数控加工质量的影响又变得突出了。在任何旋转刀具加工系统中,主轴与夹头 ( 或其组合体 ) 的联结才是刀具加工性能实现的真正基石!我们公司常用刀柄与机床的接口有 BT 柄和 HSK 柄。 BT 柄与机床主轴的接口锥柄锥度为 7 : 24 ,这种方式的刀柄只适合于传统的低速加工,因为 BT 刀柄与主轴只是锥面配合,当转速太高时,由于离心力的作用会使锥面配合间隙增大,从而影响数控加工质量。当机床最高转速达到 15000 转 / 分时,通常需要采用 HSK 型刀柄,HSK 刀杆为过定位结构,提供与机床标准联结,在机床拉力作用下,保证刀杆短锥和端面与机床紧密配合。
刀柄对刀杆、刀具的夹紧方式主要有侧固式、弹性夹紧式、液压夹紧式和热膨胀式等。侧固式精度较低并且难以保证刀具动平衡,在高速铣削式不宜采用,下图为弹性夹紧式、液压夹紧式和热膨胀式刀杆示意图,热膨胀式刀杆夹头的刀孔与刀柄为过盈配合,须采用专用热膨胀装置装卸刀具,一般使用电感加热或热空气加热刀杆,使刀孔直径膨胀,然后将刀柄插入刀,冷却后孔径收缩将刀柄紧紧夹住。
模塑公司通过多年的应用、比较、总结,现在采取的刀柄使用方案为:粗加工或大进给加工时采用 BT 弹簧夹头刀柄,普通机床上的半精和精加工采用的 BT 液压夹头刀柄,在高速铣和石墨加工机上采用的是 HSK 型热胀刀柄或液压夹头刀柄。因为弹簧夹头刀柄在刀具装夹麻烦费时,重复精度较差,加工吸振性能不好,所以用于粗加工或大进给加工 ;而 精加工时采用的液压夹头刀柄具有极高的夹持回转精度,非常方便的刀具装夹方式深受操作者喜爱,并且为全密封结构型式,有效防止冷却液、铁屑特别是石墨粉尘对刀柄的损害,而液压夹头刀柄又具有优良的阻尼减振性能,可以抑制加工中产生的振动,从而明显改善了模具的表面加工质量和表面光洁度。在高速铣上做模具加工所采用的 HSK 型热胀刀柄具有结构简单,夹紧可靠、同心度高,传递扭矩和径向力大,特别是在模具的深型腔加工中,热胀刀柄的刀具夹持端可以很长、外径可以做得很小而广泛应用与模具的深型腔加工中,但是通过高速铣的应用发现热胀刀柄为全刚性的结构使阻尼减振性能很差而难以抑制加工中产生的振动,从而在程序编制不好时对模具的加工质量产生较大的影响,大幅降低刀具的使用寿命,因此建议在小批量的使用高速机床时不要配置热胀刀柄,因为虽然热胀刀柄很便宜,但一般一台电感加热装置的价钱可以购买几十个其它类型的刀柄了。
转贴于 刀具的正确选择和使用是 影响数控加工质量 的重要因素。硬质合金刀具应用范围在公司越来越广,硬质合金将代替大部分高速钢刀具,包括钻头、立铣刀、丝锥等简单通用刀具,使这一类刀具的切削速度有很大的提高,硬质合金将在刀具材料中占主导地位,覆盖大部分常规的加工领域。我公司在 粗加工中 尽可能采用大直径 的牛鼻刀,使用 R2 、 R6 的 硬质合金刀片 ,做到粗加工排屑“多”;半精加工选用高转速高进给 R0.8 的镶片立铣刀,做到半精加工走刀“快”; 精加工时尽量选用硬质合金刀杆和高精度球头镜面刀片,这样可在保正 加工质量的同时节省选用整体 合金刀具的高昂费用,模具 精加工中 所用最小刀具的半径应小于或等于被加工零件上的内轮廓圆角半径,尤其是在拐角加工时,应选用半径小于拐角处圆角半径的刀具并以圆弧插补的方式进行加工,这样可以避免采用直线插补而出现过切现象, 做到精加工质量“好”。
高品质硬质合金刀具
高速加工技术的发展日益成熟,极大的提高了模具加工速度、减少了加工工序、缩短甚至消除了耗时的钳工修复工作,从而极大地提高了模具数控加工质量,缩短了模具的生产周期。因此模具的高速加工技术逐渐成为 模塑公司 技术改造最主要的内容之一,高速加工取代传统低速加工已成为必然,谁将高速加工上得快、用得好就必将赢得市场!
通过前面的分析可以得出机床设备在模具的加工中是非常重要的,但是影响 模具数控加工质量的另外的 重要 因素是加工工艺 、 软件 、数控程序设计者、机床操作者。
数控编程一般可分为 4 个阶段:准备工作阶段、技术方案阶段、数控编程阶段和程序定型阶段。
1 .准备工作阶段:根据生产任务书,按要求接收技术数据,检查数据的准确性、时效性。明确生产计划,能否按时完成。
2 .技术方案阶段:数控编程前的首要工作是制定技术方案。公司把数控工艺和刀路程序设计合并由程序设计员一人负责。技术方案阶段主要任务是根据车间的制造资源,编制数控加工的工艺方案。为了做好技术方案,必须了解加工环境和制造资源,包括:机床、刀具、夹具、软件、工艺资源、毛坯(如毛料、锻件、铸件、热处理、切削性能、预加工)等,还要对零件的技术要求弄清楚,如公差要求、光洁度、薄壁件的允许变形、装配关系等。
数控工艺方案的设计是有难度的,因为要处理的信息量大,各种信息之间的关系又极为错综复杂,这主要靠程序设计员的工作经验来进行。因此,工艺方案的设计质量完全取决于技术人员的水平和经验。
在高速铣技术广泛应用的今天,数控工艺方案的设计重要性被提到了更高的地位。高速铣要求对加工的全过程进行控制,任何疏忽都会引起严重的后果,因此,高速铣的工艺方案的编制好坏,将会对高速铣成败起到决定性的作用。
3 .数控编程阶段:在编程准备期间,主要的依据是三维数据和工艺文件。程序设计员要分析零件的几何特征,构思加工过程,结合机床具体情况,考虑工件的定位,选用夹具。数控编程的第一步要正确定义加工坐标系,选择好对刀点。选择的编程原点应方便编程、便于测量检查、便于操作,同时考虑引起的加工误差较小。第二步是按照数控工艺方案一步一步地在计算机上编制刀具轨迹。第三步是验证程序的正确性,可行性。可以通过计算机仿真模拟或试切削样件。第四步是优化程序。
4 .程序定型阶段:由主管领导审核数控编程刀路,合格后填写数控加工程序单,绘制加工简图。到现场了解程序执行情况,总结程序编制经验。
数控工艺的特点和数控加工工艺规划的编制:
( 1 )数控工艺要考虑加工零件的工艺性,确定加工零件的装夹与定位,选择刀具,制定工艺路线、切削方法及工艺参数等,而这些在常规工艺中可以简化。
( 2 )数控工艺设计主要用于指导数控编程,我公司把数控工艺员和编程员的职责和二为一,由程序设计员负责整套模具的数控加工过程,提高了工作效率。
( 3 )数控加工的自动化程度高,影响因素多,在数控加工中,质量和安全是自关重要的,必须得到保证。
( 4 )数控工艺的编制要有严密的条理性。数控工艺复杂,影响因素多,需要对数控加工的全过程深思熟虑,要有很好的条理性,才能编好数控工艺。加上数控加工的自动化程度高,它的自适应能力就低,一旦出现问题,工人很难现场纠正,轻者造成加工缺陷,重者引起安全事故,因此要预先有条理的做好数控工艺的设计。
( 5 )数控工艺的继承性好。凡是在生产中证明是好的数控工艺,可以做成模板,作为档案保存起来,在以后加工同类零件时调用,可以节约时间,保证质量。
数控加工工艺规划可以认为是由零件初始状态(毛坯)到最终状态(零件)间的一系列工艺过程的状态空间。数控工序的排序应满足如下的一般规则:
1. 先主后次。 2. 先面后孔,先铣后钻。 3. 先粗后精。 4. 先做内腔加工后做外形加工。 5. 按工序的顺序,刀具直径由大到小。 6. 上道工序的加工不能影响下道工序的装夹与定位。 7. 用相同的工装和夹具应安排在一起做完,减少重复装夹与 定位。 8. 数控工序要集中。 9. 不要把削弱零件刚性的工序排在前面。
一个好的数控加工工艺规划还要考虑以下几个方面:
是否能满足零件的技术要求,是否能提高数控加工的效率,低的加工成本,好的质量控制。
因此,通常一份完整的数控加工工艺规划,大概包括如下内容:
? 数控机床选择。
? 加工方法选择。
? 确定零件的装夹方式并选择夹具。
? 定位方法。
? 检验要求及检验方法。
? 选择刀具。
? 加工中的误差控制和公差控制。
? 定义数控工序。
? 数控工序排序。
? 切削参数选择。
? 编制数控工艺程序单。
模塑公司通过在模具行业中的比较,购买了国际一流的数控加工软件: UG NX4.0 和 POWERMILL6.0 ,通过多年的使用表明是非常适合模具加工行业的,尤其是两种软件丰富实用的加工策略各不相同,互相补充使数控加工的质量和效率得到了很大的提高。 POWERMILL 在偏置区域清除粗加工时可以加入螺旋功能,进行实际切削时更加平稳,消除了相邻刀路之间连接的进刀方向突变,减少切削进给的加速和减速,保持更稳定的切削负荷,延长了刀具寿命,对机床也起到了保护作用。
交叉等高精加工使用户可定义一个分界角,浅滩区域内将使用等高策略,其它部分使用三维偏置策略,并且可以在陡峭和平坦区域之间加入重叠距离,两者相辅相成。
参数偏置精加工既可以保证曲面上刀路间的行距不超过设定的数值,又可以显著减少三维偏置策略中在刀具路径中可能出现的尖角,可以有效改善三维偏置加参考线的方法在工件表面的相交刀路产生的切削纹理,工件的外观质量更好。
切削参数的选择对加工质量、加工效率以及刀具耐用度有着直接的影响。在 CAM 软件中与切削相关的参数主要有主轴转速 (Spindlespeed) 、进给速率 (Cut feed) 、刀具切入时的进给速率 (Lead in feed rate) 、步距宽度( Step-over )和切削深度( Step depth )等。
转贴于 主轴转速一般根据切削速度来计算,其计算公式为: n = 1000 V c / π d ,式中 d 为刀具直径( mm ), Vc 为切削速度 (m/min) 。切削速度的选择与刀具的耐用度密切相关,过低或过高的切削速度都会使刀具耐用度急剧下降。模具精加工时,应尽量避免中途换刀,以得到较高的加工质量,因此应结合刀具耐用度认真选择切削速度。
进给速度的选择直接影响着模具零件的加工精度和表面粗糙度,其计算公式为 F=nzf ,式中 n 为主轴转速( r/min ), z 为铣刀齿数, f 为每齿进给量 (mm/ 齿 ) 。每齿进给量的选取取决于工件材料的力学性能、刀具材料和铣刀结构。工件的硬度和强度越高,每齿进给量越小;当加工精度和表面粗糙度要求较高时,应选择较低的进给量;刀具切入进给速度应小于切削进给速度。
吃刀量的大小主要受机床、工件和刀具刚度的限制,其选择原则是在满足工艺要求和工艺系统刚度许可的条件下,选用尽可能大的吃刀量,以提高加工效率。为保证加工精度和表面粗糙度,应留 0.1~0.3mm 的精加工余量。
在精加工时,吃刀量的选择与表面粗糙度有关, CAM 软件中通常提供有两种参数控制表面粗糙度:步距宽度( Stepover )和残留高度 (Scallop) 。采用步距宽度控制表面粗糙度时,步距宽度越小,表面粗糙度越小;采用残留高度控制表面粗糙度时,步距宽度会依据工件形状自动调整。
好的软件确实可以提高模具的加工质量和效率,但它也只是一个工具,我们需要的是有丰富的现场机械加工经验和理论知识,同时熟练掌握软件功能的数控程序设计者,因为人才是模具数控加工中的决定因素,对数控加工的质量和效率起到关键作用。为此, 模塑公司建立了完善的 程序设计员培养体系。所有的设计员都要先在数控操作的岗位上实习一段时间,经过严格操作考核合格后方能进行数控程序的设计培训。程序设计员必须会用公 司所购买的所有正版 数控加工软件,并且熟练掌握至少一种后才能编制程序。为了保证模具的数控加工质量,就必须有好的数控程序,为了便于管理和控制加工质量,我们根据多年的经验总结编写了多种的程序编制规范,为公司的模具质量的稳定和不断提高打下了坚实的基础。
[关键词]数控加工任务驱动 教学探索
[中图分类号]TH163[文献标识码]A[文章编号]1007-9416(2010)03-0111-03
Exploratory of Task Driving Instructional Method in Teaching NC Machining of Mold Specialty
Xiao Ri zeng
(Maoming Vocational and Technical College,Maoming,Guangdong,China 525000)
[Abstract]There are defects in conventional teaching method in NU Machining; the teaching result is undesirable also. For making students more competitive in career-choosing, it is suggested that living example of Mold Machining should be added in NC machining course. By using learning purpose driving and producing task driving, a probe was made into task driving instructional method.
[Key words]Numerical Control,Task Driving,Teaching Exploratory.
1 任务驱动教学法在模具专业的《数控加工》课教学中的必要性
数控加工是在现代制造业中已广泛使用的一种先进加工技术。在现代模具制造业中,数控加工已成为了模具制造的主要手段,模具成了数控加工的主要对象, 《数控加工》是一门实践性和操作性很强的课程。
传统教学模式的模具设计与制造专业的数控加工课程都是相对独立,与模具专业知识没有紧密联系,教材上的例题、习题与实训内容与所学的模具设计与制造内容也没有关联。
传统教学模式的数控加工实训内容也与模具没有紧密联系。
传统教学模式的数控加工课程教学也是理论和实践分离的。
事实证明,传统教学模式存在很多不足,教学效果也不理想。
如果,在教学中仍按传统的教学方法按章节讲授,势必降低的课程的综合性、实用性,也缺乏趣味性,这不但难以培养学生学习兴趣,使得教学双方都陷入困境,而且,学生不知道如何在真实的情境中灵活地使用知识和运用技巧。这样的教与学,是很难面适应职业岗位群要求的。要改变这一现象的方法,比较有效的是运用以探索式的任务或生产性任务来开展教学活动的任务驱动教学方法进行教学,在教学中,淡化知识的传授,更多注重创造情境引导学生构建自己的专业知识体系,学生通过驱动任务诱发、加强和维持成就动机,自主探究、亲自动手完成任务,[1]在这个过程中提高自己的技能,既培养了学生数控编程与加工的能力,又培养了学生学习能力、分析问题和解决问题的能力,达到强化学生职业能力的目的。
教高[2006]16号文就强调高等职业教育要重视学生校内学习与实际工作的一致性。[2]校内学习与实际工作的一致性可大在缩短过渡期、适应期。因此,研究探索模具设计与制造专业的数控加工课程的教学内容与方法的特殊性具有重要的意义。
2 定位岗位目标,创新学习任务
以模具加工生产实例为数控加工课程教学单元,使课程内容既巩固所学的模具设计知识,又接近工作实际。从而解决传统教材中学习与实际脱节的矛盾,有利于学生把所学知识融会贯通,学以致用,提高就业竞争力。
数控加工课程一般包括三部分教学内容:机床操作、编程与加工。
结合模具数控工岗位群的能力需求,现把模具专业的数控加工课程的实训教学内容设计成12个任务,每个任务都包含机床操作、编程与加工的训练,在加工实习中学习机床操作与编程。如表1示。
3 围绕职业能力,创新教学模式
大学教学又是学校教学过程的最后一个阶段,是学校这一特定环境下的认识过程转入社会实践中的认识活动前的一个阶段。或者说它是过渡性质的中间过程。[3]
中间过渡性质的过程决定了高等职业教育教学过程培养学习能力、动手能力的重要性。高等职业院校的模具专业学生绝大部分一毕业就投身到模具生产第一线,面对不断发展的数控加工技术,学习能力与职业能力的重要性不言而喻。
为此,运用任务驱动教学方法从学习目标驱动与产品项目驱动两方面进行了尝试与探索。
3.1 学习任务探索式的任务驱动
《数控加工》传统的教学方法,都是从手动编程到自动编程,学生会对数控指令代码会感到既抽象又繁琐,对数控加工课程感到枯燥无味,从而影响了教学效果。因此,很有必要创新教学方法。
(1)“兴趣是最好的老师”,学习一门课程,保持浓厚的兴趣很关键。 手动编程很重要,但由于学生对它的认识不足,学习感到枯燥无味,但用自动编程到手工编程的教学顺序,由于可利用直观的仿真演示来增加感性认识,学生感到形象生动,并通过教师有意识地引导、点拨、激发学生的求知欲和学习热情。
(2)用自动编程到手工编程的教学方法符合感性认识到理性认识的认知规律,从引入新课到课后小结,都尽力设计适当的直观问题,当学生理解直观问题后,及时引向理性高度。
(3)用自动编程到手工编程的教学顺序便于展开探索式教学模式,这更利于学生的自学能力培养。
这种任务驱动教学方法以培养数控加工的职业核心能力为目标,主要运用在数控指令代码和编程基础的教学上,以自动编程到手工编程为教学顺序。其主要的教学设计思路如图1示。
现以数控铣床编程部份指令学习为例说明其主要的教学设计过程。
(1)自动编程与自动生成程序
在编程指令课程中,引导学生自己使用AutoCAD画一个以零点为中心的矩形,以DXF格式导入MasterCAM中,然后,以这个矩形为轮廓进行轮廓加工(关闭刀具偏置),自动生成刀具轨迹,最后生成数控程序。这样引课会使学生感到指令这个概念并不陌生,而且与学过的知识(AutoCAD)也有联系,同时利用直观的仿真演示来增加感性认识,也为往后学习指令的应用打下了伏笔。
(2)读程序
在生成数控程序后,引导学生阅读程序,遇不明白的指令含义就查指令表,不明白指令用法就参阅教材相关内容。通过以上的程序自学,学生很快初步理解了G90/G91、G17/G18/G19、G00、G01、G54、M03/M04/M05、M02/M30、M08以及T、S、F的含义。这样学生虽然没有完全掌握指令的运用,却基本掌握了指令的含义。这样的教学方法符合由读到写的能力培养过程。课间总结时,应重点图解G90/G91的应用有何不同。
接下来是学习G02或G03。首先布置学生新的学习任务:利用上节课的矩形应用串连倒圆角R10,用新轮廓重新生成刀路,重新生成数控程序。学
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
生会发现,程序增加了G02或G03。教师再演示改变串连方向,提示学生观察重新生成数控程序有什么变化,由学生总结应用G02/G03的规律。这时,教师抓紧时机提问,检验学生总结的规律是否正确。通过这种的探索式教学模式学习了知识重点。
再接下来,布置学生利用自动编程方法生成一个整圆的加工程序。学生很快会提问为什么整圆的加工程序是分2段来加工的。教师在回答分段加工整圆的原因后,马上提出有更好的整圆编程方法――I、J、K分矢量圆弧编程方法。接着着重解说I、J、K增量坐标值的计算与符号确定,并举例说明,从而轻松破解了难点。
(3)编程序
为了巩固常用准备功能指令,培养学生运用学过的知识解决数控编程问题的能力,设计一组编程任务,通过这组由浅入深的形成性编程任务,使学生对常用功能指令有了更深的理解,学会功能指令的运用,学会了程序段的格式,数控编程能力得以逐步养成。
(4)输入检验
学生编写的程序,经过学生自己检查、思考并修改后,由学生输入机床检验是否正确,培养独立解决问题的能力。
总之,这种教学方法是针对大学生的心理特点和认知水平,以指令和编程基础的学习为主线,运用仿真试验、引导等多种教学手段,把传授知识、培养兴趣和能力、渗透方法有机地结合到一起,充分体现了“以任务为主线、以教师为主导、以学生为主体”[4]。
3.2 生产任务导入式的任务驱动
产任务导入式的任务驱动教学方法应用是,以职业素质的养成和职业能力的培养为目标,以“生产任务导向”,以一体化教学为组织方法,将多媒体课件、上机实操等现代教学手段有机结合,根据模具专业的实习要求,结合实习教学任务,提出模具零件的编程与数控加工生产任务,让学生在运用知识、原理、方法于生产任务的分析、规划与实施之中探索解决问题的方法,使学生养成从生产的角度考虑问题的习惯,培养学生的实践能力。
产任务导入式的任务驱动教学中的驱动任务真实地来源于生产实践,能明确地刻画出一个结构完整的工作过程,教学能直接地为生产服务,这无疑是最好的驱动任务。
下面以“模具前模加工” 驱动任务为例说明此教学模式的主要教学过程。
(1)明确学习目标:掌握曲面造型与分型方法,掌握曲面编程与加工的工艺规划与应用,掌握数控铣床的操作方法。
(2)任务布置:布置单元项目、要求、成绩评定标准等,并将学生分为每3~5人为一组。
(3)分模与编程:1)分模:测绘产品三维造型,或调入产品三维造型,由产品分型构建出模具前模与后模。2)刀具路径设计:在计算机上用MasterCAM软件编制出加工程序。依据零件的结构特点和尺寸大小进行合理的工艺规划,运用恰当的加工方法,选择类型和大小适合的刀具,合理设置加工参数。老师选择代表性的学生程序进行评价。3)模拟加工验证。观察有否产生干涉和过切。仿真通过后再由每小组推举一位代表,向全班学生阐述本组的程序设计的思路。共同讨论并由教师进行讲评。4)NC程序生成。5)形成数控加工工艺文件。根据程序编写数控加工工序卡及数控加工刀具卡等。
(4)加工实习:每位学生独立将程序传入数控铣床、进行机床检查和调试,刀具准备、毛坯装夹、对刀、粗加工、半精加工和精加工,直至全部完成。
教师现场巡视、指导,及时解决学生遇到的疑难问题。
(5)评价和总结:教学评价可以进一步激发学生的学习动机,当学生知道自己的学习效果是好的,则可以满足其“获取成功”的需要,从而带来愉悦的情绪体验,进一步增强其学习动机。如果反馈的结果说明学习效果不好,往往会引起不愉悦的情绪体验,为了“避免失败”,也可以促使学生把压力变为动力,从反面来增进学习动机。[5]所以教学评价是任务驱动的重要环节。
各组学生交叉进行工件的测量,并对照评分表的各项目进行打分。
教师再对每一工件进行评分。对质量较好和较差的工件进行讲评。与学生一起总结本实训任务实施过程中的经验与不足,进一步增强学习动机。
4 结语
在教学中,开展任务驱动教学方法,学生学习目标非常明确,学生主体性地位得到了凸现,调动了学生的主动学习积极性,促使学生积极思考与实践,从而促进学生能力的有效发展,教学质量明显提高。
本文对在模具专业的《数控加工》课程开展任务驱动教学的必要性和可行性进行了认真的分析,从学习目标驱动与产品项目驱动两方面对任务驱动教学方法进行了尝试与探索。学习任务的创新设计也应结合实际情况进一丰富,其它的任务驱动教学方法还有待于继续实践探索。
[参考文献]
[1]周平儒.任务驱动式教学法 [EB/OL].2005-8《辰星教育论坛》网.
[2]关于全面提高高等职业教育教学质量的若干意见(教高[2006]16号)[EB/OL]. 2006-11-16中华人民共和国教育部.
[3]伍新春.高等教育学[M].1999-8 高等教育出版社.
[4]蔡立炉.运用"任务驱动"教学法的一点心得 [EB/OL]. 2010-3 合肥教研网.
1、进入模具编辑界面,输入模具参数。以后每次用时,选择模具代号。
2、主要采用WE67YK系列板料折弯机结构;由SDS-3PB折弯机全闭环数控系统、两把光栅尺、一个光电编码器实时检测反馈,步进电机驱动丝杆组成全闭环控制。两把光栅尺;一把对后挡料、一把对滑块的位置实时检测反馈纠正;光电编码器对油缸死挡块的位置进行检测反馈给数控系统。
(来源:文章屋网 )
关键词:数控加工 快速模具 工艺
中图分类号:TG76 文献标识码:A 文章编号:1007-0745(2013)06-0134-01
在快速模具制造的两种方法中,直接法虽然在缩短模具制造周期、降低成本等方面具有优势而备受关注,但离实际应用还有一定差距。目前发展较快的快速原型技术却因专用激光成型设备以及原型材料过于昂贵而限制了应用范围。随着计算机和控制技术的发展,数控加工设各已广泛应用于制造企业,而精密成型技术经过多年的发展,理论和实际操作过程都已经十分成熟。在此背景下,本课题提出了将数控加工技术与现代精密材料成型技术结合,以期克服激光快速原型技术在表面及尺寸精度低、机械性能低以及成本高、尺寸规格受限制等方面的不足,开发一种基于数控加工技术的低成本、高精度快速金属模具制造工艺。
一、快速模具技术和数控加工技术
快速模具根据不同的制模工艺方法,可以分为直接快速模具和间接快速模具。直接快速原型模具,以快速原型件直接作为模具,可以用作砂型铸造模具、低熔点合金浇注模、试成形用注塑模、熔模铸造的蜡型、蜡型的替代品和蜡型的成形模:间接快速模具指以快速原型件为母模,通过型腔复制制作模具,包括硅橡胶复制、金属冷喷涂、精密铸造、树脂材料性强复制等。直接法尤其是直接快速制造金属模具方法制造环节简单、能够充分发挥RP技术的优势,特别是与计算机技术紧密结合,能够快速完成模具;对那些需要复杂形状的内流道冷却的模具与零件,采用直接RT法有其他方法不能替代的优势。但是直接法在模具精度和性能控制方面比较困难,特殊的后处理设备与工艺使成本有较大提高,模具的尺寸也受到较大的限制。和直接制模法相比,间接铡模法通过快速原型技术与传统的模具翻制技术相结合来制造模具,由于翻制技术已经十分成熟并具有多样性,可以根据不同的应用要求、使用不同复杂程度和成本的工艺。
数控加工,也称为NC(Numerical Contr01)加工,是将待加工的零件进行数字化表达,数控机床按数字控制刀具和零件的运动,从而实现零件加工的过程。数控加工技术经历了半个世纪的发展已经成为应用于当代各个制造领域的先进制造技术。数控加工的最大特点有以下两点:一是可以极大地提高精度,包括加工质量精度及加工时间误差精度;二是加工质量的重复性,可以稳定加工质量,保持加工零件质量的一致性,也就是说加工零件的质量及加工时间是由数控程序而不是由机床操作人员决定。
二、开发基于数控加工的快速模具的可行性
世界先进工业化目家的RPM技术在经历了模型与零件试制、快速树脂软模制造阶段后,目前正向快速金属模具制造(RMT)方向发展,特别是兴起于本世纪80年代术期的快速原型技术,为快速模具制造开辟了很好的途径。目前已经提出众多的RMT方法可分为由RP系统制作的快速原型复制金属模具的间接法和根据CAD数据直接由RP系统制造金属模具的直接法两大类。直接快速模具制造指的是利用不同类型的快速原型技术直接制造出模具本身,然后进行一些必要的后处理和机加工以获得模具所要求的机械性能、尺寸精度和表面粗糙度。目前能够直接制造金属模具的RP工艺包括激光选区烧结(SLS)、三维打印(3D.P)、形状沉积制造(SDM)和三维焊接(3D—Welding)等。目前数控加工技术在制造业应用越来越广泛,数控加工设备已由原来的高精端设备变成大多数工厂具有的普通设备。精密材料成型技术发展迅速,典型的有泡沫实型消失模精密铸造技术及石膏型精密铸造技术。因此将数控加工技术和精密材料成型技术相结合,开发一种成本更低、周期更短的快速模具技术将大大提高模具制造的竞争力,在模具工业应用上具有很大的发展前景。
三、数控加工技术在模具中的应用
种类繁多的数控加工方式为模具加工提供了更多的生产手段。根据其特点,可以将模具分为很多类,在实际生产中,根据不同的模具制造加工特点,选择最合适的加工方式,以降低成本,提高生产效率。
对于旋转类的零件,一般采用数控车削加工,如车外圆、车孔、车平面等,酒瓶、酒杯、方向盘等模具,都可以采用数控车削加工。
对于具有复杂外形轮廓或带曲面的模具,电火花成型加工用电极,一般采用数控铣削加工,这类模具如注塑模、压铸模等都采用铣削加工。
对于微细复杂形状、特殊材料模具、塑料镶拼型腔及嵌件、带异形槽的模具,都可以采用数控电火花线切割加工。
模具的型腔、型孔,可以采用数控电火花成型加工,包括各种塑料模、橡胶模、锻模、压铸模、压延拉伸模等。
对精度要求较高的几何皓面,可以采用数控磨削加工。
型腔、型芯加工主要依靠铣削加工及电火花成形加工(EDM)。在铣削加工方面,目前国内大量采用普通铣削、各类数控铣削、数控仿形铣、加工中心加工等;在EDM方面,各类普通电火花成形加工、数控电火花成形加工(NCEDM),在我国也已大量应用。
四、基于数控原型的快速制模工艺特点
基于数控加工原型的快速模具制造技术结合了数控加工技术和精密铸造成型技术,具备数控加工的生产效率高、加工精度高、便于设计变更和加工过程柔性化等特点,同时该工艺是一种快速模具制造技术,因此也具有了快速模具制造技术的制造周期短、成本低、方法多样及适应性广等特点。在工艺中从三维CAD模型的设计、原型材料的准备到模具的精加工与调试,若对整个过程都实施并行制造,对每道工序进行有效的协调,可以大大缩短模具制造周期,降低制造成本,在实际生产中获得广泛应用。
采用基于数控加工原型的快速模具制造工艺,可以在CAD环境下实现对整个制造系统的精度控制和误差补偿;可以与形式多样的快速精密成型技术相结合,根据不同的要求,使用不同复杂程度和成本的工艺,较好地控制模具的精度、表面质量、机械机械性能和使用寿命,可以对各个环节进行有效地实施并行制造,在降低模具制造成本,缩短了生产周期方面具有很大的优势,具有明显的直接的经济效益。
参考文献:
[1]颜永年等,快速模具技术的最新进展及其发展趋势,航空制造技术,2002(4),p17~21
[2]徐进、陈再枝等,模具材料应用手册,机械工业出版社,2001年第1版
[3]罗继相等,浅析我国模具行业现状及发展趋势和对策,模具技术,2001, p71~75
【关键词】模具数控加工编程;问题;解决措施;分析
1工序与工步划分、顺序安排
在模具数控加工编程中,数控机床工序趋向集中化,如果应用到生产中的机床、零部件装夹逐渐减少,零部件加工效率也会有所提升。但由于工序过分集中,数控机床工序特别长,大大降低了模具数控加工编程准确率,增加了模具数控加工编程检索难度,降低了零部件加工效率与质量。在模具数控加工编程过程中,相关人员必须结合零部件加工内容,数控加工设备具体情况,动态控制对应工序“集中化、分散化”程度,必须严格遵循“先粗后精”工艺原则。如果零件的加工刚度较小,粗加工后必须对其进行合理化的校形,有效消除存在的残余应力,避免零部件变形,使其更好地投入到使用中。在此过程中,相关人员还要准确把握工序先后次序,避免加工编程中多次定位、换刀,降低加工效率。如果孔系同轴度要求特别高,相关人员必须借助连续换刀,顺利完成同轴孔系加工,为加工剩余坐标位置孔做好铺垫,避免受到重复定位误差的影响,在一定程度上提高孔系同轴度,有效衔接数控加工工序、普通加工工序、辅助工序等,确保各工序顺利进行。
2确定好刀点、换刀点
在模具数控加工编程中,经常出现刀点、换刀点位置不准确问题,降低了零部件加工精准度。相关人员必须综合分析各影响因素,严格遵循相关原则,要多角度分析对刀重复精度,尤其是成批生产,借助机床,校准刀点位置,为加工中检查零部件提供便利。如果零部件加工精度要求较低,相关人员可以将工件、夹具某表面当作对应的对刀面,如果精度要求较高,必须尽可能将零件设计基准、工艺基准作为刀点。以孔定位零件为例,孔的中心可以作为对应的刀点;以对称零件为例,零件表面与底面中心都可以作为刀点,要确保换刀之后还可以继续对刀。在加工过程中,如果必须换刀,相关人员必须确定好换刀点,以工序内容安排为基点,选择适宜的换刀点位置,有效防止换刀中工件、夹具等被刀具损坏,大都需要设置在零件轮廓外面。
3注重加工路径规划
3.1零件圆弧轮廓表面、平面铣削
就加工路径而言,是指在数控加工中刀具运动轨迹,又被称之为走刀路线,零件加工精度与效率与其有着密不可分的联系。在加工路径规划中,也极易出现各种问题,比如,在零件铣削中,出现法向切入与切出问题。在铣削零件中,相关人员必须准确把握主轴系统、刀具二者刚度具体变化情况,在径向切入中,切入之后零件运动方向随之发生变化,会出现进给停顿现象,切削力大幅度减小,工件表面会留下明显的凹痕,切出后也会出现相同的情况。通常情况下,要采用切向切入与切出方法,确保工件表面具有一定的粗糙度。相应地,工件切向切入切出结构示意图如图1.在加工中,如果零件孔位置精度要求特别高,镗孔路线要和孔定位方向相同,有效防止零件受到反向间隙影响。以进给路径为例,在加工孔IV中,III到IV孔的孔距精准度都会受到X轴反向间隙影响。相应地,精镗孔系合理路径结构示意图如图2。
3.2平面零件内槽封闭轮廓铣削
在铣削平面零件内槽封闭性轮廓过程中,切入、切出的部分都不能出现外延部分,要以零件轮廓为基点,沿着其法线,合理切入、切出,将零件轮廓几何元素交汇位置作为对应的切入点。根据图3,在a和b图中的进给路径作用下,工件内腔中的所有面积都能切完,不会出现死角,也不会损坏零件轮廓。但在切入、切出中必须合理控制重复进给搭接量,根据a图所示,所采用的行切方法会导致进给中起点与终点位置留下对应的残留高度,无法满足工件表面所规定的具体表面粗糙度数值。就b图而言,根据数值计算方法,其环切法刀位点计算极其复杂化,进给路径太长。就c来说,在采用行切法的基础上,环切一刀,是一种可行的进给路径,满足工件表面粗糙度具体要求。相应地,下面a、b、c图是平面零件内槽的具体铣削路径。
4合理选择刀具、切削用量
在数控加工过程中,刀具的合理选择至关重要,关乎加工效率与质量,加上数控加工要求特别高,用于其中的刀具必须具备较高的精度、较好的刚性,尺寸稳定等。在选择刀具的时候,以铣削平面为例,端铣刀的使用特别多,通常情况下需要走到两次,即粗铣、精铣,精铣时所用刀具直径要大于粗铣;以铣削平面零件周边轮廓为例,其中的凸台、凹槽都要采用立铣刀。在选择切削用量的时候,要以加工类型为准,粗加工中要考虑其经济型、加工成本,精加工还要考虑切削效率、加工精准度。
5结语
总而言之,在模具制造过程中,数控加工是不可忽视的重要环节之一,数控加工技术被广泛应用其中。在模具数控加工编程中,相关人员必须结合其存在的问题,合理划分工序与工步,准确把握其顺序,确定好刀点、换刀点,加强路径规划,选择适宜的刀具、切削用量等,优化利用多样化的模具加工编程技巧,动态控制刀具运动情况,提高模具型面数控加工整体质量,提高加工效益。
参考文献:
[1]朱明斌.数控技术中模具零件加工中存在问题以及解决对策———以"平衡肘锻造模具加工"分析[J].科技传播,2013(08):85,102.
[2]尹耀康.在数控模具制作中的影响因素及改进措施探析[J].科技展望,2016(06):65.